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ON THE MINIMAX VALUE IN THE SCALE MODEL WITH
TRUNCATED DATA

BY LEstaw GAJEK

Technical University of £.6d2

Let X be a positive random variable with Lebesgue density fy(x), where
0 is the scale parameter, and let Y be a positive random variable independent
of X. We consider two models of truncation: the LHS model, where the data
consist only of those observations of X for which X > Y; and the RHS
model, where the data consist of those observations of X for which X < Y.
Consider the problem of estimating 6°, s # 0, under a normalized squared
error loss function. It is shown that under appropriate assumptions, if f,(-)
varies regularly at 0 (or + o), then the minimax value in the RHS (LHS)
model is equal to 1 for arbitrarily large sample size. This implies the existence
of trivial minimax and admissible estimators, which do not depend on the
sample at all, in contrast with the scale model without truncation.

1. Introduction. Let X and Y be a pair of independent positive random
variables and suppose that the data consist only of those observations of X for
which X > Y. Such models arise, for example, in situations when measurement
of the quantity X is the only way used to identify some physical objects. Then
the random variable Y is concentrated on the smallest quantity j,, which can be
observed by a physicist using his measuring instrument; if X > y,, the physicist
observes X and identifies some element of the data, but if not, nothing is
observed. In Woodroofe (1985) one can find a detailed description of this model
in astronomy with a list of references.

The so-called time-truncated sampling in life testing, which relies on putting
an unspecified number of items on test until a fixed length of time has elapsed, is
another example of models with truncated data. It is usually assumed that each
item on test has an exponential distribution with density (1/0)exp(—t/9),
t>0,0>0. Let [0, y] be the duration of experiment, N be the number of
failures observed in [0, y] and T, < --- < Ty be the observed failure times.
Then it can easily be shown that T},..., Ty, given N = n, have the same joint
density as the order statistics of a random sample X,..., X, from the density

exp(—x/0)/[0(1 — exp(—y/0))], O=<x<y.

In this paper we investigate the scale parameter model truncated as described
previously. Let

(11 fo(x) = (1/8)f(x/8), 6 € Hc (0,),

be a scale parameter family of probability densities on (0, c0) relative to Lebesgue
measure. Let Y be a positive random variable with cumulative distribution
function @; Y is the (possibly random) truncation time.
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670 L. GAJEK

Let X denote the observed truncated random variable. In the left-hand side
(LHS) model, X has density

(1'2) gﬂ(x) = Coff0(x)1(y,oo)(x)Q(dy)’
with
Gt = [ [1s(2)10y, w()@( ) .
In the right-hand side (RHS) model, X has density

(1-2') g,,(x) = C,/fg(x)l(o,y)(x)Q(dy),
with
Cit = [ [1o(x)16,,(%)Q(dy) d.

The observed data consist of n independent copies of X, namely, X,,..., X,,.
The problem treated here is that of estimating 6°, where s # 0, under squared
error loss with the usual weight h(6) = 6725

The main aim of this article is to present a curiosity that concerns the
minimax value in both truncation models. The first result is that if there exists

(1.3) lim |« () /f(2)] < e0,

then the minimax value in the RHS model is equal to 1 for every sample size n.
This implies the existence of minimax and admissible estimators, which depend
neither on the sample X,..., X, nor on n. Condition (1.3) is nearly equivalent
to regular variation of the density f and its distribution function F (see Remarks
3.3 and 3.5) and is satisfied for distributions belonging to the families of Gamma
or F-distributions. The conclusion of practical importance is that minimax
estimation for the distributions satisfying (1.3) is very sensitive to the RHS
truncation of the data.

In the LHS model the condition lim, , . |xf'(x)/f(x)| < oo implies similar
effects as (1.3) in the previous case; in particular, for distributions regularly
varying at infinity, such as inverse Gamma or F-distributions, trivial estimators
may be both minimax and admissible.

Finally, we investigate the minimax value V,, ,, for estimators based on two
iid. samples X,,..., X, and X7,..., X/ obtained from the model without
truncation and the RHS (LHS) model, respectively. It turns out under condi-
tions like those given previously that V,, . is of order 1/n and estimators based
only on the first sample still remain minimax after adding the second one.

2. An improper Cramér-Rao lower bound. Initiated by Hodges and
Lehmann (1951), the idea of applying the Cramér—Rao inequality in admissibil-
ity proofs has received much attention in the literature. See, for example, Blyth
and Roberts (1972) or Lehmann (1983) for a modern version of this method being
designed to prove both admissibility and minimaxity. In this section we present
a new method, which also, explicitly, makes use of the Cramér—Rao inequality.

Let X be the n-dimensional random variable with probability distribution

Py(dx) = pe(x)n(dx),
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for x € R*, § € H, where H is an open interval of the real line and p is some
o-finite measure on R™. Suppose that 7 is a real-valued estimable function on H
and #(X) is an estimator of 7(8). Throughout this article, we shall consider only
the estimators for which the Cramér—Rao inequality holds. This restriction is of
minor importance because Fabian and Hannan (1977) have proved that, under
some regularity conditions, the Cramér-Rao lower bound is valid without any
assumptions about the estimator except for the trivial condition

Varo(t) < 0.

More convenient conditions, which imply those of Fabian and Hannan, can be
found in Brown (1986). Another set of regularity conditions, which concerns
differentiability in quadratic mean of the square root of the density p, with
respect to 0, is given in Klaassen and van Zwet (1985). Each set of regularity
assumptions mentioned implies

a /]
(2.2) 25 JHE)Po(2) dun(x) = [(x) 5opo(x) dis(x)
and
(2.2) E [t(X) — =(8)]® = B%(8) + ['(8) + B'(8)]*/1(8),
where
d
16) = Varo[ﬁlogpo(X)] and B(8) = E,[(X) - (0)].

Therefore, instead of choosing one of many possible assumptions, we assume
simply that (2.1) and (2.2) hold throughout this article, referring the reader to
one of the papers qucted previously.

In this section we show that the risk of each estimator that satisfies (2.2) can
be bounded from below at some points belonging to the compactification of the
parameter space H by a positive quantity that does not depend on the estima-
tor. Since such points may not belong to H, this quantity will be called an
improper Cramér-Rao lower bound (ICRB). In the following discussion we
present a brief sketch of the proof of ICRB given by Gajek (1987); actually,
another proof can be found in Brown (1986).

Assume, for simplicity, that 7(6) = 6. Let h be a positive weight function and
observe that (2.2) implies

E[(X) - 01°A(0) > [Bi,(f) L) }0%(0)

B(8) + (1—;22,;;’—))]02};(0)
. {B‘;(f)

> 02{;(%? -+ [(B(:)) —B’(0)2]02h(0),

>

(2.3)

- B’(0)2]02h(0)
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where the last inequality follows from 22 + a(1 + 2)? > a/(a + 1), which holds
for each @ > 0. We shall show that from (2.3),

(2.4) limsup Ey[#(X) — 0]2R(0) > ;u%ozh(o)(mz(o) +1)7},
6-0 -

provided that the limits of §21(6) and §2h(8) exist as & — 0 and that the latter
is finite. To begin, observe that the condition lim,_, (#22() < oo and the first
inequality in (2.3) imply that (2.4) holds if B(#) does not tend to 0 as § — 0. On
the other hand, if lim,_, ,B(#) = 0, Cauchy’s theorem implies that for every
0 > 0, there is £ € (0, ) such that B(8)/6 = B'({). Therefore

B(6
(2.5) liminfB’(9) < hmme)— < limsup (9) < limsupB’(9).
In order to prove (2.4), it is sufficient to show that °
B(8)\?
(2.6) lim sup [(—gl) - B’(0)2] >0
-0

and to apply (2.3). Assume that (2.6) is not fulfilled. Then, for some & > 0,
(B(8)/6)? — B'(6)> < 0 for 6 € (0, ¢), and by Theorem 5.12 in Rudin (1976),
page 108, we obtain that either B'(§) > 0'for 6 € (0, &) or B'(8) < 0 for 8 € (0, ¢).
In the first case we have

B(9)

~B'(0) < —— < B/(6),

which implies that B(8)/6 is increasing on (0, ) and, moreover, that all limits in

(2.5), except for the last one, are equal to each other. If they are finite, then (2.6)

is satisfied, a contradiction; if not, then (2.4) follows directly from (2.3). The

second case can be treated in the same way and this establishes (2.4).
Inequality (2.4) is a special case of the following general ICRB.

(2.7) THEOREM. Suppose that H is an open interval, t is a diffeomorphism
on H and 6* is a point (possibly + o) belonging to the compactification of H
such that lim, _, 4.7(0) exists and is equal to 0 or + co. Under such regularity
conditions that (2.1) and (2.2) hold, we have

7%(8)h(0)
% (v(6)/7(8))*1(8) + 1’
provided that the right-hand side of (2.8) exists and is finite.

(2.8) hmsupE,(t(X) - 7(0))*h(6) >

The right-hand side of (2.8) does not depend on the estimator. It is rather
unexpected that, when compared with the corresponding limit of the Cramér-Rao
lower bound for unbiased estimators, the denominators differ exactly by 1.

Evidently, (2.8) is immediately applicable in minimaxity proofs. In particular,
a number of standard minimaxity results can be quickly derived from it. In the
following discussion we present an example of the application of the ICRB in the
scale model without truncation; more complex LHS and RHS models are treated
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in the next sections. A version of the ICRB adapted to admissibility proofs can
be found in Gajek (1987).

Let X,,..., X, be n independent copies of the random variable X in the scale
model (1.1). Under such regularity assumptions that (2.1) and (2.2) hold, let V,
be the minimax value for estimating 6° on the basis of X,..., X,,. Let I,(6) be
the Fisher information in the model and observe that

I(o)—nf [—log )]2%f(%)dx
29 =) F[”E" BlEIRE

- %El[l + Xf(X)/f(X)]%

Though the regularity conditions are related to I,(8) < oo, it is convenient to
assume explicitly throughout the paper that

(2.10) E[1+ Xf'(X)/f(X)]? < .
(2.11) ProposiTION. If H D (0, 9) for some 8 >0 or H> (6, ) for some
0< oo, then
V.2 (1+ ns 2B, [1+ Xf(X)/f(X)]?)
PROOF. The result follows from (2.7) and (2.9). O

3. The scale model with truncated data. Let X,,..., X, be n indepen-
dent copies of X from the LHS or RHS model, respectively. Assume that (2.1)
and (2.2) hold and denote by V, the minimax value for estimating 6°, s # 0, on
the basis of the sample X,..., X,. Let R(y)=1 - Q(y), y > 0.

(3.1) THEOREM. Assume that H > (0, 8) for some 6 > 0 [or H D (0, ) for
some 6 < o). If

(i) for each 0 < v < 0,
Jim Q(v6)/E;[Q(X0)] =0 | Jim R(o8)/E,[R(X8)] =0,
(ii) the limit
lim f(x)x/f(x) [ lim fx)e/f(x)]

exists and is finite,
then in the LHS (RHS) model of truncation V, > 1 for all n.

The proof of (3.1) is an immediate consequence of Theorem 2.7 and Lemma
4.2, which is given in the next section.

(3.2) REMARK. Conditions (i) mean that the tails of the truncating distribu-
tion @ should be small enough when compared with those of the truncated



674 L. GAJEK

distribution F. Clearly, (i) is satisfied for any f in the LHS (RHS) model if @
has a support separated from 0 (c0) and f(x) > 0, x € (0, o).

(3.3) REMARK. If lim,_,f'(x)x/f(x) = ¢, where —o < ¢ < o0, then by
I’'Hospital’s rule

(3.4) mf(x)x//o"f(u) du=c+1.

Since (3.4) implies ¢ + 1 > 0, it follows from Feller (1971), Theorem 1(b), page
281, that

(1) f(x) and F(x) both vary regularly at 0 with exponents ¢ and c + 1,
respectively, when ¢ > —1;
(2) F(X) varies slowly, when ¢ = —1.

(3.5) REMARK. The conditionlim, _,  f'(x)x/f(x) = ¢, where — o0 < ¢ < oo,
implies

xlinzof(x)x/wa(u)du =-c-120

and by Feller (1971), Theorem 1(a), pége 281, we have that

(1) f(x) and 1 — F(x) = [*f(u) du both vary regularly at infinity with expo-
nents ¢ and ¢ + 1, respectively, when ¢ < —1;
(2) 1 — F(x) varies slowly, when ¢ = —1.

(3.6) REMARK. In a sense, conditions (ii) are symmetrical. Clearly, if (ii)
holds for X in one of the models, then it also does in the second model after
substitution X’ =1/X and 6’ =1/8.

Theorem 3.1 has the following rather unexpected corollary.

(3.7) COROLLARY. Assume that conditions (i) and (ii) of (3.1) are satisfied.
If H=1[0,,), where oo > 8, > 0, then t,= C* for any C €[0,,2'/%,] is a
minimax and admissible estimator of 0%, s > 0, in the RHS model. Similarly, if
H = (0,0,], where o > 0, > 0, then t, = C* for any C € [2'/°0,, 0,] is a mini-
max and admissible estimator of 6°, s < 0, in the LHS model.

In fact, minimaxity of ¢,= C*® follows from (3.1) and the inequality
E4(C® — 6°)%0~%¢ < 1, which holds for every C such that 6° < C* < 26?,i = 1,2,
in the RHS or LHS model, respectively. In order to prove admissibility, it is
sufficient to notice that ¢, = C* is the unique locally optimal estimator at the
point 4§ = C.

Another anomaly is that the estimator ¢, = 0, which is rather absurd in the
scale model, is minimax for each s # 0 and every n > 0 in both truncation
" models.

Now, we present some examples of scale parameter families that satisfy
conditions (ii).
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ExAMPLES. (a) Gamma distributions. Suppose that
1
f(x) = fmx“"le_xl(o,w)(x)’
with a > 0. Then f'(x)x/f(x) > a—1asx — 0.
(b) Inverse Gamma distributions. Let
1
f(x) = We—l/"l(o,w)(x),

with a > 0. Then f'(x)x/f(x) > —a—1asx — oo.
(c) F-distributions with a and B degrees of freedom. Let
l(a + B)/2]a™BP2 _ xr
f(x) = (a*+B)/2 L, oo)(x)’
I'(a/2)T(B/2) (B + ax)
with a > 0 and 8 > 0. Then
f'(x)x/f(x) > -1+ a/2, asx -0,
- —-1-B8/2, asx — oo.

In all the preceding families the truncation anomalies occur provided that
assumption (i) of (3.1) is fulfilled. Of course, (i) holds in the case of (3.2); however,
many other distributions of Y are possible because the condition is very mild. If,
for example, EY is finite, then (i) is satisfied in the RHS model for every f such
that lim , _, ,+f(x) > 0. To see this, observe that G, defined by

dGy(u) = R(u6)0 du( EY) ™}
converges weakly as § — oo to the distribution concentrated at 0. Therefore
- R(ub) . OR(ud)(EY)!
—_— = lim —— =7
-0 E\[R(X8)] 0> [f(u)dGy(u)
=0.

Though the Gamma distributions are very sensitive only to the RHS trunca-
tion of the data, in the LHS case some modification of standard procedures are
also needed. As an example, consider the data X,..., X, from the exponential
distribution truncated by Y, which is concentrated at some y, > 0. The usual
estimator of 4 in the model without truncation is ¢, = (n + 1) 'L, X;, which
is minimax and admissible if # € H = (0, ). One can verify directly that in the
LHS model this estimator produces unbounded risk for each y, > 0. It is well
known that

b= (n+ )7 Y (X~ )

is a minimax and admissible modification of ¢,, provided that y, is known. If y,
is'not known, a natural modification of ¢, would be

ty =c¢, ) (Xi — min(X,..., Xn))’

i=1
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which, however, could not be proved to be minimax by a straightforward use of
the Cramér—-Rao inequality (2.2) for the simple reason that the bound is not
sharp then. In fact, y, (if unknown) is a kind of nuisance parameter and the
Cramér-Rao inequality can be improved as is shown by Klaassen and van Zwet
(1985) and Klaassen, van der Vaart and van Zwet (1987).

4. Two-sample problem. Now we shall investigate the minimax value V,, ,,
for estlmators of 6° based on two independent samples X,..., X, and
X/,..., X, which are fully observable and RHS (LHS) truncated, respectlvely

(4.1) PROPOSITION. Under the assumptions of (3.1),

V, m= (1+ns72E [1 + Xf’ (X)/f(X)] A7,
in both truncation models

Proofs of (4.1) and (3.1) are based on the following lemma.

(4.2) LEMMA. Let I(0) denote the Fisher information of X truncated by Y in
the LHS (or RHS) model. If conditions (i) and (ii) of (3.1) are satisfied, then

6%1(8) - 0,

as § - 0 (or 8 > o).

Proor. We shall prove the lemma only for the LHS model because the
second model can be treated by analogy. From (1.2), it follows that g,(x) =
Cy fo(x)Q(x), where C;* = [f,(x)Q(x) dx. Therefore

_ o [004(X)  9/0811y(x)Q(x) ax T
I(”)‘E"[ WX Th()RG) ds ]
) [3/30fo(X)]2_ 18/38 1o(%)@(x) d [3/30fo(X)]
|/ @@ d | f[(X)
[10/30 fo()Q() d ]
[1(x)@(x) dx
_ (| /80 fo(x) T 13/98 fo(x)Q(x) dx |2
“s f[ o) Jg"(")d"_[ [1(2)Q() ds ]
- 0_2{ j(1 . f’(x/0)x/0)2 f(x/8)Q(x) d
1(x/0) | [Hx/0)Q(x) dx
. [ /(1 , a/0)x/0 ) f(2/6)Q(x) dx }
1(x/0) | [1(x/0)@(x) d

R f'(u)u f'(u)u 2
Sl S awio - [+ ) swio |

dye(u) = f(u)Q(ub) du/([f(u)Q(uf) du).

where
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Since for any 0 < v < oo,

(o) = ['10)QUut) | [ 1)Q(u8)
< Q(o0)  [1(1)Q(u0) i,

therefore from (i) it follows that i, converges weakly (as § — 0*) to the
distribution concentrated at infinity. Hence, by (i), (ii) and (2.10), we have

f'(u)u f(x)x)\?
(4.4) f(1+ o) ) dyy(u), 0+x_mo(1+ 7(—;)-)

In a similar way, we can obtain

f(u)u " f(x)x
(4.5) f(1+ 00 )d\p,(u) >, xlgr:o(1+ & )

Eventually, from (4.3)-(4.5), the result follows. O

Theorem 3.1 follows directly from (2.7) and (4.2), whereas (4.1) can be
established by compiling proofs of (2.11) and (3.1).
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