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BEST EQUIVARIANT ESTIMATORS OF A CHOLESKY
DECOMPOSITION!

BY MoRgRis L. EATON AND INGRAM OLKIN
University of Minnesota and Stanford University

Every positive definite matrix = has a unique Cholesky decomposition
2 = 66’, where 0 is lower triangular with positive diagonal elements. Suppose
that S has a Wishart distribution with mean n3 and that S has the
Cholesky decomposition S = XX’. We show, for a variety of loss functions,
that XD, where D is diagonal, is a best equivariant estimator of 8. Explicit
expressions for D are provided.

1. Introduction. Given a p X p positive definite matrix A, there exists a
unique p X p lower triangular matrix 7" with positive diagonal elements such
that

(1.1) A=TT.

This is commonly called the Cholesky decomposition of A and is a basic
decomposition in numerical analysis because it enables one to solve systems of
linear equations more easily.

Suppose that a p X p random matrix S has a Wishart distribution
#(Z, p,n), where 2 is a p X p positive definite matrix, and the degrees of
freedom n is at least p, so that S is positive definite with probability 1. It is well
known that

S

1]
S|~

(1.2) )

is an unbiased estimator of =. Now, write £ in its Cholesky decomposition
(1.3) S =460,

where 6 is a p X p lower triangular matrix with positive diagonal elements. The
problem we discuss here is the estimation of the matrix 6 based on the data S.

An unbiased estimator of § was obtained by Olkin (1985). [See Lehmann
(1983), page 85, for the one dimensional case.] We describe this estimator since it
motivates the remainder of this paper. Write

(14) S = XX,

where X is lower triangular with positive diagonal elements. In the statistical
literature, the x,; are called rectangular coordinates and the factorization is
sometimes called the Bartlett decomposition. The joint distribution of the x; J
was obtained by Bartlett (1933) and by Mahalanobis, Bose and Roy (1937). Then
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1640 M. L. EATON AND I. OLKIN

the unique unbiased estimator of § is
(1.5) 6=XD"",

where D is a known diagonal matrix. To see how D arises, recall that the density
of X is known and can be derived from the Wishart density. Let G* be the set
of all p X p lower triangular matrices with positive diagonal elements. Then G*
is a group and a left Haar measure on G™ is

P -1
(16) (@) - [t e
i=1
where
x; O 0
Xgg X9 O 0
x = .
Xp1  Xp2 Xpp

and dx is Lebesgue measure on G*. The density of X with respect to » is

(1.7) p(l6) = $(07 %),
where

(1.8) o(u) = k(det u)"exp| - itruw’], ue G,
and k is a known constant. Thus, we see that the random matrix
(1.9) U=0"X

has a density on G* given by ¢ in (1.8).
Now, it is known that the elements u;; of U are independently distributed
with
g(uij) =‘M(09 1)’ i >j,

1.10

(119 3’(“3)=xi—i+1, i=1,...,p.
Thus

(1.11) €U =D,

where D is a diagonal matrix with ith-diagonal element equal to

n—i+2 —i+1
112)  u,=&(x2 ) = V2T ) [ |
12 n—i+1 2 2

The notatiort in (1.11) is vector space‘ notation for expectation. Thus, (1.11)
means that the expectation of any element of U is the corresponding element
of D.

In (1.9), note that 7 'X can be thought of as a linear transformation
(determined by 6~!) evaluated at X. Since expectation of vectors commutes with
linear transformations, (1.9) and (1.11) yield

(1.13) EXD' = £00-'XD~' = (£6~'X)D 1 = 0.
Hence, XD™! is an unbiased estimator of 4.
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Some important observations regarding the preceding argument are:

1. The sample space and parameter space are both the group G*. The family of
distributions of X is invariant under the group action defined by G*.

2. The random group element X can also be thought of as a random vector. The
group action X — gX defines a linear transformation (determined by g)
acting on the vector X.

These two observations are exploited in this paper, where we examine other
estimators of 6 derived from decision theoretic considerations.

2. The estimation problem. Fix a locally compact group G and let »
denote a left Haar measure on G. Consider a fixed density (on G) with respect to
v, say ¢. Then, a parametric family of densities on G can be defined by

(2.1) p(x|0) =¢(67 %), 0,xeG.

Given an X with density (2.1), the sample space and parameter space are G. The
problem considered is the estimation of  based on X. The performance of an
estimator is measured by an invariant loss function L(a, 8), a,8 € G. That is, L
satisfies

(2.2) L(a,0) = L(ga,g0), a,0,8<€G.
Choosing g = 07! in (2.2) shows that L is invariant if and only if L has the form
(2.3) L(a,0) =K(6 'a),

where K is an arbitrary function defined on G.

Because the estimation problem under study is invariant, attention is re-
stricted to equivariant estimators. If ## G — G is an estimator (a point estima-
tor), the equivariance of ¢ means that

(2.4) t(gx) = gt(x),
which implies (by choosing g = x~!) that
(2.5) t(x) = xt(e),

where e is the identity in the group. Setting a = t(e), we see that ¢ is
equivariant if and only if

(2.6) t(x) = xa

for some a € G. Thus, choosing an equivariant estimator is equivalent to
choosing @ € G and using the estimator in (2.6). Estimators are compared in
terms of the risk function. For any equivariant estimator ¢,

R(t,0) = [L(t(x),0)p(xI0)v(dx) = [K(67'4(x))(0"x)(dk)
= [K(07xa)o(67x)r(dx) = [K(xa)o(x)»(dx)

= [K(xa)p(xle)(dx)
= ¥(a).
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Thus, the best equivariant estimator is found by minimizing
(2.7) y(a) = €,K(Xa),

where &, is the expectation computed at § = e, the identity in G: In the case
that G = G, these estimators will be minimax because the group G* is solvable
[Kiefer (1957)].

Some minimization results. As noted in (2.7), the best equivariant estimator
is found as the result of a minimization. We first gather several minimization
results needed in later examples. The notation A > 0 means that A is positive
definite. For A > 0, the matrix A2 is the unique positive definite square root.
All matrices in this section are p X p.

LEMMA 2.1. If A > 0, then
gﬁn[trAB — logdet B] = p + logdet A
>0

is achieved at B = A~ L,

LEMMA 2.2. If A >0 and A > 0, then

r;lin [trAB + tr AB™] =‘2tr(A1/2AA1/2)1/2
>0

is achieved at B = AV} (AV/?ANV/2)~1/2\1/2,

LEmMMmaA 2.3. If C(Y) is a positive definite matrix that is a function of Y, then
miné tr(a — Y)(a — Y)C(Y)

= mintr[aa’€C(Y) — 2a€Y'C(Y) + £YY'C(Y)]

- uf&(YC(Y)Y) - (6YC(Y))(6C(Y)) T (£C(Y)Y)],

where the minimum is over all p X p matrices a, is achieved at a =
(6C(Y)~H(EC(Y)Y).

PROOFS OF THE LEMMAS. Each of the functions to be minimized is strictly
convex. In Lemma 2.1, tr AB is linear and the determinant of a positive definite
matrix is log concave [e.g., see Marshall and Olkin (1979), page 476]. In Lemma
2.2, the inverse of a positive definite mattix is convex so that tr AB™! is convex
[see Marshall and Olkin (1979), page 469]. Finally, (a — Y)YC(Y)}a — Y) is
convex for each fixed Y and, hence, is convex after averaging.

Since (tr AB — logdet B) - o0 and (trAB + tr AB™') - o0 as B approaches
the boundary, we need only examine the first derivative equations. In Lemma
2.1, the derivative equation is A — B~! = 0, which immediately yields the result.
In Lemma 2.2, we obtain A — B"'AB~! = 0, which is quadratic and readily
solved. In Lemma 2.3, we obtain 2(&C(Y))a — 26C(Y)Y = 0, which yields the
result. O
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LeEmMmA 24. Let L,, L,, Ly and L, denote diagonal matrices with positive
diagonals, partitioned L; = diag(l;;, l;,), i = 1,...,4. The minimizer a, of

¥(a) = tr(a — L)Ly(a— L,) + tr(a™ = Ly)L,(a"" = L,)
over the set of lower triangular matrices occurs at a, diagonal.

Proor. Partition

-1
_[au O -1 _ an 0
e=1a a, |’ a = -1 -1 -1’
21 22 . —Q2Q21Qy; Qg

where a,, is a scalar and a,, is a lower triangular matrix of order p — 1. Then
Y(a) = tr(a, — lu)zlzl +traglyas + tr(ag — Lp)lp(ay, — L)
+tr(ay! - 131)2141 + traplayan'lyan'eyas,’
+tr(ag! — Iy lig(az' — 1)
The terms involving a,, are
tragylyay + trayasagniiyanesas,t >0,

with equality when a,, = 0.
An iterative argument shows that every nondiagonal element of the minimizer
a, must be zero. O

From Lemma 2.4, the minimizer of y(a) is a, diagonal, the elements of which
can be obtained from p separate univariate minimization problems, each of the
form: Minimize over z > 0,

28) )= (- a’a+ 2 - ) 0

where ¢; >0, i =1,...,4. Since £(2) >0, £0) = oo and §(c0) = o0, a fairly
direct numerical procedure will yield the minimizer of £(z).

3. Some examples.

ExAMPLE 1. For this example, takée G = G* as in Section 1, so the problem
is to find the best equivariant estimator of the lower triangular square root of =,
say 8. The loss function in this example is taken to be related to that used by
Stein [see James and Stein (1960)] in the estimation of 2. The function K which
gives the equivariant loss function L [via (2.3)] is

(3.1) K (u) = tr uu’ — logdet(uu’) — p.

The function K, can be thought of as a measure of the distance from z € G* to
e € G* because K, is uniquely minimized at u = e. The best equivariant
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estimator for this K, is obtained by minimizing
&,K (Xa) = &,[tr(Xaa’X’) — logdet( Xaa'X’) — p]
(3.2) = &,[tr X’Xaa’ — logdet aa’ — logdet(X'X) ~ p]
=tr(&,X'X )aa’ — logdet aa’ + c,

where c is a fixed constant. That logdet(X’X) has a finite expectation follows
from (1.10) and the finiteness of & log Z, where Z is x2%, and m is a positive
integer.

From Lemma 2.1, the minimum is achieved at B = aa’ = (£,X’X) . Since

(3.3) &X'X =D,

where D, is diagonal with diagonal elements d;,=n—-2i+p+1,i=1,...,p
[when the original data are #°(Z, p, n)], the minimizer is

a,=D;V?e G*.
Thus, the best equivariant estimator for this example is
(3.4) t,(X) = XD;'/2,

ExAMPLE 2. This example is similar to that of Example 1 except that we
take the function K [in (2.3)] to be

K,(u) = tr(uw’) " — logdet(uw’) ™" — p.

Again, K, can be interpreted as measuring the distance of u from e € G*. The
best equivariant estimator is found by minimizing (over a € G*)

(45 &,K,(Xa) = &,[tr(Xaa’X") ™" — logdet(Xaa’X") " - p]

= tr&(X'X) (aa’) ™" - logdet(aa’) ' + ¢,

where ¢ is a constant. From Lemma 2.1, the minimum is achieved at B =
(aa’) ' =[&,(X’'X) '] ". But, as shown in the Appendix,

&(X'X) '=D,eG*
is a diagonal matrix which can be calculated. Thus, the minimizer is
a, = D}/?

and ,
(3.6) t,(X) = XD}/?
is the best equivariant estimator for the loss determined by K,.

ExAMPLE 3. Again we consider the situation of Examples 1 and 2 with K
given by
(8.7) Ky(u) = truw + tr(uw’) "
Note that K, (u) = K,(u™'), so that estimation of § and 6! is considered
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simultaneously. Consequently, up to an additive constant,
Ky (u) = K,(u) + Ky(u).

For this case, the best equivariant estimator is found by minimizing

6,K,(Xa) =6, [tr Xaa'X’' + tr(Xaa'X') _1]
(3.8) = tr(€,X'X)aa’ + tr&(X'X) (aa’) ™"

= trD,aa’ + tr Dy(aa’) .
From Lemma 2.2, the minimizer of (3.8) is

B = aa’ = Dy*(Dy*D,DY?) "/’ Diy* = DY,

so that
@y = (D2D1_1)1/4’

and the best equivariant estimator is

(3.9) to( X) = X(D,D; )",

4. Invariant quadratic loss functions. In this section, we derive other
best equivariant estimators, but for loss functions that are equivariant and
quadratic [such as those discussed in Olkin and Selliah (1977)]. Before deriving
these estimators, we require some preliminaries taken from Eaton (1970).

Consider a random vector Y taking values in an inner product space (V,[-, - ]).
Also, let
(4.1) CY):V-V
be an a.e. positive definite linear transformation [possibly random since C(Y)
can depend on Y. For a € V, the minimizer of

(4.2) Y(a)=¢[(a-Y),C(Y)(a-Y)]
(4.3) a, = (€C(Y))'€(C(Y)Y).
The proof that a, is the minimizer of (4.2) consists in writing y(a) as
Y(a) =y(a,) + é’[a — a0, C(Y)(a - ao)] +28[a - ay,C(Y)(ao — Y)]

and noting that the cross-product term vanishes. We have found that this vector
space version of minimizing a quadratic function provides a useful way of looking
at the next two examples as well as other problems in multivariate analysis.
However, Lemma 2.3 also provides the minimizers in the following two examples.

EXAMPLE 4. Again take X € G* as in Example 1. The function K which
gives the equivariant loss function [via (2.3)] is taken to be

(4.4) Ky(u)=tr(u—-I,)(u-1L,).
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To find the best equivariant estimator, the function
(4.5) Y a) = 6K (Xa) = & tr(Xa — I,)(Xa - L,)

needs to be minimized over a € G*. Here and in what follows &, = &.
Let V be the vector space of all p X p real matrices with the inner product

[0, 0] = troyv;.
Define Y€ VbyY=X"1s0Ye€ G C V, and define C(Y) by
c(Y)=(YY) 'el,

so that C(Y) is a positive definite linear transformation on V to V. [For a
discussion of the Kronecker product notation ®, see Eaton (1983), pages 34-36.]
The value of C(Y) at v e V' is

C(Y)o=((YY) ' @ L,)o = (YY) 0.

In terms of Y, we have
Y(a)=ctrX(a—-XNae-X"YX=6trX'X(a— X" )a-X"1)
=¢[C(Y)(a-Y),(a-Y)] =¢[(a-Y),C(Y)(a-Y)],
which is minimized at
a, = (£C(Y)) ' €(C(Y)Y)
- (6[rv) e L)) el(v7) e L)Y
= [(6x'X)® 1] '¢X' = (6X'X)7'éX".

Lemma 2.3 also shows a,, is the minimizer of {,. Now, £X’ = £X is known from
(1.11) and £X’'X = D, was computed in (3.3) in Example 1, so that

a, = D;'D,
and the best equivariant estimator is
(4.6) t(X) = XD;'D.

ExampPLE 5. With X and G* as in Example 4, consider a loss function
determined by

(4.7) K (u) = tr(u_1 -1 )(u_1 -1 )’.

p p

The best equivariant estimator is found by minimizing

(4.8) ¥s(a) = €K(Xa) = € tr(a X' ~ I)(a "X~ ~ Iy

=&tr(a ' - X)X X ¥(a ! - X).
With the vector space and inner product as in Example 4, take Y = X and take
C(Y)=I1® (Y Y V).
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Hence,
C(Y)o=o(Y YY), oveV,
is positive definite on V and
va(a) = &[(a - ¥), C(¥)(a" - ¥)].
The minimizing a™! is
(a )= [&(1, @ (XX)7)| [, 8 x x| X
1\ -1
= [1,® (e(xx)™) Y| e(x1y

= [e(x ] [e(xx)7] 7,
ao = [e(x'x) 7] [e(x71)] 7.

Alternatively, Lemma 2.3 shows that @, minimizes ;. The computation
&(X’'X)~! = D, was given in Example 2. Using a partitioning argument as in the
first line of the proof of Lemma 2.3, it follows that £X~! is diagonal with
diagonal elements &x;;!, i = 1,..., p. Thus, the best equivariant estimator is

t5(X) = XD, D,
where
(4.9) D, =[x}

is diagonal with diagonal elements

(o) = (22 () i

ExaMPLE 6. With X and G* as in Examples 4 and 5, consider the loss
function

Ko(u)=tr(u—L)(u-L) +tr(u' = L) (u ' = L) = K (u) + K(u)

p P

as a parallel to the loss function of Example 3. The best equivariant estimator is
found by minimizing

Y¢(a) = €K¢(Xa) ,
=¢tr(Xa-L)(Xa - L) +&tr(a X' - L)(a X' - L)
= tr(aa’)(€X'X) + tr(aa’) 'E€(X'X) "
—2tra (X ') — 2tra(6X) + 2p
= tr(aa’) 'D, + tr(aa’)D, — 2traD, — 2tra”'D, + 2p,

where D, = 6X'X, D,=&(X'X)"Y, Dy=¢6X, D,=6X"! and each D, is
diagonal.
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The minimizer a, of y¢(a) is diagonal and is obtained as a consequence of
Lemma 2.4. Thus, the best equivariant estimator is

to= XD,

where the elements of D are obtained from Lemma 2.4.

5. Summary. For each of the loss functions given in Examples 1-6, we have
obtained the best equivariant estimator to be of the form #(x) = XD*, where D*
is diagonal. We now summarize these results in terms of the elements of the
diagonal matrix D*.

The unbiased estimator is given by D* = D~!, where the elements of D are
defined in (1.12). The result of Example 1 yields D* = D;'/?, where the elements
of D, are given in (3.3). The result of Example 2 yields D* = D}/, where the
elements of D, are given by (A.7). The results of Examples 3 and 4 are given by
D* = D}/*D;'/* and Dy 'D, respectively. The result of Example 5 is given by
D* = D,D;, where D; is obtained in (4.9). The result of Example 6 is a function
of these various other diagonal matrices and must be obtained numerically from
(2.8).

The improvement in risk obtained by using the best equivariant estimator
rather than the unbiased estimator is

A =&,K(XD™Y) - &,K(Xa,),

where K specifies the loss function via (2.3) and a, is the minimizer of (2.7). The
explicit computation of A is troublesome. For example, when K is given by K, in
(3.1), then a routine computation using results herein yields

A=Z2P(v;—1-logv;),
where
(n=—i+1)I%((n-i+1)/2)
ST T e ((n-i+2)2)

The numerical evaluation of A is certainly possible, but useful algebraic expres-
sions for A have not been found.

i=1,...,p.

APPENDIX
Let S have a W(1,, p, n) distribution and write
S = XX,
where X is lower triangular with positive diagonal elements. We want to
compute the matrix

(A1) H=¢&(X'X)"".

For any diagonal matrix D with +1 on the diagonal, DXD and X have the
same distribution, so that

H=¢&(X'X)"'=¢[(DXD)(DXD)] ™' = D&(X’'X) ‘D = DHD.
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Hence, H must be a diagonal matrix, and only the expectations of the diagonal
elements of (X’X) ! need to be calculated. We know that
g(xz?i) = Xn_i+1s
where x; is the ith diagonal element of X. Hence,
1

-1 .

(A.2) aisé’(x?i) =m, l=1,...,p.
With X partitioned into blocks, we have

X-1=(Xu 0 )_1=( X5t 0 )

Xy Xy XX, X' X3!

and

. o[ XaMxL) T c

(X,X) 1=X_1(X,) 1= 11( 11) N
% ApAn + X5'(X5)

'where A,; = —X5'X, X;;! and the matrix C does not enter into the computa-
tion. Taking X, tobe (p — 1) X (p — 1) and X,, a scalar,

_ [ e(XnXy) ™ 0

0 6(1/X5)[1 + Xo( X0 X00) 7' X))

Let h,,..., h, denote the diagonal elements of H. From the independence of
the elements x,; of X,

(A.3) hy = a,[1 + EXp( X1, Xyy) T X5),
with a, given by (A.2). But
ngl(Xf1X11)_lX2'1 =¢ tr‘)('2/1){21(){1/1){11)_1
= tr(ngllel)‘g)(XﬁXu) -

Since the elements of X, are independent standard normal variates, £Xg, X5, =
I,_,. Further,

&(X4 X)) ' = Hy,

where H,, is the upper left hand (p — 1) X (p — 1) corner of H. Thus, (A.3)
becomes

(A4) h,=a,[1+ trH;,] = o,[1+ 2P 7'h],
which together with h, = «; yields the inductive equation
(A5) hi=e[1+32{ ], j=1,...,p.
Solving (A.5) inductively yields

hy=a;,

(A.6) g .
h1=ajg(1+al), J=2,...,p.
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Finally,
(A7) h Lortli
. ;= N " 1= e .
'"n—i-1n-i’ S .
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