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THE *“AUTOMATIC” ROBUSTNESS OF MINIMUM
DISTANCE FUNCTIONALS
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The minimum distance (MD) functional defined by a distance p is
automatically robust over contamination neighborhoods defined by . In fact,
when compared to other Fisher-consistent functionals, the MD functional
was no worse than twice the minimum sensitivity to u-contamination, and at
least half the best possible breakdown point. In invariant settings, the MD
functional has the best attainable breakdown point against y-contamination
among equivariant functionals. If p is Hilbertian (e.g., the Hellinger distance),
the MD functional has the smallest sensitivity’ to u-contamination among
Fisher-consistent functionals.

The robustness of the MD functional is inherited by MD estimates, both
estimates based on “weak” distances and estimates based on “strong” dis-
tances, when the empirical distribution is appropriately smoothed.

These facts are general and apply not just in simple location models, but
also in multivariate location-scatter and in semiparametric settings.

Of course, this robustness is formal because p-contamination neighbor-
hoods may not be large enough to contain realistic departures from the
model. For the metrics we are interested in, robustness against p-contamina-
tion is stronger than robustness against gross errors contamination; and for
“weak” metrics (e.g., p = Cramér-von Mises, Kolmogorov), robustness over
p-neighborhoods implies robustness over Prohorov neighborhoods.

1. Introduction. An attractive feature of the maximum likelihood estimator
is that it is “automatically” efficient. While there are exceptions, a useful rule of
thumb in applied work is that the MLE has the smallest possible variance
among reasonable estimators when the model holds.

Is there a class of estimators that is “automatically” robust in the same sense,
i.e., which is generically optimal according to some quantitative measure of
robustness? We will show one sense in which minimum distance (MD) estimators
form such a class.

Of the many notions of robustness, we can identify two of a quantitative
nature:

(1) Stability of variance. The asymptotic variance of the estimator should stay
small, uniformly over neighborhoods of the model.
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(2) Stability of quantity estimated. The quantity being estimated (i.e., the
limiting value of the estimate under increasing sample size) should change as
little as possible, uniformly over neighborhoods of the model.

A large body of work exists investigating robustness properties of estimators
with respect to criterion (1). Huber (1964) showed how to design M-estimators
(generalizations of maximum likelihood estimators) satisfying criterion (1) in an
optimal fashion. In this sense, the class of M-estimators “automatically” con-
tains robust estimates. However, much work has gone into the problem of finding
the optimally robust ones in this class; solving Huber’s design problem is by no
means an automatic procedure. [See Rousseeuw (1981) for a somewhat different
approach to (1).]

Less study has been devoted to robustness criterion (2), which in some senses
is the more intuitive of the two criteria. One does not invoke difficult stochastic
concepts; one only asks, what quantity has the most stable meaning under
departures of a certain kind from the model.

It is with respect to this second notion of robustness that MD estimators are
“automatically” robust.

We introduce some notation. Let { F;} be a family of probabilities indexed by
6 (the parametric model) and let u be a metric between probabilities. Let 6( P)
denote the corresponding minimum distance functional, i.e., a solution to

(1.1) w(P, Fy) = minu(P, Fy).

(More details will be provided in Section 2.)

The MD functional is the quantity the MD estimator is trying to estimate; it
is defined by the model {£;} and the metric p. This functional is automatically
robust over p-neighborhoods of the model.

o0 has within a factor of 2 the smallest sensitivity of small p-perturbations
among all Fisher-consistent functionals, i.e., functionals T satisfying T(P,) = 6.

oIt has within a factor of 2 the best breakdown point with respect to p-con-
tamination among Fisher-consistent functionals.

Thus the value of the functional changes very little over small p-neighborhoods
of the model (subject to Fisher consistency), and the value cannot be distorted
arbitrarily ‘away from its value at a particular model distribution without
moving very far away from that model.

Often the MD functional behaves even better than this, and the factor of 2
may be removed.

eIn situations of invariance [e.g., where p is invariant under translation (or
scaling) and @ is a location (or scale) parameter], § has the largest possible

, breakdown point (with respect to p-contamination) among equivariant func-
tionals [a translation-equivariant functional satisfies T(P,) = T(P) + h, where
P, denotes the shift of P by h: P,(A) = P(A — h)].
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eWhen p is a Hilbertian distance (e.g., the Hellinger distance), § has the
smallest possible sensitivity (to p-contamination) among Fisher-consistent func-
tionals.

In principle, this means that to satisfy the robustness criterion (2) is easy: One
simply chooses a metric p generating neighborhoods one would like to be robust
over; then the corresponding MD estimates gives good or even optimal quantita-
tive robustness over that neighborhood. Admittedly, one hardly knows what sort
of neighborhood “one would like to be robust over.” The question has not been
systematically addressed in the literature. In Tukey’s phrase, we do not know
what we should “choose to fear.”

It seems worth pointing out the conflict between robustness criteria (1) and
(2). Whereas M-estimators can be robust according to (1), they can fail to be
robust according to (2). And minimum distance estimators, which are robust
according to (2), can fail to be robust according to (1).

Consider first the case of M-estimators. Huber (1976) and Maronna (1976)
found that in d-dimensions, an affine-equivariant M-estimator of multivariate
location and scatter has a breakdown point not exceeding 1/(d + 1). Under a
relatively small contamination by outliers of a certain kind, the estimator would
cease to estimate the location and scatter of the “bulk” of the data, and estimate
something else instead; and the amount of contamination necessary to cause this
to happen could be quite small in high dimensions.

For some MD estimators, on the other hand, the results of Donoho and Liu
(1988) show that one can have an asymptotic variance that is arbitrarily large at
some distributions arbitrarily near the model. However, a specific subclass of the
MD estimators—those based on Hilbertian metrics—seems to avoid this prob-
lem.

Contents of this paper. Sections 2 and 3 of the paper introduce some
notation and give background information on MD estimates and on quantitative
robustness, respectively.

Section 4 establishes some basic facts about MD estimates in one-parameter
models. These include the starred results mentioned previously. Section 5 ex-
tends these results to the multivariate location-scatter problem, to semipara-
metric models and to minimum discrepancy estimates. Thus the facts appear to
be somewhat general.

Section 6 considers the properties of MD estimates, and shows that the
bounds of Sections 4 and 5 on the MD functional do apply to the limit points of
MD estimates. Consequently, the limiting value of the MD estimate based on p
is insensitive, in some cases optimally so, to p-contaminations. Also, the auto-
matic consistency, and even root-n consistency, of some MD estimates is estab-
lished as a simple byproduct of our results on the MD functional. Also, we show
that for MD estimates at least, the robustness of the MD functional actually
implies finite-sample robustness [in the sense of Donoho and Huber (1983)], at
least for large enough sample sizes.
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An application. Of course, the sort of robustness we are describing—robust-
ness over p-neighborhoods of the model—is rather formal. However, we focus
attention on certain metrics p, and for these the notion is more than formal. All
of the functionals we consider are robust over Huber neighborhoods; and those
based on “weak” metrics are robust over Prohorov neighborhoods. These results
can therefore establish the existence of consistent estimators with good sensitiv-
ity and breakdown point in a variety of estimation problems. As an application,
we collect together results from Sections 5.1, 6.2 and 6.4 in the following.

PROPOSITION 1.1. The MD estimate of multivariate normal location and
scatter based on either the halfspace or strip metrics (defined in the following
discussion) (has a version which) is affine-equivariant, is consistent and root-n
consistent when the model holds, has a finite-sample breakdown point approach-
ing 1 in large samples from the multivariate normal and its limiting value has a
finite gross-error sensitivity.

This is in contrast to the Huber—Maronna phenomenon for M-estimates,
which break down easily in high dimensions.

In another sense, however, our results are formal. It is not at all obvious how
to compute some of the minimum distance estimators we discuss. For example,
even computing the halfspace distance between an empirical and true distribu-
tion in dimension d > 1 seems to require a d-dimensional nonlinear opti-
mization—* projection pursuit.” We leave the interesting question of how to
efficiently compute minimum distance estimates for further work.

2. Background or minimum distance estimation. In this paper, we as-
semble a minimum distance estimator using three components:

(1) A distance measure p(P, Q) between probabilities. As a metric, p satisfies
the triangle inequality.

(2) A parametric family {P;} to be fitted.

(3) An estimated probability P, based on n observations {X,,..., X,}.

The components are combined to produce an estimator by the rule
(2.1) 4(B,) = argmgnp(f’n,Po).

That is, § is a value of the parameter that produces the best approximation to ﬁn
from the family {P,;}. This value need not, of course, be unique, either in the
sample or in the population.

We use several combinations of the three components in this paper, and
should point out in advance the variety of methods possible.

*Metrics. When the data X, are real-valued observations, so that p is a
metric between probabilities on the real line, we consider p chosen from the
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TABLE 1

Location Scale
Weak Strong Hilbertian Normed invariant invariant

Kolmogorov y y y y
Kuiper y y y y
Lévy y y
Prohorov y y
Variation y "y y y
Hellinger y y y y y
following list:
Distance M P,Q)
Kolmogorov sup |P(A) - Q(A)|
A=(—o00,t]
Kuiper sup |P(A) - Q(A)|
A=(a, b]
Lévy inf{8: P(—oo,t] < Q(—o0,t+ 8] + 8}
Prohorov inf{8: P(A) < Q(A?®) + 8 for all measurable A}
Variation sup |P(A) - Q(A)|
measurable A
Hellinger see (8.4) et seq.

For later reference we list in Table 1 some descriptive information about these
metrics. Here weak means “based on the distribution function,” whereas strong
means “based on the density function”; Hilbertian means “based on a
quadratic measure of deviation”; normed means p(P, Q) arises as the norm
of the difference between P and @ in an appropriate sense (e.g., the
Kolmogorov—Smirnov distance is the norm of A(¢) = P(— o0, t] — Q(— o0, t],
viewed as an element of L*(R)).

We also consider other possibilities. In Section 5.1 we introduce metrics for
the case where observations are multivariate. In Section 5.3 we give some results
when p is the Cramér-von Mises goodness-of-fit measure, not satisfying the
triangle inequality, and thus not a proper metric.

Estimated probability. Once the choice of p is made, we select our estimate
15" of P as follows. If p is a weak distance, we use the empirical measure
P,=n"'Y8,. If p is a strong distance, we smooth the empirical measure,

~ producing an estimate with a density. In detail, we let K » be a distribution with
"smooth density and bandwidth (i.e., scale) 4, and put

(2.2) B,=K,*P,



ROBUSTNESS OF MINIMUM DISTANCE 557

where h, depends on the sample size in an appropriate fashion. (See also
Section 6.)

Models. In this paper, we consider one-parameter models for real-valued
observations, such as the normal location model P, = N(#,1), as well as a
multiparameter model—multivariate normal location-scatter. We also briefly
consider the semiparametric model {F#;} = {all symmetric distributions}.

Many of the estimators we study here have been discussed in the literature. A
partial list of references includes Beran (1977), Holm (1976), Millar (1981), Parr
and Schucany (1980) and Rao, Schuster and Littell (1975).

3. Background on quantitative robustness. We are given a functional T'
and are interested in quantifying its robustness with respect to small changes
inP. There are several ways of doing this, depending on which robustness
criterion one is interested in—i.e., criterion (1) or criterion (2) of the Introduc-
tion. In what follows, we focus on (2): We measure the change in T(P) caused by
small changes in P.

We need the concept of an “ideal” distribution P, (which holds for physical or
other reasons); the real data we are able to obtain have a distribution P
distorted through gross errors, nonlinearities of measurement, rounding errors
and other factors outside our control. To make a quantitative assessment of the
effects of such distortions, we employ a measure of distortion 8 = 8(P; P,). &
may be one of the metrics mentioned earlier, or else a discrepancy such as the
Huber contamination discrepancy,

8 uber(P; Py) = inf{e: P(A) > (1 — &) P,(A) for all measurable A}.
We can then measure how much T changes under a §-distortion of size <e. A
formal measure of this is the bias-distortion curve
b(e) = sup{|T(P) — T(P,)|: 8(P; P, < ¢}.
b(¢) depends on T, P, and § for its definition; although we shall usually suppress
these as they will be obvious from context.

If the neighborhoods {P: 8(P; Py) < ¢} increase with increasing &, b(e) is
increasing with e. Our main interest is in how fast it increases, and in finding
procedures for which it does not increase too fast. The “classical” work of
Hampel (1968) can be viewed as designing estimators to make b(e) optimally
small for small ¢ subject to a constraint on the asymptotic variance at the
model. Huber. (1964) covered, in passing, the problem of finding an estimator
with minimal b(e). Our approach is analogous, but we work with a variety of
distortion measures; Huber and Hampel worked principally with the Huber
discrepancy.

Useful information can be read off from a graph of b(e). Figure 1 portrays
three important descriptive parameters. If lim, _, ,b(¢) is 0, then small distortions
away from P, do not affect the value of T' very much. Second, if b(¢) is nearly
linear near 0, with slope y*, a small distortion away from P, changes T in a
fashion that is essentially no worse than linear in the contamination measure §:

|T(P) — T(B,)| < v*8(P; P)(1 + o(1)),
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b(e)

F1c. 1.

as 8( P, P,) — 0. Third, if the vertical asymptote of this curve (at ¢*, say) is far
from e = 0, then it takes a fairly large distortion away from P, to make T blow
up completely.

For certain 8, the properties just mentioned were studied by Hampel (1968).
For 8 = Prohorov metric, the condition b(e) — 0 as ¢ — 0 is Hampel’s condition
for “qualitative robustness” of T. For § = Huber discrepancy, y* was called the
“gross-error sensitivity” and &* the “breakdown point,” respectively. In the
following we use the same names even when different discrepancies or metrics
are involved. All three concepts are really quite intuitive when & is a metric.
Indeed, they measure properties of the graph of T near P,. If the graph is
continuous at P,, then b(e) - 0 as ¢ — 0; if it is locally Lipschitz at F,, then
v* = lim,_, osup(b(e)/e) < oo; and * is the largest ¢ such that the graph of T
has no “singularities” in a ball of radius < ¢ about P,.

Much more could be said about quantitative robustness, particularly as
concerns robustness criterion (1). The reader in pursuit of further information
should consult the books of Huber (1981) and of Hampel, Ronchetti, Rousseeuw
and Stahel (1986). Finally, Bickel (1981) discusses a way to measure quantitative
robustness with respect to both (1) and (2) simultaneously, by the “shrinking
neighborhoods” technique.

4. Bias optimality of MD. In this section {F;} is a parameter family
indexed by a real-valued parameter §. For example, P, might be N(4,1). We
study the b(e) behavior of the minimum distance functional under the assump-
tion p = 8, so the estimation metric and the contamination discrepancy are the
same. We obtain bounds on b(¢) from above and below by various approaches.

In detail, we define b(e) as
(4.1) b(e) = sup sup |6(P) - 6.

n(P, Py) <e solutions to (1.1)
That is, the bound we are calculating applies to every version of the MD
functional, i.e., every solution ‘of the MD equation in the population,

(4.2) ”(P’ By) = ml}np,(P, By).
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For the moment, we leave aside the question of whether this also bounds the
limiting value of the MD statistic under sampling. Section 6 shows that our
results do have rigorous application.

4.1. Basic bounds on b(¢). Some basic inequalities for b(e) in the p = é case
are easy to obtain. They all involve the following gauge function, used to
convert from distance between probabilities (units of p) to distance between
parameter values (units of 8): A

bo(e) = sup{|0 — 6,|: p(Py, Py) <e}.
This function says how far apart two “labels” (parameter values) can get while
the “models” (probability distributions) stay within e of each other. It depends
implicitly on {F,}, p and §,, although we suppress this dependence. For regular
families [e.g., the N(6,1)] and regular metrics by(¢) = 0 as ¢ = 0 and, in fact, b,
is nearly linear in ¢ near ¢ = 0.

A basic observation concerning b, is: For every Fisher-consistent functional T
[i.e, T(Fy) = 0] by(e) = by(e). To see this, pick 8 so that u(F, F; ) =¢ and
|0 — 6,] = by(e). By Fisher consistency T(F) = 0, so |T(F) — 6, = b,(e): The
largest value of |T(P) — 6,| over the entire e-neighborhood must be at least this
big.

A basic fact for the MD functional is

b(e) < by(2¢)

(assuming p = §). This follows directly from the triangle inequality. Let
p(P, By ) < e. Since 0 is a solution of the MD equation,

l“(P’ P@) < ”‘(P’ Poo) <g
we have
| WPy B) 5 2.

Now by definition of the gauge b,,

It follows from this inequality that § is Fisher-consistent—i.e., 9(1’0) =
6—whenever b,(0; 8,) = 0 for all §,. Examining definitions, this last condition is
the same as identifiability,

0, # 6, implies p( Py, P; ) > 0.

Thus the MD functional 0 is Fisher-consistent whenever the family (P} is
identifiable.

Fisher consistency implies, as we have seen, the inequality b(e) > by(e). Thus
b(e) is bracketed between by(2¢) and by(e). Actually, the lower bound is true
even without Fisher consistency. For

b(e) > sup sup |9(P,,) = 6|

(P, By) <e solution to (1.1)
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and since the set of solutions of (1.1) always contains § when P = P,,
sup lé(Pa) — 8| = 16 — 6y

solutions to (1.1)
Thus
b(e) > sup |0 — 6y = by(e).
w(Fy, B)<e

We summarize this discussion formally.

PROPOSITION 4.1. For the MD functional based on metric p,
(4.3) bo(e) < b(e) < by(2¢),
whenever the distortion measure 6 = p.

This easy result has two basic corollaries.

COROLLARY 1. If the gauge by(¢) ~ Ce as € = 0, then for the MD functional
we have

(44) v*(6) < 2infy(T),

where the infimum is over all Fisher-consistent T.

COROLLARY 2. For the MD functional
(4.5) e*(0) > Lsupe*(T),
T

where the supremum is over all Fisher-consistent T.

These results say that for general parameter families, the MD functional has
within a factor of 2 of the best gross-error sensitivity and breakdown point. We
will show that the MD often has the best possible breakdown point and the best
possible gross-error sensitivity.

4.2. The minimax functional. Computation of b(e) has a simple, game-theo-
retic interpretation. Think of a two-person game where nature chooses a § and a
P with u(P, Py) < ¢ and a statistician chooses a functional T with loss to the
statistician of

|T(P) - 6].

Then b(e) bounds the loss of the statistician who plays strategy 8. We will see
that this strategy is nearly minimax in many cases.

The minimax strategy for this game is as follows. The statistician, presented
with P ( and knowing ¢), computes the set S, of all parameter values 6 such that
w(P, Py) < &. Let T, be the center of this set, that is the §-value minimizing
max, g |6 — ¢|. For example, if S, is an interval, then the center is the midpoint
of that interval.

T, is the statistician’s minimax strategy. Let b_(¢) be its value, i.e., br(e).
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PRroOPOSITION 4.2. For any functional T,
(4.6) moabe(e; 0,) = n})axb_(e; 0,).
0 0

The main interest of this result is in cases where an invariance is present, so
that the “max, ” is unnecessary. Consider the case where {P;} is a location
model [e.g., N(0 1)] and the metric p is translation-invariant. Then the 7,
functional will be translation-equivariant and &_() will not depend on 4.

In such cases of invariance b_(¢) can often be computed explicitly. It turns
out to involve the gauge b, in an explicit way. Here are two examples.

PROPOSITION 4.3. Let p be a translation-invariant metric defined by a
norm: u(P,Q) =|P— Q|. Examples include total-variation, Kuiper and
Kolmogorov—Smirnov. Then, if{ P} is a translation family,

(4.7) b_(e) = by(2¢) /2.

PROPOSITION 4.4. Let p be Hellinger distance. Then, if {P,} is a translation
family,

(4.8) b_(e) = b0(2e]/1’ - (e/2)? ) /2

It is possible to compute b_ in a few other invariant cases although we do not
pursue this here.

COROLLARY 3. In the cases covered by Propositions 4.3 and 4.4,
b(e) < 2b_(e).

COROLLARY 4. In the cases covered by Propositions 4.3 and 4.4,
b_(e)/by(e) > 1, ase— 0.

4.3. Breakdown point. An implication of Propositions 4.3 and 4.4 is that in
these cases, the MD functional has the best possible breakdown point among all
translation-equivariant functionals.

Indeed, since in these cases we have b_(¢) > b(€)/2, it follows that the MD
functional is within a factor of 2 of being bias-minimax for each e. Consequently,
the bias of the MD functional is finite whenever that of the minimax functional
is finite. The two functionals therefore have the same breakdown point.

4.4. Sensitivity. In certain cases, the MD functional has a sensitivity that is
actually optimal rather than within a factor of 2 of being optimal [as is always
the case, by (4.4)]. The optimality extends over all Fisher consistent functionals,
and does not depend for example on invariance.

» The basic idea is simple geometry. Consider Figure 2, which presents a
straight “ parameter family” and a spherical “contamination neighborhood.” It is
a simple fact of Euclidean geometry, that for every “contaminated” point lying
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Fic. 2.

inside the ball but not on the “family,” the closest point on the family lies inside
the ball. Indeed, the point on the ball that projects to the point farthest from its
center is the member of the “ parameter family” at the point where the “family”
exits the ball. Accordingly, for a “flat” parameter family and 8 = p = Euclidean
' distance, the least favorable contamination is one which stays within the
parameter family. As points in the parametric family within an e-ball about 0
cannot have a parameter value larger than what the gauge permits, by(¢) (this is
after all the definition of the gauge), it follows that in this setting,
b(e) = by(e),

so that MD is bias-minimax among all Fisher-consistent functionals in this
special model.

This geometric fact applies to our setting in the following way. First, Euclidean
distance can be replaced by any Hilbertian distance [e.g., the L,(H) or the
Hellinger distances]. Second, the parameter family, although globally curved,
must be locally flat (i.e., differentiable). Then b(e) = by(¢) for small ¢; i.e., y* is
optimal.

ProposITION 4.5. Let (P, Q) = ||P — Q|l, where ||-| is the norm of a
Hilbert space. If the curve 8 — P, is Fréchet-differentiable at 6,, and if by(¢) is
differentiable at 0 with b} > 0, then

lim (b(e)/Bo(e)) = 1,
ie.,
v*(8) = infy*(T),
where the infimum is over all Fisher-consistent functionals.

We can make two easy applications of this result in the location model.

CoroLLARY 5 (Millar's MD functional). Let p be the L,(P,) distance be-
tween c.d.f.’s, as in Millar (1981). Let { P;} be a location model with density p,,
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and suppose that 8 — p, is continuous in Ly(P,) quadratic mean at § = 6,. (For
example, suppose the density is bounded.) Then the MD functional based on this
distance has the smallest sensitivity to L,(P,) perturbations of the model of any
Fisher-consistent functional.

This optimal property of the MD functional was not mentioned by Millar
(1981).

COROLLARY 6 (Beran’s MD functional). Let p be the Hellinger distance;
suppose again that {F;} is a location model, and that P, has finite Fisher
information. Then the minimum Hellinger distance functional has the least
sensitivity to Hellinger perturbations of the model among all Fisher-consistent
functionals.

This last result was first obtained by Beran (1977).

In short, for Hilbertian MD functionals, y*(8) will typically be optimal.

What happens if p is not Hilbertian? For example, if it is the Kolmogorov or
variation distance? Typically, in these cases, the factor 2 in (4.4) cannot be
avoided.

PROPOSITION 4.6. If {P,} is a location family with continuous c.d.f., then
for u = 8 = Kolmogorov distance

b(e) = by(2¢) (= 2b_(¢)).

PROPOSITION 4.7. If {P,} is a location family with density having a continu-
ous, integrable derivative, then for p = 8 = variation distance

b(e) = by(2¢) + o(e).

Again, some understanding can be gleaned from finite-dimensional geometry.
Figure 3 shows two flat “ parameter families” and an unit ball which is not round
—the /; ball. Note that in the first case, some points in the ball project outside
the ball under minimum distance projection in the I, distance. In the second

Fic. 3.
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case, this is not true: All points inside the ball project inside the ball (or there
exists a version of the projection with this behavior).

In this non-Hilbertian case, the MD functional is suboptimal by a factor of 2
for some families; for other families it is optimal. At least in the case of
Kolmogorov and variation distances, it appears that only the suboptimal cases
occur within the “regular” (i.e., smooth) families.

This distinction between Hilbertian and non-Hilbertian distances is also
important in Donoho and Liu (1988).

5. Generalizations. Although the results of Section 4 are stated in a
restricted setting—simple one-dimensional parametric models—the reasoning
behind them is in fact quite abstract and general We will give in this section
examples showing that

e 0 can be allowed to range over a k-dimensional or even an abstract set;
e |0, — 0,| can be replaced by quite general norms or discrepancies;
o the distance measure p can be replaced by a discrepancy;

and the main conclusions of Section 4 will continue to hold.
Our three examples cover: mulivariate location and scatter models, semipara-
metric models and minimum discrepancy estimates.

5.1. Multivariate location and scatter. Let 6 = (t,C) where ¢ is a vector in
R? (a location parameter) and C is a d X d covariance matrix (scatter parame-
ter). Let P, = Py(C~Y?(- — t)), where P, is the standard d-dimensional Gaussian
measure. Define the following discrepancy between parameter values:

D,(6,,8,) = log[(det(C,CY) + det(C,C; 1)) /2]
+(lIto = tillc, + lIto = tillc,) /2
where det is the usual determinant function, and
llu = ol2 = (2 — 0)"="(u - v).

Note that D,4(6,, 0,) is invariant under affine transformations. Indeed, if 6, =
(t,,C), i=0,1, and 6, = (At; + b, AC,AT), i =0,1, it is easy to check that

D(6y, 6,) = Dy(Gy, 6).

We will be interested in the following metrics between probability distribu-
tions on R? First, the d-dimensional variation and Hellinger distances, gener-
alized in the obvious way from the one-dimensional case. Second, the following
generalizations of the Kolmogorov and Kuiper distances. Let H, , denote the
halfspace {x: uTx < t} of R% Put

(5’1) halfspace(P’ Q) = suPlp(Hu,t) - Q(Hu, t)"
u,t

(52) strip(P, Q) = suP“P(Hu,s n Hu,r) - Q(Hu,s N Hu,r)"
u,t

These are the “halfspace” and “strip” metrics in that they measure the largest
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discrepancy between P and Q over halfspaces H, , or strips H, , N H, .. They
are generalizations of Kolmogorov and Kuiper distances in that they measure
the largest Kolmogorov (Kuiper) distance between any one-dimensional projec-
tion of the two probabilities. Thus they may be evaluated by “projection
pursuit.” See also Donoho (1982), Section 6. We note that all these metrics are
affine invariant.

This machinery allows one to define minimum distance estimators of location
and scatter in the obvious way. Note that by construction, the set of solutions to
the MD equation in the population is affine-equivariant. Thus in all these cases
there are versions of the MD functional that are affine-equivariant.

To measure the robustness of the MD functional in this settting, it makes
sense to define b,, b_ and b as in Section 4, only with respect to the discrepancy
D, For example, in this setting we would define the gauge via

bo(e) = {Dusr(60,6,): (P, P,) < ¢}
Doing this leads to the following generalization of the results of Section 4.

ProrosITION 5.1. In the multivariate location and scatter problem with
parameter discrepancy D4, let p be one of the metrics: variation, Hellinger,
halfspace, strip. If p = 8, we have that by, b_ and b are all affine-invariant;

bo(e) < ble) < by(2¢),  b_(e) = by(2¢)/2,
except for p = 8 = Hellinger where

b_(e) = byf2e|1 - (e/2)°) /2.

Thus in each case the MD functional has the best breakdown point with respect
to p-contamination of all equivariant functionals. For the Hellinger case we also
have, if P, has an absolutely continuous density p, with § — py/? differentiable
in quadratic mean,

b(e) = by(e) + o(e).

Thus the MD functional has the best resistance against small Hellinger per-
turbations among Fisher-consistent functionals.

We conjecture that, as in Section 4.4, the other metrics, all of which are
non-Hilbertian, have twice the best attainable y* at regular models.

One reason for studying this example is the fact, mentioned in the Introduc-
tion, that any affine-equivariant M-estimator of location and scatter has a
breakdown point in d-dimensions not exceeding 1/(d + 1). In this sense, the
M-estimators get less and less robust in high dimensions. Stahel (1981) and
Donoho (1982) showed that a variety of affine-equivariant procedures attain high
breakdown point even in high dimensions—among the examples of Donoho
(1982) was an MD estimator based on the halfspace metric. Proposition 5.1
shows us that we can generally expect affine-equivariant MD functionals to have
the best attainable breakdown point with respect to p-contamination—*“auto-
matically.”
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5.2. Semiparametric models. Now let 8 = (¢, S), where ¢t € R is a location
parameter and S is any distribution symmetric about 0. Put Py(-) = S(- — ¢#).
Thus {Fy} is the family of all symmetric distributions. Let D, (6,, 8,) = |¢, — t,|.
This discrepancy only pays attention to the difference in location parameters.

Although the set {6} is now infinite dimensional, the following lemma shows
that the MD functional is sometimes available from a one-dimensional minimiza-
tion.

LEMMA 5.2. Let i be a vector norm, which is both translation- and reflec-
tion-invariant. The components of the MD functional are given by

i(P) = argminp(3P(-) + }P(2t - -), P),
S(P) = 1P(-) + 1P(2f - -).

Such p include the Kolmogorov, Kuiper and variation distances. [If u is
Hellinger distance, 3(P(-) + P(2t — -)) in these expressions is replaced by the
measure equidistant between P(-) and P(2¢ — - ) along the Hellinger geodesic
connecting them; see, e.g., the proof of Proposition 4.4.]

In this setting, we can define a semiparametric gauge b and semiparametric
bias—distortion curve b®), using the parameter discrepancy D,,. The analog of
b_ does not make sense because the problem is not invariant under changes in
the shape component S of 6.

ProposITION 5.3. If p is a translation-invariant, reflection-invariant vector
norm,

(5.3) b§P(e) = by(2¢) /2,
where b, is the gauge of the parameter family generated by shifts of P,

[For Hellinger distance, a similar expression holds, with a factor y1 — ¢2/4
multiplying the argument to b, on the right-hand side of (5.3).]

Thinking of b, as a measure of the “intrinsic” limit on the robustness
attainable in a problem (because b > b,), this proposition says robustness is not
intrinsically more difficult (for small ¢) in the semiparametric situation.

PROPOSITION 54. For each of p = Kolmogorov, Kuiper, variation and
Hellinger, we have
v*(semiparametric MD) = y*( parametric MD),
where the parametric family is generated by shifts of Py, at each 6, where the
appropriate regularity conditions of Propositions 4.4, 4.5 or 4.6 apply.

As far as the breakdown point goes, we can only conclude from (5.3) that
£*(semiparametric MD) > &*(parametric MD)/2. However, we believe that some-
thing better is true.
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CONJECTURE. For each of p = Kolmogorov, Kuiper, variation and
Hellinger,

&*(semiparametric MD) = ¢*( parametric MD),

where now the parameter family for the parametric MD is generated by transla-
tion and scaling of 0,.

Thus for both small and large ¢, we believe that this semiparametric problem
is no more difficult than the ordinary parametric problem.

We remark that, as in Donoho (1982), one can also consider a multivariate
symmetric location problem. That is, 8§ = (¢, S) where now ¢ is a vector in R®
and S is a distribution on R? centrosymmetric about 0. In that setting, results
similar to Propositions 5.2-5.3 hold for the multivariate variation, Hellinger,
halfspace and strip metrics.

5.3. Minimum discrepancy functionals. Results similar to those of Section 4
can continue to hold if p is replaced by a discrepancy that does not obey the
triangle inequality. The gauge is of less use, however. .

Consider for example the minimum discrepancy procedure defining § via

8(P; By) = mind(P; By).

For concreteness, let § be the Cramér-von Mises discrepancy
(5-4) 8(P; Po) =||P- PO”LZ(PO)°

This discrepancy does not satisfy the triangle inequality, and is not even
symmetric in its arguments. Nevertheless, one can compute b(e), and, as the
proof of the next proposition shows, b_(¢). Note that this discrepancy is
invariant under location and scale changes. Thus in, say, a location model, there
exists a translation-equivariant version of the minimum CvM functional. More-
over, as the CvM discrepancy is locally Hilbertian, the idea of Section 4.4 can be
applied.

PROPOSITION 5.5. For the minimum CvM functional in the location model
both b(e) and b_(¢) are invariant under 6,, b(e) < 2b_(¢) and so the minimum
CoM functional has the largest breakdown point with respect to CoM con-
tamination of any translation-equivariant functional. Similar conclusions hold
in the location—scale model, although the value of the optimal breakdown point
for affine-equivariant functionals is half as large as that for translation-equi-
variant ones. If bj(0) exists and is positive and if {P,} is a location family
satisfying the conditions (8.25) given in the following discussion, then b(e) =
bo(€) + o(e), and the minimum CoM functional has the smallest y* with respect
to. CoM contamination of any Fisher-consistent functional.

There are extensions to cover general one-parameter models and even the
semiparametric model, but we do not pursue these here.
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6. Behavior of MD estimates. This section shows that the formal results
of Sections 4 and 5 have rigorous application. That is, we will show that the b(e)
bound for the behavior, in the population, of the MD functional also bounds the
large-sample behavior of the MD estimate. We will also give some simple
applications of b(e) computations to proving consistency, rates of convergence
and finite-sample robustness of MD estimates.

6.1. Bias behavior under sampling. We are still assuming & = p. Recall
equations (2.1) and (4.2). By our definition of b(e) in Section 4, any solution of
(2.1) satisfies

(6.1) |8(B,) - 6| < b(r(B,, B)).
Therefore, in a sampling situation where X, X,,.~. areiid P, u(P, P,) < ¢ and
(6.2) limsupp(B,, P) <¢ as.,

we have immediately

(6.3) lim sup sup l@(f’n) — 0| < b(e*) as.

n—o solutions to (2.1)
Actually, (6.2) holds in all the cases that interest us. The only subtletly is that
we need to take some care in choosing the smoothing procedure when p is a
strong metric.

PROPOSITION 6.1. Let X, X,,... be iid P, where u(P, Py)) <e. We have
(6.2) in any of these cases.

(1) Weak metrzcs/dzscrepanczes Here P is the empirical measure. The X, are
real-valued, and p is either Kolmogorov—szmov, Kuiper, Levy, Prohorou
or Cramér-von Mises. The X; are vector valued, and p is either the
halfspace or strip metric.

(2) Strong metrics. Here P is a smoothed empirical P K, * P,, where P,
denotes the empmcal dzstrzbutzon The model P, is absolutely continuous.
The X; are R%valued. The bandwidth of the kemel goes to 0 slowly enough:

(6.4) h,—0, nh®- .

COROLLARY 7. For each of the situations mentioned in Sections 4 and 5,
and each metric p. mentioned in connection with those models, we have that in
the sampling situation described in Proposition 6.1,

(6.5) lim sup sup D(ﬁ(ﬁn), 00) < b(e"),

n—oco solutions to (2.1)
when P,, is chosen as described in that proposition. Here D is the parameter
" discrepancy appropriate to the problem (e.g., |6, — 0,|, D,z or D,,), and b is
computed assuming p. = 8 and using D as a parameter discrepancy.
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In short, when (6.2) holds, our formal computation of b(e) gives a rigorous
upper bound on how far limit points of 9(P,,) can be from 6, under an
e-distortion of P,—it is only necessary to replace the formally computed & by its
right-continuous version, b is, however, often continuous and so provides a
bound with which to begin.

If we regard the right-hand side of (6.5) as the “formal” b(¢) and the left-hand
side of (6.5) as the “rigorous” b(¢), we have that

rigorous b(e) < formal b(e*),

so that
(6.6) rigorous y* < formal y*,
(6.7) rigorous &* > formal e*.

We have checked a number of cases without finding any instance where the
rigorous quantities and the formal quantities differ. We presume that the
inequality (6.5) is actually an equality, but have no argument to cover all
the cases mentioned in this paper.

6.2. Automatic consistency. Minimum distance estimators have the reputa-
tion for being “automatically” consistent, and even “automatically” n~'/2 con-
sistent. Actually, this follows directly from properties of the gauge and the
metric.

PROPOSITION 6.2. If the gauge and the metric satisfy b,(e) = 0 as ¢ > 0 and
w(B,, P) > 0 a.s., then the MD estimator based on p is consistent when the
model holds.

PrROOF. Combining inequality (6.1) with the inequality b(e) < by(2¢), we
have

(6.8) D(8,,8,) < by(2u(B,, B))).

Here 6, is the true parameter value, and D is the appropriate parameter
discrepancy. By hypothesis, the right-hand side tends to 0 almost surely. O

The result can be strengthened with rates of convergence.

PROPOSITION 6.3. If by(e) = O(e) as e > 0 and u(P,, P,) = Op(n"'/2), then
the MD estimator based on p is n=1/? consistent when the model holds.

ProoF. In (6.8) the right-hand side is Op(n~'/2) by hypothesis. O

The first result applies immediately to all the cases we have been considering.
For any of the weak metrics, and either of the strong metrics smoothed
appropriately, the condition p,(IA’,,,‘PO) — 0 a.s. holds (for the strong metrics, we
must assume that the model P, has a density). The condition by(e) — 0 is just a
restatement of the Wolfowitz identifiability condition. The second result is more
restricted. It applies only to some of the weak metrics: Kolmogorov, Kuiper,
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Lévy, L,(P,) and the halfspace and strip metrics. However, the condition
by(¢) = O(e) generally holds for smooth models.

For a simple application of these results, consider the multivariate location
and scatter problem of Section 5.1. It is routine to calculate that by(e) = O(e) at
the Gaussian model with mean 0 and identity covariance. As the halfspace and
strip metrics are both n~!/2 consistent (this is an application of
Vapnik—Cervonenkis theory), the two propositions imply that the MD estimate
of location and scatter is consistent and root-n consistent at the Gaussian model.

6.3. Finite sample robustness. Donoho (1982) introduced notions of finite-
sample robustness somewhat different from the asymptotic ones used here. Let
observations X,,..., X, be given; we can imagine contaminating the dataset
X = {X,,..., X,} in several ways. Two of these are the augmenting model and
the replacement model. In the first, we adjoin an arbitrary dataset Y of size m to
X, resulting in an augmented dataset X = X U Y of size n + m. In the second,
we change m of the n values in X arbitrarily, replacing them with new values,
and producing a dataset X of size n. These are finite-sample analogs of Huber
and variation contamination, respectively.

Are MD estimates robust against this type of contamination? An argument
can be made that as contamination acting on samples can be made conditional
on the actual sample drawn, finite-sample contamination is more disrupting than
contamination of the probability distribution, followed by sampling.

However, it turns out that the MD estimators we are studying are robust
against this type of contamination, at least in large samples. Again, the basic
insight comes from (6.1) and some simple inequalities. Suppose that p(-, P) is
convex in its first argument and bounded by 1 (all the metrics except the
Hellinger satisfy this assumption). Then, letting PZ, , denote the empirical
distribution of X¢,

a +
mEm op4+m ™ n+mQ""

where P, is the empirical distribution of X and @, is the empirical of Y.
Consequently,
m

n
— m#(Pn, P) + (@, P).

Apply now (6.1). Put ¢, = m/n + m, and obtain for the MD estimate based on
B

(6.9) p(Pim, P) < n+m

(6.10) |0(B2) — 8(P)| < b((1 — e)u( B, P) +&,).
(We remark that this conclusion even holds if p is the TV distance and 13,, is
obtained by kernel smoothing.)

- A similar bound can be obtained for the case of replacement contamination by
" assuming that p is bounded by the total variation distance (again this holds for
all the measures except the Hellinger). These bounds can be used to give
connections between the finite-sample and asymptotic contamination models.
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PROPOSITION 6.4. Let X, X,,... be iid P,. Suppose that the metric p is
convex and bounded by 1. Suppose that p is one of the metrics covered by
Proposition 6.1. The finite-sample augmenting contamination breakdown point
of 8, ex(8,{X,,..., X)), satisfies

liminfeX(, (X,,..., X,}) = ¢*(8, B,) a.s.,
n—oo
where ¢ (8, P)) is the asymptotic breakdown point of the MD functional defined
by p.. Suppose that the metric p is bounded by the total variation distance. Then
the finite-sample replacement contamination breakdown point of @,
*(0 {Xl’ . n})7 satzsﬂes

liminfe*(4, (X,,..., X,})) = ¢*(8, P,) a.s.

n—oo

We mention that these inequalities can be slack. In fact, the breakdown point
on the right-hand side may be attained, in some cases, only by u-contamination
that cannot be realized via augmenting or replacement contamination.

This proposition can be used to recover the results of Donoho (1982) on the
finite-sample breakdown point of the location-scatter estimators described in
Section 5.1. Also, a variation on the approach will cover Hellinger distance, and
so recover the results of Boos and Tamura (1985) showing that the finite-sample
breakdown point of the MHDE of multivariate location and scatter is at least
However, a direct argument shows that the breakdown point is actually %; this
illustrates the slack underlying (6.10).

7. Discussion.

7.1. Implications. Some of the results obtained in this paper would be
rather difficult to get from any other point of view.

The authors were surprised by Corollary 3 and its generalizations: In settings
of invariance, there are estimators with b(e) never greater than twice the
minimax value, for all . The surprising aspect of this result is how it addresses
both local quantities like the sensitivity and global ones like the breakdown
point. Before this result, it was not easy to see that one can do well according to
both sorts of  measures, simultaneously. For example, one can construct affine-
equivariant M-estimates of multivariate location and scatter with good gross-
error sensitivity, but they will have a low breakdown point in high dimensions.
On the other hand, comments in Donoho, Rousseeuw and Stahel (1988) reveal
that one can have equivariant estimators with a high breakdown point together
with very bad sensitivity to small departures from the model. So that it did not
appear evident that local and global viewpoints could be reconciled.

Another insight is that minimum distance estimators are related to the
median in several ways. First, Huber (1964) showed that the median is bias-
minimax over Huber neighborhoods. So the median possesses the same sort of
b(€)-optimality with respect to a certain neighborhood structure that we have
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exhibited here for MD estimates. Second, neither MD estimators nor the median
seem to have good variance stability over large neighborhoods. Donoho and Liu
(1988) show that the non-Hilbertian MD estimators have bad asymptotic vari-
ances near the model.

On the other hand, the Hilbertian MD estimators have good variance proper-
ties over neighborhoods [see again Donoho and Liu (1988)], so they are not
similar to the median in this last respect.

7.2. Innovations. The paper has introduced two notions which may be of
broader interest. The first is the noting of gauge b,. Inspection of the results of
Sections 4-6 will alert the reader to the fact that criteria for identifiability and
root-n consistency are easily posed in terms of the gauge, and that the minimum
possible sensitivity and the best possible breakdown point (with respect to
p-contamination) at a given model “pop out” of the gauge.

The second notion is the bias-minimax functional T, of Section 4.2. This is not
much harder to compute than 6 in some cases, and has reasonable b(e) behavior
(optimal at one particular value of e, by construction). It appears to have better
variability properties than § when p is not Hilbertian; for example, the patholo-
gies described in Donoho and Liu (1988) do not appear to happen for T..

7.3. Relation to earlier work. The closest connection to earlier work is to
Theorem 6 of Beran (1977), which is essentially a proof of our Proposition 4.5
presented in different language. Compare also Huber (1964) for a discussion of
bias minimaxity over gross-errors neighborhoods. Huber (1981), Theorems 1.4.1
and 1.4.2, gives results similar to Corollary 7 and equations (6.6) and (6.7).

Millar (1981) gives a result that he interprets in a similar way to our results:
Namely, that MD estimators are robust over the contamination neighborhoods
defined by their own metric. However, close inspection of his paper will reveal
that he is addressing robustness criterion (1) in his paper, and that his results
have to do with a special subclass of MD estimators, and not general MD
estimators as we discuss here.

8. Proofs of results. )

PROOF OF PROPOSITION 4.2. Let P denote the set of all P within an e
distance of some P, (thus P is a “tube” about {F,}). The proof is an exercise in
slicing up the set P in different ways.

As a preliminary, we note that for any function I( P, 6),

(8.1) sup sup I(P,0) = sup sup I(P,0).
0 (P:u(P,PB)<e) PeP deS,(P)

" Indeed every (P, 0)-pair that appears in one expression appears in the other.
Now
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supbp(e; 8) = sup sup |T(P) - 9|
9 0 (P:u(P, B)<e}

= sup sup |T(P)- 0|
PeP 0eS(P)

> sup radius S (P)
PeP

= sup sup |T(P) - 40|
PeP feS(P)
=sup sup |T(P)-4|
6 {(P:u(P, B)<e}
supb_(e; 0).
6

(8.2)

The first and last equalities are by definition of b; and b_; the second and
next-to-last are by (8.1). The steps surrounding (8.2) are, in more detail: For each
PeP,

sup |t — 60| > radiusS(P)

feS,(P)
= inf sup |t -0
(8'3) t ges(P)
= sup |T(P)- 6|
9eS,(P)
The second line follows by definition of the radius, the third, by definition of T..

]

REMARK 8.1. The proof carries over to settings where 6 is a multiparameter
and the measure |6, — 0, is replaced by a more general parameter discrepancy
D(8,, 6,). The key condition is the nesting property,

{6,: D(8,,0,) <8} C {0,: D(6,,60,) <b+¢}, foralld>¢>0.
When this holds, the proof goes through even if 8 ranges over an abstract set.

REMARK 8.2. The only catch in such a generalization is as follows. Over an
abstract set, the infimum in (8.3) may not be attained. Then there will be no
functional T, with the minimax property. However, if we define

b_(¢) = sup radiusS(P),
w(P, B)<e
the theorem still holds, and for each 8 > 0 there is a functional 7, which is
8-minimax: :
bT”(s) <b_(&) +8.

REMARK 8.3. Close inspection reveals that the sup in (4.6) need not be over
all 6; the proof actually gives the stronger result

max b.,(e) = max b(e).
16— Bp]< bo(2e) r(e) 16— G| < by(2e) (e)
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PROOF OF PROPOSITION 4.3. It is easy to see that by(2¢)/2 gives an upper
bound on b_(¢). If b_(€) = p, say, then for each 6 > 0 there must be two
parameter values 0, and 6, with |6, — 6] > 2p — 6 and a P with u(P, Fp) < ¢;
p(P, Py) < e. By the triangle inequality we have u(F, F;,) < 2¢ and so the
value of p is certainly no larger than by(2¢)/2.

This upper bound is actually sharp. Indeed, P = %( Py + F,) is a probability
and

w(P, B,) =|3(R, + B,) = B|| = IR, - Byl = (P, By

and similarly for p(P, Fy ). Consequently, if u(Fy, F;,) < 2¢ but |0, — 6, >
by(2¢€) — 8, then radius S(P) > by(2¢)/2 — 8/2. Since b_(&) > radius S(P), the
conclusion follows. O

REMARK 8.4. The proof goes through even if @ is a multiparameter and
|8, — 05| is replaced by a discrepancy with the nesting property. See Remark 8.1.

PROOF OF PROPOSITION 4.4. The proof is, in outline, the same as that for
Proposition 4.3 except that it is not in a vector space setting, so new details arise.
Fix & > 0. There are 6,, 6, and P so that

(8.4) n(P,B) <k, u(P, P,z) <e
and
(8.5) |6, — 6] > 2b_(e) — 8.

Lemma 8.1 shows that (8.4) implies

(8.6) #(By, B,) < 261~ (e/2)".

Assuming this to be true, we have by definition of b,,

(8.7) 16, — 6, < b0(2e\/1 - (8/2)2);

from this and (8.5) it follows that

(8.8) b_(e) < by(2ey1 - (e/2)° )/2.

This inequality is actually an equality; pick any 6, and 8, satisfying (8.6) and
also

(8.9) 16 — 8] = by(2e)1 - (/2)°) - 8.

Lemma 8.2 shows there is a P satisfying (8.4) for this choice of 4,, 8, and so
b_(e) > radiusS(P) > |0, — 6,|/2.

Together with (8.9) this gives

b_(e) > b0(2e\/1 — (e/2)° )/2

and so (4.7). O
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REMARK 8.5. Remark 8.4 also applies here.

It remains to establish the lemmas. The following machinery seems the
shortest way to get these results.

Let P and @ be probabilities and » = (P + Q)/2. Put 5(P, Q) =
arccos({(dP/dv)'/%,(dQ/dv)'/2),), where { f, g), = [fgd». n is the angular dis-
tance (n € [0, 7/2]) between (dP/dv)"/? and (dQ/dv)"/? viewed as points on
the sphere || f||, = 1. Thus the reader may be willing to accept, without proof,
the statement that: n(P, Q) is geodesic distance between P and Q, i.e., the
length of the shortest path between (dP/dv)'/? and (dQ/dv)"/? that stays on
the surface of the sphere | f||, = 1. Formally,

. 1
(8.10) n(P,Q) = int [[Yo’l, dz, .

where the infimum is over all L,(»)-valued o(¢) satisfying
dP\1/? de\1/2
«=(5) " w=(5)" -1

t — o(t) is differentiable in L,(») quadratic mean.
Indeed, the path o*(¢) achieving the infimum is the great circle

dP\1/2 do\1/2
(1—t)(—) +t(—2)
o*(t) = dv dv .
Y@ = £)% + £2 + 26(1 — ¢)cos(n)
We need two facts based on 7.

(1) n satisfies the triangle inequality. This is immediate from formula (8.10).
(2) If 9(P, Q) = &, the probability dR = (¢*(1/2))? dv is equidistant between P
and Q, ’

7(P, R) = (R, Q) = §/2.
We also need one fact connecting 1 and p.
(3) The function «: [0,2/2] - [0, 7/2] defined by
k() = arccos(1(2 — t2))
is smooth,{ monotone increasing and

(n(P,Q)) =n(P,Q),

where ‘p. denotes Hellinger distance. This can be derived by direct calcula-
tions.

Armed with these we can prove

LEmMA 8.1. Let P, P,, P, satisfy
F'(PhP)SE’ p.(P,P2)S€.
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Then
(8.11) p(P, B,) < 2¢/1 — (¢/2)%.

Proor. Using k, we have
"I(P, Pl) < K(£)9 "7(P, P2) =< K(G),
so that
7(Py, B;) < 2«(e),

by the triangle inequality for . Using k!, we have

p(Py, B) < k™ '(2x(e)),
which yields (8.11) by direct calculations. I

LEMMA 8.2. If p(P,, P,) < k™' 2x(¢)) there is a probability P with
P‘(PlyP) =P‘(P’P2) <&

ProoF. Put dP = (0*(1/2))? dv, where v and ¢* are defined in the computa-
tion of n(P,, P,). Then

7(P, P;) = n(P, P,) < «(e)
and the result follows by applying « . O

PROOF OF PROPOSITION 4.5. We will actually prove a more general proposi-
tion. Let § € R? be a multiparameter. Say that P, is differentiable in quadratic
mean at 6, if there exists 4, a d-tuple (1,,...,n,) with ||n;|| < oo such that

|2 - B, — (8- 8,)"a] = o(16 - 4,1),

where now | - | denotes d-dimensional Euclidean distance.

We will show that the result holds in this multiparameter setting.

Note that the existence of bj(0) implies two things. Since b, is continuous at
0, we know that {F,} does not curve back on itself globally. Indeed, parameter
values very far away from 6, do not index distributions close to P,. Second, since
the derivative of b, is positive, we conclude that the elements of 4 are linearly
independent. Actually, from the differentiability of P,, we can see that b is the
minimal eigenvalue of the Gram matrix = = [(5;, 9 /)]. This eigenvalue can only
be 0 if the components of 7 are linearly dependent. Taken together, these two
things mean that P, is both locally and globally identifiable.

Let @ = P, + (8 — 6,)™q be the linear approximation to {P,} at 6,. Note
that the MD functional §*(P) for the family {@,} gives the coordinates of a
projection onto the linear manifold spanned by the components of 4. Thus we
have

QO‘(P) = W*P,
where 7*P denotes the projection onto Q.
1Qo+cpy = Qoll = l7*P = Q|| = [|7*P — 7*Qy|| < || P — Py,
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where the last inequality is due to ||7*|| = 1. Thus the bias-distortion curve of §*
is bounded by the gauge of P;:

(8.12) bot(e) < bo(e).
On the other hand, if |P — P)|| < ¢,
IP = Byl = |P — Qqll* + o(16 — %)
Since @+ py = 7*P, we can use the Pythagorean theorem:
1P = Qqll® = I1P — Qp-lI* + Qs+ — Qoll®
It follows that any minimizer 8(P) of || P — P,||? satisfies
IP = P* < [IP ~ Qll* + 0(18 - 6,I%),
1P = Q4ll* < |1P = QpelI” + 0(1f — 6,%),
so that
1Q0 — Qoell* = 0(18 — 61*).
Now as b, is differentiable at 0 the inequality (4.3) gives |0(P) — 6| =
O(||P — Py||?) = O(e?). We conclude that .
Q0 — Qq-ll” = o(e?).
Note that the quadratic form R(s, ¢) = (@, — Qo, Q; — Qo) is positive definite:
It can be represented as a’=b, where a and b give the coefficients of @, — Q,
and @, — @, in terms of the components of 4. But = is nonsingular as men-
tioned previously. We conclude from this fact and the last display that
|0 — 6% = o(e).
Consequently,
b(E) < bot(E) + O(G),
which with (8.12) gives
b(e) = by(e) + o(e). O

REMARK 8.6. The proof goes through if the Euclidean norm [0, — 6,| is
replaced by any smooth discrepancy satisfying

1)(01’02)2 = (6, - 92)T2(01 - 6,) + 0(|01 - 2|2)'

Here = is a positive definite symmetric matrix. If b, and b are defined relative
to this discrepancy, the same result holds:

b(e) = by(e) + o(e).

PrOOF OF PROPOSITION 4.6. Let 60,, denote the @-value attaining
|Fy — Fy, | = 2¢, |0,, — 0o| = by(2¢). Without loss of generality assume 6,, > 6,.
The proof is accomplished by showing how to construct a sequence of distribu-
tion functions G, satisfying |G, — Fy| < ¢ and 6(G,) - 0,,. It then follows that
b(e) = by(2¢) as claimed.
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Pick 6, so close to 6,, that
(8.13) \F, — F, | <1/n.
From the triangle inequality and the fact that Fy(x) < Fy(x) for all x,
D~(F,F,) = |F— F| 22— 1/n,
where D‘(G H) = —inf,G(x) — H(x) [and D*(G, H) = D™ (H,G)]-
As F, - is a continuous function of x, there is a point y at which
F,—-F,, <1/n—Zs As F, — Fy(x) tends to 0 at —oo and + oo, there is a

largest x < y at which (F, — F_ )(x) = —g—call this x,—and there is a smallest
x > y at which (F, — Fy_ )(x)=s—D (F,, F, )—calllt z,

Now define
G,(x) = Fy(x), X< x,,
=F;)(x)_£’ X, <x<2,
=F, 'z, <X.

Note that F, > G, > F, — ¢, so |F, — G,| < &. Also, note that by construction
|G, — F;,| = D*(F,,,G,) = Fy(2,) — (Fy(z,) — ¢).
For each 8 < 6, Fy(z,) > Fy(z,), so
|Fy — G,| 2 D*(F,, G,)
2 Fy(z,) — Gy(2;)
2 Fy(2,) = Gu(27)
= D*(F,,G,)
= |F, -

Thus any 6 minimizing |F, — G,| must lie in the interval [4,, 6,,]. As (8.13)
requires 6, — 0,,, this shows that

sup|8(G,) — 8o| = by(2¢; 6,). O
n

nl

PROOF OF PROPOSITION 4.7. We shall show that for each 8§ > 0 there is a
density g, ; within ¢ distance of f, and satisfying

(8.14) 0(g.5) — 0= (2—8)by(e) + o(e).

As the variation distance is 1 the L, distance, we may do computations in
L, distance.

Let g, 5 be the density constructed via Lemma 8.5 and 8.6 and let »; and {&,}
be as in Lemma 8.5. Then

(8.15) 18,5 = fol = [18..5 = kol + 0(18 = 6o)).
We know from Lemma 8.4 and (4.2) that |§ — 6,] = O(¢), so the remainder in
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(8.15) is o(e). From (8.21) there is a constant ¢ = ¢(8) so that
(8.16) Jito + v = kol = [ifo + &5 = kol + 16 = 6%,
where 6* is as in (8.21). By (8.22)
f|ge,s —kyl = /lfo + evs — ky| + o(e)
and the fact that § minimizes the left-hand side of (8.15) implies that
flgz,8 —fol = /|fo + evg — kgs| + 0(e).

We conclude from (8.16) that
10 — 6% = o(e).
On the other hand, applying the result (8.20) for 6*, we get (8.14). O

REMARK. The proof obviously goes through for nontranslation families,
where /360 f is a continuous function and in L.

LeEMMA 8.3. If f is a density with a derivative f' that is a continuous function
in L,, then

(817)  [1£(t—0) — (¢~ ) — (8- 8)1'(¢ ~ 8)] = 0(16 — ).

PrOOF. As f(t—0)— f(t— 6, = f,,‘if’(t) dt, putting h =0 — 6, and
K,(t) = A /h)I} 11(t), the result is equivalent to

JiKzt" = 11 =0(1),
as h — 0. This is standard and follows by, e.g., the Lebesgue density theorem. O

LEMMA 8.4. Under the same conditions,

(8.18) by(e) = e/B + o(e),
where

B=[if.
ProOF. Because of (8.17)
Jita = fa) = (6= 8) fif'1 + 0(18 — o).
Thus for f|fy — fo,| = O(e), |6 — 8| = O(e) and putting /|fy = fo,| = & e get

(0—6,)=¢/B+ o(e),
which is (8.18). O
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LEMMA 8.5. Fix 6 > 0. Define n by

/'f’| = (2 - 8)/|f'|I(|,,‘2,,)
(n exists by continuity of f'). Define
Vs = f’I(mzn)(z -8)/B
(so that [|vs| = 1). Put ke(t) = fo(t) + (0 — 05)f'(¢) (so that {ke} is a linear

approximation to { f,} near 0 = §,).
The 0* minimizing

(8.19) f|f,,o + evg — Ry
is .
(8.20) 0* =6,+ (2 - 8)e/B.

ProOOF. The quantity to be minimized can be written as [|evs — (8 — 6,)f'|,
which in more explicit terms is

(821) (—6,)(1— (1/(2~8))B+|(2—8)e/B—(6—6,)|B/(2—8).
This has its minimum at * given by (8.20). O

LEMMA 8.6. For each ¢ > 0 there is a density g, satisfying
(8.22) [lg. = (fo+ )| = o(e),

(8.23) [le.~ful <ce.

PROOF. Put h, = |vs|I,, <_;,- We claim that h(x) —> 0 ae. as ¢ = 0. In-
deed, on the set A = {f = 0}, by continuity of f, we must have f’ = 0 as well
(because of positivity f > 0). Then h(x) = 0 for all ¢ and all x € A. On the set
B = {f > 0}, use the fact that, by continuity, f’ is bounded on compacts; for
each x where f > 0, there is an n where

f(x) + (1/n)f'(x) > 0;
then A (x) =0 as soon as ¢ < 1/n. Thus h(x) —» 0 a.e. Now A, < |v,|; since
[1vs] =1, we can apply the Lebesgue dominated convergence theorem to con-
clude

w(e) = fin) = o(1).
To apply this, note that
8P =fo+ f”sI(av,> -f)

is a positive function which is closer to f, than f, + ev. It may not integrate to 1,
but for an appropriate B > 0,

fo+ @510, -1y 11, < )
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will integrate to 1 and be even closer to f,. Call the resulting function g,. This is
a density and satisfies (8.23) by construction. Now [|f, + evs — gP| = ew(e).
Also, [g® <1 + ew(e). It follows that f|g, — gP| < ew(e) and so

[18. = (fo + )| < 2¢0(e).
As w(e) = o(1), this establishes (8.22). O

PROOF OF PROPOSITION 5.1. The discrepancy D, is easily seen to have the
nesting property of Remark 8.1. Therefore, relations (4.3) and (4.6) continue to
hold in this multiparameter setting. The results (4.7) and (4.8) hold also in this
setting; see Remark 8.4. The breakdown properties of the estimate follow from
these remarks.

Think of the parameter 8 = (¢, S) as a vector in Ré+d? gotten by concatenat-
ing the coefficients of ¢ and S in the standard basis together into one long vector.
The function d(8) = D,4(0,(0, I)) can then be viewed as a function on R4+¢*,
which is smooth at § = (0, I) and admits the expansion

d(8)* = (6~ (0,1)"2(8 - (0, 1)) + o(I8 - (0, 1) ),

where X is a positive definite symmetric matrix and |6, — 6,| represents the
Euclidean norm on R%*%’, Remark 8.6 applies, and we conclude that the result
established in the proof of Theorem 4.5 applies here. Invoking regularity of
certain derivatives of ¢},/ 2, we conclude that if p is Hellinger distance,

b(e) = by(e) + o(e),
as promised. O
ProoF oF LEMMA 5.2. If S is symmetric about ¢ and the norm has reflection
and translation invariance, then
u(S, P) = $[IS - P| +||S - P(2t - -)|]
2 3[|P- P(2t- -)|.

So we have a lower bound on how close to P S can be. Now S, =
(P + P2t — -))/2 is symmetric about ¢ and attains the lower bound

NS — Pl =|S,— P2t - -)| = §|P - P(2t - -)|.
It follows that if one minimizes this last expression over ¢, then (¢, S,) gives the
best fitting symmetric distribution to P. O
PRrROOF OF PROPOSITION 5.3. By definition,
b§P (&) = sup{|t — 6, there is a P symmetric about t with (P, P,) < ¢}.

By Lemma 5.2, for each ¢, the P symmetric about ¢ that is closest to P, is given
by S, = (P + Py(2t — -))/2 with

l"(su Po) = P'(Po’ Pzt)/z,
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S0
b§P(e) = sup{|t — Oy|: p( Py, Py,) < 2¢}
by(2¢) /2. O

PRrOOF OF PROPOSITION 5.4 (sketch). The result for the p = Hellinger case is
proved in Donoho and Liu (1987). The result for the others can be gotten by
showing y* = 25{(0). To do this, one only needs to exhibit an example approach-
ing the bound closely. We give an idea how to do this for variation distance. We
will work with L, distance, which is proportional.

Let g = f, + €h, where f, is a symmetric density, [|k| =1, f, and A both
have continuous derivatives in L,.

The closest symmetric density to g is gotten by solving for ¢ in

min [lg - 5,
where S,(x) = (g(x) + g2t — x))/2. Now a linear approximation to the family
{S}att=20,is
ky=8,+ (06— 6,)3/3tS,.
An analysis similar to that of Theorem 4.7 will show that the minimizer 8** of

f|g_iéo|

is only o(e) away from 8(g).

Consider now the case where & is a very good approximation to the function
vs introduced in Lemma 8.5: A being asymmetric (like »;), smooth (unlike »y)
and

f|h — vy < €2

In this case /E,, =fo— (0 — 6,)[f(x) + eh’'(—x)]. Define k, = f, +
(0 — 6,)f’(x). One can show, although we do not, that the minimizer of

[lg = kil

is only o(e) away from that for f|g — k&,|. But for this last expression Lemma 8.5
implies that the minimizer §* of

Jifo + &5 = kol
satisfies
0* = 6, + 2by(e) + o(e).

As in Lemma 8.6, one then shows that A can be chosen so that in addition to
being close to v;, f, + ¢h is a density. O
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PROOF OF PROPOSITION 5.5. The invariance of b and b_ is obvious. Recall

that
b_(e) = 4 sup {16, — 0,
(8.24) b0, 6,
there is a P such that §( P; P)) <eand 8(P; B < s}.

Now let P satisfy 8(P; P,) < e. If 0 is a version of the minimum CvM func-
tional, then .
8(P; P) <8(P; P) <.
Comparing this with (8.24), we see that |9 — 0| < 2b_(e),ie, b<2b_.

The regularity conditions referred to in the statement of the result are that f,
has two continuous derivatives and

(8.25a) [ifots1 < oo,
(8.25b) Jit1 < o,
(8.25¢) Jifots” + (£)7 <,
(8.25d) f Ify] < oo.

We remark that these conditions are not independent, nor best possible.

By the assumption on b4(0), for small enough ¢, if §(P; P,) < &, the minimum
CvM functional is the unique root of A¢,\(6) = 0 on a small interval I about 6.
Here

Now(0) =2 [(F - B)f2 - [(F - F)*fy.

Compare Theorem 5 in Donoho and Liu (1985). Now a standard Taylor series
argument will give that for |[F — Fj| < ¢, and all small enough e,

A }\CVM(F9 00)
O(F) =8, + 20200 | R(F),
( ) 0 l(F;), 00) ( )
where
UF,6)=2[1~6[(F~F)f, + [(F-F)'f"
and
(8.26) |R(F)| < Ry(e) + Ry(e),
where
UF,t) - UFy,0)
R =C ,
i(¢) Y e8] <280(e) I(Fy, 6,)
R,(e)=  sup Aoom(F, 8,) UF, t) — UFo, ;)
? 1t—0p| <2bp(e) l(F;)’ 00) l(FI)’ 00)
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Analysis of I(F, t) — I(F,, 6,) shows that it is
<|F- E)|f|fofo'| + [t - 00|fl( fo)2 + fofo”

+IF = Fy? [If,

where |F — G| denote the Kolmogorov distance, so that both R, and R, are
bounded by C,|F — F;|? for |F — Fy| small enough.

Thus

A ACVM(F" 00) 2
4(F) =6, + R AR O(|IF — Fy?).

Now using the inequality 8(F, F,) > 3~°|F — F},im [see Donoho and Liu (1988)]
" Acom(F, 8p)
0(F) = 00 + —-lm— + O(S(F, Fb))

Define

Mo(F,0) =2[(F - E)f7.
Then, using

JF=FE)ty < \F - R fif,

we have by (8.25d) that

Aowm(F, 8p) = Ao(F, 6,) + o(8(F; R)),
so that
AO(F" 00)
I(Fy, 6;)
Now notice that 5(F; Fy) = ||F — Fy| p,)- Therefore

by(&; 65, CvM) = by(e; by, Ly(By)).
We know from Corollary 5 that 6*, the minimum L,(P,) estimator satisfies
bye(&) = by(e) + o(e).

0(F) =6, + + o(8(F; Fy)).

But we can also establish

0*(F) =6, + };z—g:% + 0(||F— F()"Lz(Po))'
It then follows that
6*(F) - 8(F) = o(8(F; F,))
and so

by(e) = by(e) + o(e). O
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PrOOF OF PROPOSITION 6.1. For all the weak metrics, we have a
Glivenko—Cantelli result,

w(P,,P) >0 as.

This combined with the triangle inequality and the fact that u(P, P,) < ¢ gives
(6.2).

For the strong metrics, a little more subtlety is necessary. Let u be the one- or
d-dimensional variation distance. Note that
(8.27) w(K, *P,K, *P) >0 as,
for every P, not just those with density, provided (6.4) holds. Devroye and Gyorfi
(1984) only claim (8.27) for all P with density, but a close inspection of the proof
reveals that they have actually proved (8.27) for all P, Now

"'(Kh,,* Pn’ PO) < ""(Kh,,* Pn’ Kh,,* P)
+u(Ky,* P, K, * By) + p(K, * Py, By).

By (8.27) the first term on the right-hand side tends to 0. By convexity and
translation invariance of p, the second term is bounded by u(P, B,), which by
assumptlon is bounded by e. If P, has a density, then p(I, * By, Fy) = 0 [see
again Devroye and Gyorfi (1984)]. Combining these facts, the lim sup of the

left-hand side is not larger than &. The result for Hellinger distance follows from
the relation Hellinger? < variation. O

PROOF OF PRrOPOSITION 6.4. Using (6.10) gives a finite bound on 0(15“) -

6(P), unless
e —u(B, P)
€, = —‘:—('p—)

So the finite-sample breakdown point is at least as big as the right-hand side of
this display. But as u(ﬁ P,) - 0 a.s. we have
liminfe¥ > &*
n
as claimed.
The result for ¢* is proved in a similar fashion, replacing the bound (6.10) by

6(Br) - 4(P) < b(u(B,, B) +¢,). O
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