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TESTING THE (PARAMETRIC) NULL MODEL HYPOTHESIS
IN (SEMIPARAMETRIC) PARTIAL AND GENERALIZED
SPLINE MODELS!

By DENNIs Cox, EUNMEE KOH, GRACE WAHBA
AND BRIAN S. YANDELL

University of Illinois, University of Wisconsin-Madison, University of
Wisconsin-Madison and University of Wisconsin-Madison

Cox and Koh (1986) considered the model y; = f(x(3)) + ¢;, ¢ ii.d.
N(0, 62), with the (parametric) null hypothesis f(x), x € [0, 1], a polynomial
of degree m — 1 or less, versus the alternative f is “smooth,” based on the
Bayesian model for f which leads to polynomial smoothing spline estimates
for f. They showed that there was no uniformly most powerful test and
found the locally most powerful (LMP) test. We extend their result to the
generalized smoothing spline models of Wahba (1985) and to the partial
spline models proposed and studied by Engle, Granger, Rice and Weiss
(1986), Shiller (1984), Green, Jennison and Seheult (1985), Wahba (1984),
Heckman (1986) and others. We also show that the test statistic has an
intimate relationship with the behavior of the generalized cross validation
(GCV) function at A = oo. If the GCV function has a minimum at A = oo,
then GCV has chosen the (parametric) model corresponding to the null
hypothesis; we show that if the LMP test statistic is no larger than a certain
multiple of the residual sum of squares after (parametric) regression, then the
GCV function will have a (possibly local) minimum at A = co.

1. Introduction. Cox and Koh (1986) considered the model

(1.1) - ¥, =f(x(3)) + ¢, i=1,...,n,

where x € [0,1], e = (e, ..., &,) ~ N(0, 0%I), 6% known, and f(x), x € [0,1], is
a Gaussian stochastic process independent of ¢ satisfying

(12) f(x) ~ 3 a,(x) + b22(),

v=1

where @, ..., ®, span the polynomials of degree less than or equal to m — 1 and
Z is an (m — 1)-fold integrated Weiner process [Shepp (1966)]. The parameter
vector a = (ay,..., a,,) may be considered as a fixed vector of unknown parame-
ters or as a random vector having the improper prior distribution N(0, £I) with
¢ > 0. This model is called the (special) spline model because the Bayes
estimate of f is a polynomial spline. Cox and Koh were interested in the
(parametric) null hypothesis H,: b = 0 versus H;: b > 0, equivalently, H,: f is
a polynomial of degree at most m — 1 versus H;: f is “smooth,” i.e., (1.2) holds.
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They showed that there is no uniformly most powerful (UMP) test, and they
constructed the locally most powerful (LMP) test.

It is the purpose of this note to show that the Cox—Koh results extend easily
to the univariate and multivariate partial spline models proposed by Engle,
Granger, Rice and Weiss (1986), Shiller (1984), Green, Jennison and Seheult
(1985), Wahba (1984), Heckman (1986) and others, and to the generalized spline
models considered in Wahba (1985) and to note an intimate relationship between
the LMP test statistic and the GCV estimate of A = 62/nb.

2. Generalized and partial spline models. To make clear the relationship
between the special spline model and the generalizations we will be interested in,
we review a few facts. Let the set {x(1),...,x(n)} contain at least m distinct
points and let f, be the unique minimizer, in the Sobolev space W, [0, 1], of

(21) 7 X (= 1O + 0D
Then it is known that
(22) A(x) = E(f(2)01r-..0 3)

if X = 02/nb. [See Kimeldorf and Wahba (1971) for & an unknown parameter
and Wahba (1978) for a having an improper prior.]

The general smoothing spline model [see Wahba (1985) for more details]
begins with a reproducing kernel Hilbert space H, of real valued functions of x
for x in some domain I (= E<, for example), an M dimensional subspace of Hj,

spanned by ®,,...,®,, and L,,..., L,, n bounded linear functionals on H,,
The model is
(2.3) y;i=L;f+¢, i=1,...,n,

where the ¢;’s are as before. Let T' be the n X M matrix with (i, »)th entry L;®,.
We shall always assume that T is of full column rank, that is, the least squares
regression of y onto span{®,,...,®,,} is unique. Then the generalized spline
estimate f, of f is the unique minimizer in H of

1 n
(2.4) ~ Z (%= Lif )" + NP f113,

where P, is the orthogonal projection of f onto Hy, the orthocomplement in H,
of span{<I>1, ., ®;7}. Equation (2 2) holds here, Wlth the Bayes model

(2.5) f(x) ~ Z ,®,(x) + b'/*Z(x),

v=1
where now Z(x), x € I, is a family of zero mean Gaussian random variables with
the (prior) covariance
(2.6) EZ(x)Z(x') = Q\(x,x),
where @, is the reproducing kernel for H,. This prior differs from the one
considered by Cox and Koh for the setting of ‘Section 1, but only on the space of
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polynomials of degree less than or equal to m — 1. The test derived in the next
section will be the same, and the prior covariance (2.6) is more convenient.

A popular example is the thin plate spline case, where I = E¢, the ©,,..., ®,,
are the M = (4* 7~ 1) polynomials of total degree less than m in d variables

(x15++., %y) with 2m — d > 0 and ||P, f||2 = J4(f) is given by
m!
Ju(f) = )

1... !
at+ - tag=m @ Qg

(2.7) oy

2
xf-w...f_w(m) dxy -+ dxy.

In the thin plate spline case, the hypothesis that b = 0 can be viewed as the
hypothesis that f is a polynomial in d variables of total degree less than m
versus the alternative that f is a fairly arbitrary “smooth” function.

The partial spline model (which is really a special case of the general spline
model) allows a response that is the sum of a “smooth” function of x =

(x4,...,x4) and a parametric function of x and some other concomittant
variables s, that is, ,
(2.8) ¥, =Lg(;s;) +e,
where
p
29 8(x;8) = f(x) + Zlﬁj‘l’j(x;S)-
j=

Here f is as in (2.5) and the ¥;’s are p linearly independent functions such that
L¥(-,s;) is well defined for each i, j. The vector 8 = (B,,...,,) may be
considered as a nuisance parameter or as N(0, §1,,) with § — oo, similar to a. Let
T be as before, let S be the n X p matrix with 7th entry L,¥; = L,¥,(-; s;) and
suppose X = (T': S) has rank (M + p). Then an estimate g, of g is obtained by
finding f, € H, and B, € E? as the unique minimizer of

1 r p 2
(2.10) ; Z Yi— Lif - E ,BjLi‘I'j + }‘||P1f||¢2;>-
i=1 j=1

Then
p
(2'11) g)\(x; S) = f)‘(‘x) + E Bj,)\‘I,j(x; S) = E(g(x, s)lyly' cey yn)’
Jj=1

with A = 02/nb. We have in fact just relabeled the domain in the general spline
model and adjoined span{¥,,...,¥,} to H, and called the generic element of
this enlarged space g. Now, the hypothesis that b = 0 is the “null model”
hypothesis that g is of the parametric form

M p
(2.12) &(x; s) = glaﬂ%(x) + Ellﬁ,-‘l',-(x; s),

versus the alternative that g is a “smooth” function of f plus a parametric
function of x and s of the form (2.9).
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3. Results. We are now in a position to reduce the problem of testing that g
is of the special parametric form (2.12) in the model (2.9) to the Cox-Koh setup.
We always assume that the “parametric design matrix” X defined following (2.9)
is of full column rank. Let = be the n X n matrix with ijth entry

(31) ELtZL]Z = Li(x)Lj(x’)Ql(x’ x,)’

where L, ., means the linear functional applied to what follows considered as a
function of x. Let 8 = (a’: 8’). Then if we look at 6 as a fixed unknown

parameter, we have

(3.2) y ~ N(X0, b= + o2I)

and if we adopt the improper prior § ~ N(0, £I) with £ —» oo, we have

(3.3) y~ N(0,£XX" + b + 021).‘

Now, let R be any n — (M + p) X n matrix with RR’ = I and RX = 0, and let
(3.4) u=Ry.

Then

(3.5) u ~ N(0, bRZR’ + 02I)

for either model (3.2) or (3.3). Let DI’ be the eigenvalue—eigenvector decom-
position of RER’, with A,, v =1,...,n — (M + p), the diagonal elements of D.
Let

(3.6) 5=Tu.
Then the 3, are independent with
(3.7) 5 ~N(0,bX, +62), »=1,...,7,

where i = n — (M + p).

THEOREM 1. Let y,,..., y, be given by (2.8) where g is given by (2.9).
Consider the problem of testing H,,: g given by (2.12) versus H, : g given by (2.9)
with b > 0 in (2.5). Let A,..., A be the preceding eigenvalues. Let Y denote the
family of tests invariant under translations by vectors in span{(L®,,..., L,®,):
1<y <MU(LY(:; 8)..., LY{(-; 5,): 1 <j <p}.

(a) If there are at least two distinct eigenvalues \; # A, then no UMP test
exists in Y.
(b) There exists an LMP test in Y (at b = 0). It rejects when
7
(3.8) T(5) = L\5%
v=1
is too large.

PrROOF. Observe that 7 is a maximal invariant under the group of transla-
tions, so tests in Y are functions of ¥. The rest of the proof follows as in Cox and
Koh (1986) using the distributional results (3.7). O
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Substituting (3.4) and (3.6) into (3.5) gives our main result.

THEOREM 2. 4
(3.9) T(5) = T(y) = Y RRER'Ry
is the LMP test statistic for H,: g has the parametric form (2.12) versus the
alternative, g has the (semiparametric) form (2.9).

We remark that if RZR’ is not of full rank, then the 7,’s which correspond to
A, = 0 do not appear in (3.8), nevertheless, the right-hand side of (3.9) may be
used to compute T(y).

We thank a referee for the following remark: Let P = R'RER'R, then
T = y'Py and it can be shown that (nA)2J(f,) = (¥ — fA)P(y — f»). Thus
(nA)2%J(f,) and T(y) estimate the same thing, namely &Pe, under the null
model, and are identical when A = co. Another referee has observed that Exam-
ple 4.16 of Cox and Hinkley (1974) has discussed the test of (3.8) in the context of
components of variance.

4. A connection between the LMP test and the GCV estimate of A.
There is an interesting relationship between the test statistic T( ) of (3.8), and
the GCV estimate A of A. If X is infinity, then GCV has chosen the null model. X
is the minimizer of V() given [see Wahba (1985)] by

£2_i(rA/[nA + A, 1) 5

(@ (n/[eA + A1)

(4.1) V(A)

THEOREM 3. V(M) has a ( possibly local) minimum at A = co whenever
A 1/ # i
42) )= Eass g £a)( L)
v=1 r=1 v=1

Note that Y7_, 7 is the residual sum of squares after least squares regression
on the ( parametric) null model.

PrROOF. Let y =1/nA and let
- P (/[ + A1) N(y)
43 Viy) = = , i
43 M= G wnemy D

Then V(M) has a minimum at A = oo if and only if V(y) has a minimum at
vy = 0, and this occurs when V’(0) > 0, equivalently, when

(4.4) D(0)N'(0) = N(0)D'(0),
(ﬁ)2(—2§?~,53) > ( Zﬁ:yf)(—zﬁfm)- o

Note thuc under the null hypothesis the right and left sides of (4.2) have
the same expectation. However, since the distribution of T may not be very
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symmetric about its mean, we did an example simulation to estimate the
probability that GCV will pick the null model when it is true. We selected the
example of the cubic smoothing spline (J,(f) = [if ®(x)dx) with the null
model a straight line, and x(i) = i/(n + 1), with n = 100. We computed the
fi = 98 eigenvalues A, using GCVPACK as described in Section 5. We computed
1000 independent samples of

_ ﬁ’(zﬁﬂlxvyf)
(E-A)(ED-15)

with the %,’s standard normal pseudorandom numbers from CMLIB. We found
that 673 of the ¢’s were less than 1. Hence, in this case there is about a 67%
(£3.6%) chance that GCV will pick the null model when it is true, whereas the
LMP test will pick the null model 95% of the time in such circumstances,
assuming the usual 0.05 level of significance. Thus the test of hypothesis is more
conservative in rejection of the null hypothesis, as one would expect. Nonethe-
less, we conjecture that in general the model selected by GCV will probably be
not far from the null model when it is true.

We remark that, intuitively, if @, behaves like a Green’s function, then the
5,’s that correspond to large A,’s generally are measures of the “low frequency”
components of y (perpendicular to the null model) whereas the 7,’s correspond-
ing to small A,’s are measuring the “high frequency” components. We conjecture
that roughly similar (approximate, asymptotic) results as these can be obtained
for the penalized likelihood estimates with GCV of O’Sullivan (1983), O’Sullivan,
Yandell and Raynor (1986), Green (1985) and O’Sullivan and Wahba (1985).

t

5. Some remarks concerning the computation of 7. Let F:G be the
QR decomposition of X,

(5.1) x-ri6=(F:B) D)

where F is orthogonal and G, is lower triangular. Then R can be taken as Fy.
Let the Cholesky factorization of FySF, be LL’. Then

(52) T(y) = IL'Fyy|*.

Cox and Koh discuss some approximations to the distribution of 7(y), which
depends on the nonzero values of A,02, » = 1,..., 7i. The A,’s can be computed
as the squares of the singular values of L’Fy by using the singular value
decomposition in LINPACK [Dongarra, Bunch, Moler and Stewart (1979)]. The
subroutine library GCVPACK [Bates, Lindstrom, Wahba and Yandell (1987)]
can be used to compute f,, g, and the GCV estimate of A and with slight
modifications can return T(y), both in the partial thin plate spline case with
evaluation data and in general.

In the thin plate spline (TPS) case a reproducing kernel is known [see, for
example, Wahba and Wendelberger (1980)], but it is much easier to work with
the so-called “semikernel” E, (x, x’) defined in that paper (also called a “vario-
gram” in the kriging literature), which gives the covariances of generalized
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divided differences. It can be shown, using the reproducing kernel @, in Wahba
and Wendelberger (1980), that the matrix K with i, jtheentry L, L; . E,(x, x")
satisfies K = 2 + B, where FyBF, = 0 so that K may be used instead of = in
(3.9) and elsewhere.
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