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In a general univariate linear model, M-estimation of a subset of param-
eters is considered when the complementary subset is plausibly redundant.
Along with the classical versions, both the preliminary test and shrinkage
versions of the usual M-estimators are considered and, in the light of their
asymptotic distributional risks, the relative asymptotic risk-efficiency results
are studied in detail. Though the shrinkage M-estimators may dominate their
classical versions, they do not, in general, dominate the preliminary test
versions.

1. Introduction. Consider the usual linear model
(1.1) X,=(X,.... X)) =A,B+e,, e,=(e,...,e,),

where B = (B,,..., B,) is a vector of unknown (regression) parameters, A, is an
n X p (design) matrix of known regression constants, n > p > 1, and the errors
e, are independent and identically distributed (i.i.d.) random variables (r.v.) with
a distribution function (d.f.) F, defined on the real line R. Without any loss of
generality, we may assume that A, is of rank p, and we consider the partition-
ing (where p = p; + py, p1 20, p, 2 0)

(1.2) B = ( B, B ) and A, = (A,,l, Anz),
Py X1 ppX1 nXp, nXp,

so that (1.1) may also be written as X, = A B, + A,,B, + e,. We are primarily
interested in the estimation of B, when it is plausible that B, is “close to” 0.
This situation may arise, for example, in a multifactor design, where B, stands
for the main effects and B, for the interactions: It may be quite likely (though
cannot be taken for granted) that all the interactions are insignificant and one
may then be mainly interested in the estimation of the main effects. Other
examples of this type abound in linear models. Also, instead of the null pivot for
B,, if we have any other specified B?, then working with X% =X, — A B, we
may reduce the pivot to 0.

Instead of the classical least squares estimators (LSE) (optimal for normal F')
or the maximum likelihood estimators ' (MLE) (based on some assumed form of
F) treated earlier in Saleh and Sen (1987) and Sen (1986), respectively, we shall
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be more interested in some general robust estimators, namely, the M-estimators
(which contain both the LSE and MLE as special cases). For the global
(unrestrained) model in (1.2), we denote an M-estimator of B by B, = (B/,, Bs.y,
so that B, is an unrestrained M-estimator (UME) of B,. For various properties
of B,,, we may refer to Juretkova (1977), Yohai and Maronna (1979) and Singer
and Sen (1985), among others. Second, for the restrained model X, = A, B, + e,
(i.e., B, = 0), let B,, be the corresponding M-estimator of B,; B,, is termed a
restrained M-estimator (RME) of B,. This RME generally performs better than
the UME when B, is 0 (or very close to 0). But, for B, away from the pivot 0, the
RME may be considerably biased, inefficient and even, possibly, inconsistent,
while the UME retains its performance characteristics steadily over the varia-
tion of B,. For this reason, often to incorporate the rather uncertain prior
information on B, in the estimation of B,, a suitable (M-) test statistic (for
testing H,: B, = 0) is taken into consideration. In a preliminary test M-estima-
tion (PTME) formulation, the PTME Bm is chosen as the RME or UME,
according as this preliminary test leads to the acceptance or rejection of H,. The
shrinkage M-estimator (SME), based on the usual James-Stein (1961) rule,
incorporates the same test statistic in a smoother manner. When B, is very close
to 0, generally, both the PTME and SME perform better than the UME, but the
RME may still be better than either of them. On the other hand, for B, away
from 0, the RME may perform rather poorly, while both the PTME and SME
are robust. This relative picture on the performance characteristics of all four
versions of M-estimators can best be studied in an asymptotic setup similar to
that in Sen (1984) or Sen and Saleh (1985). Shrinkage M-estimation of the
multivariate location has also been studied in the same vein by Saleh and Sen
(1985). The object of the present study is to focus mainly on the linear models. In
passing, we may remark that for the particular case of p, = 0, i.e., p, = p, we
have the classical shrinkage model, while for p, > 1, we have a partial shrink-
age model not treated in this generality in other places.

The proposed PTME and SME, along with the preliminary notions, are
presented in Section 2. The notion of asymptotic distributional risk (ADR) is
considered in Section 3 and, in this light, the ADR results for the various
versions of the M-estimators are formulated in the same section. The main
results on the asymptotic risk efficiency (ARE) of the different versions of
M-estimators are presented in Section 4. The concluding section deals with some
general discussions (including the asymptotzc (distributional) minimax character
of these estimators).

2. The proposed PTME and SME. First, we introduce the score function
¥ = {Y(x), x € R} needed for the definition of M-estimators. We assume that

(2.1) V() =¥i(x) +45(x), x€R,

where ¢, and ¢, are both nondecreasmg and skew-symmetric [ie., ¢,(x) +
Yi(—-x)=0,Vx€eR, j=1,2]; ¢, is absolutely continuous on any bounded
interval in R and v, is a step function having only finitely many jumps. Also, we
assume that there exists a finite positive constant &, such that ¢(x) = y(k)sign x,
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for |x| > &, and y is nonconstant on [— £, k], so that

(2.2) 0<o2= /R‘pz(x) dF(x) < oo.

Then let A’, = (a,,...,a,) and, for every b € R? and n > 1, define

(23) M,(b) = (My(b),..., M, (b)) = 3 a4(X, - ab), beRP.
i=1

Also, we assume that the d.f. F (of the e;) is symmetric about 0, so that

(2.4) V= [¥(x)dF(z) = 0.

Further, we let

A’n21&n1 A’n2An2 Cn21 Cn22

and assume that there exists a positive definite (p.d.) matrix C, such that as
n — oo,

(2 5) C =A’A = (A/nlAnl A’nIAn2) — (Cnll Can)

C C

26 n-ic, » ¢ =[O )
(26) (%lcm
(2.7) ntY (aja,)’ = 0(1).

i=1
Note that (2.6) and (2.7) ensure that
(2.8) max {a;C,'a,} = O(n"2) =0(1), asn— .

1<iz<n

Now, the UME B, = (8/,, B;.) of B is a solution to
(2.9) M,(b) = 0.

We also write M, (b) = (M/,(b, b,), M/,(b,,b,)y, where for the M, and b, we
use the same partitioning as in (1.2). Then, the RME ém of B, is a solution to

(2.10) M, ,(b,,0) = 0.

For the PTME and SME, we need to introduce a suitable (M-) test statistic
for testing the null hypothesis Hy: B, = 0. Toward this, we proceed as in Sen
(1982) and Singer and Sen (1985) and let

(2-11) Mn(2) = Mn(2)( éln,o),
where B,,,, the RME of B,, is defined by (2.10). Also, let

n
(212) S;=n"'} ‘Pz(Xi - a’i(l)Bln)’ a; = (a,i(l)’a’i(2))’ ix1,
i=1

(213) Cnrr~s = Cnrr - Cnrsc;s%scnsr’ forr+s= 1,2'
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Then, an appropriate (aligned M-) test statistic is

(2-14) &£, = Sn_z{M;z(2)Cn22~1Mn(2)}‘

Under H,, %, has asymptotically the chi-square d.f. with p, degrees of freedom
(DF). Thus, corresponding to a preassigned level of significance a (0 < a < 1),
the preliminary test for H, may be based on the following:

Accept or reject H, according as %, is < or > xf,z,a,
(2.15)  where X}, is the upper 100a% point of the chi-square d.f.

with ¢ DF.
The PTME is then defined by
(2.16) BIT = B[ L2 X2, ) + Bud( L < x2,.0);

where I( A) stands for the indicator function of the set A. Note that for defining
the PTME, it suffices to assume that p, > 1.

To introduce the SME, we consider a (given) positive definite matrix W
(which we adopt in the definition of the risk later on) and let

(2.17) d, = ch, (nWC} ;) = smallest characteristic root of "tWCp1 5.
The SME may then be defined as
(218) ﬁlsn = ﬁln + (Ipl - Cdnn_l"?r:lw_lcnllﬂ)(ﬁln - ﬁln)’

where c is a (positive) shrinkage factor to be defined more precisely later on.
Note that (2.18) is in line with the general prescription of Berger, Bock, Brown,
Casella and Gleser (1977), where the case of the multinormal mean with un-
known (and arbitrary) covariance matrix has been treated. To simplify (2.18)
further, we assume that the d.f. F' has an absolutely continuous density function
f (a.e.) with a finite Fisher information I(f) = [g{ f'(x)/f(x)}? dF(x). Also, let

C,;=C,—C,C;'C,;, for i # j = 1,2. Then, proceeding as in Singer and Sen
(1985), we obtain that

(2.19) (B~ B) ~o #;,(0,0077°CRL,),

where

(2:20) v = [¥(@&){~f(x)/1(x)} dF ().

As such, the Mahalanobis distance of B,, from B, may be taken as

(2'21) L(Bln’ Bl) = {(Eln - Bl)lcn11~2( ﬁm - Bl)}'Yz/U.f-

With this interpretation of the loss function, it may be quite natural to choose
W =n"'C,,., (~C,.,), in which case, by (2.17), d, = 1 and, hence, (2.18)
reduces to

(2.22) B =B+ (1- 2)(Bi—Bun)-

In the sequel, we shall mainly use the SME in (2.22), though in the last section
we shall comment on the general case in (2.18). Note that in the PTME in (2.16),
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the indicator functions are 0-1 valued r.v., while in (2.18) or (2.22) we have a
smoother version for the SME. Following Sclove, Morris and Radhakrishnan
(1972), we may also consider the following positive-rule SME:

(2.23) BS =B+ (1—cZ) (B, B.,)

where a™ is equal to a Vv 0. Note that (2.16) and (2.23) do not agree even if we
let ¢ = xf,z, « However, (2.23) may have some advantage over (2.16) and we shall
make some comments on it in the concluding section.

We may note that the M-test based on .%, in (2.14) is consistent against any
(fixed) B, # 0, so that the alternative estimators in (2.14), (2.18), (2.22) and (2.23)
would be all asymptotically equivalent to the UME Bl, .- Hence, to avoid this
asymptotic degeneracy, we consider the case of B, being “close to” 0, where these
different versions of the M-estimators have nonequivalent performance char-
acteristics.

3. ADR of PTME and SME. In the classical normal theory model, with a
loss function defined as in (2.21), the risk is computed as the expected loss. For
the classical M-estimators and the PTME, this risk can be computed under the
regularity conditions of Section 2 (which ensure the moment convergence of
M-estimators). This is also true for the positive-rule M-estimator in (2.23). Thus,
in each of these cases, one may compute the asymptotic risk directly by using
standard asymptotic results on the actual risk. However, the situation is quite
different for the SME in (2.18) or (2.22). A quadratic error [such as in (2.21)] in
the SME [say, (2.22)] involves %, ! and %, 2, in addition to the usual factors
involving the UME and RME. In the normal distributional models, dealing with
the traditional MLE’s and the likelihood ratio test statistics, the celebrated
Stein identities [viz., Stein (1981)] provide access for this computation under
additional regularity conditions (on p,, p, and the design matrix C,). However,
sans the multinormality assumption, the ingenuity of the Stein identities may
not hold. In fact, it is trivial to construct pathological examples where for
quadratic error loss functions, the SME or the classical James—Stein (1961)
estimator does not have a finite risk when the underlying F is nonnormal.
Dealing with shrinkage U-statistics, Sen (1984) has shown that under additional
regularity conditions, ensuring the existence of the negative moments of .%,, this
asymptotic risk can be computed. The same result holds for R-estimators of
location [cf. Sen and Saleh (1985)]. In the current case, to retain the simplicity of
the regularity conditions (of Section 2), we shall compute the risk by reference to
the asymptotic distribution of an estimator and term the same as the asymptotic
distributional risk. For the UME, RME, PTME and the positive rule estimator,
the ADR agrees with the corresponding asymptotic risk under the same regular-
ity conditions. In the case of the SME, the ADR can be studied under the same
regularity conditions (as in the case with other versions), but the asymptotic
risk, to be conformable with the ADR, would demand additional regularity
conditions. Since this relative picture is similar to the U-statistics case treated in
Sen (1984), we shall omit the details. As such, we shall mainly confine ourselves
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to the study of the ADR properties of all the versions of M-estimators and
comment on their asymptotic dominance in the light of these ADR results.

In the multivariate location model, Sen and Saleh (1985) have pointed out
that shrinkage estimation works out well only in a shrinking nelghbourhood of
the pivot. A similar picture holds here too. Since for B, the pivot is taken as 0,
we consider a shrinking neighbourhood of 0 and toward this, we consider the
sequence {K,} of alternatives, where

(3.1) K,: B, =Bymy=n""%, £=(4p41,--,5,) € RP,
so that the null hypothesis H,, reduces to Hy: £ = 0.
For a suitable estimator B, of B,, we denote by
(3.2) G*(x) = lim P{n"*(B%, - B,) <xIK,}, x€ER",
n—oo

where we assume that G* is nondegenerate. Then with a quadratic error loss
n(B¥ — B,)YW(B}, — B,), for a suitable (p.d.) W, the ADR of B}, is defined as

(3.3) R(p;;W)=tr{ij fxx’dG*(x)}=tr{WV*}, say,

where V* is the dispersion matrix for the asymptotic distribution G*. We also
denote an m-variate normal d.f. with mean vector p. and dispersion matrix = by
G,(x; 1, 2) and the d.f. of a noncentral chi-square distribution with r DF and
noncentrality parameter A by H,(x; A), x > 0. Then, we have

THEOREM 3.1. Under {K,} and the regularity conditions (2.1), (2.2), (2.6),
(2.7) and for the density f with finite Fisher information I(f),

(3.4) nh_{'rolo P{%, <x|K,} = H,(x; A), A =0, %(£Cyy,£)7"
(35)  lim P(n/*(B, ~ B) < xIK,} = G, (%0, *oCiily),

Py
(36) Tim P{n'/*(By, — B.) < xIK,} = Gy (x + Ci'Coki 0,y }Cy),
lim P{n'?(BET - B,) < x|K,}

n— oo

(3.7) = sz(Xiz,a; A)Gpl(x + C5'Cr§ 0,7 0',(«Cll )
+ Gpl(x - D,,D,,'z;0, y‘2ofD11.2) dez(z; 0, y‘zofD22),
E(%)
where D = C™! and the D,; and D, ; are defined as in (2.6) and (2.13), and
E(§) = {z: 0, 2Y(z + i)'sz 1(2 +§) > X3, o) Finally,
¥ %/cC'C (DU + £)
(DU + £)Cpy (DU + §)°

(3.8) nl/2(ﬁlsn - Bl) -5 DU+

where

D
(3.9) U ~ #,(0,y"%2C) and D= (D;).
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Proor. (3.4) follows directly from Singer and Sen [(1985), Section 3], while
(3.5) is a restatement of (2.19). Further, (3.6) follows directly from Theorem 3.1 of
Jureckova and Sen (1984) and related results in Section 3 of Singer and Sen
(1985). Actually, these linearity results [viz., Singer and Sen (1985)] imply that
under {K,},

(8.10) 91;; =P + C'Cpofo, + 0,(n"172),

(3‘11) "?n = (aéncn22~1é2n)y2/o‘f + op(l),

so that the PTME and SME may both be expressed in terms of the UME B,
Recall that under {K,},

(3.12) nl/z((Bln = B1), (Bon - n_wﬁ)l)l B "%(0’ Y—2ﬂfC—1)-

Note that by definition, D,; + C};'C;,D,, = C;;! and Dy, + C5;'C;,Dyy = 0.
Hence, using (3.10) and (3.11), we may write B,, = L,B, + 0,(n"'/2) and %, =
nB/L,B, + 0,(1), where L,C™'L, = 0. Hence using (3.12), we conclude that
under (K,}, n"/%p,, — B,) and &, are asymptotically independent, while the
joint distribution of n'/%(B,, — B,) and %, can be obtained from (3.12) by
integrating over the proper subspace. As such, following the same arguments as
in the proof of Theorem 3.2 of Sen and Saleh (1979), we arrive at (3.7). Note that

by Theorem 3.1 of Jureckova and Sen (1984) [and Singer and Sen (1985)], under
{K,} and the assumed regularity conditions,

Bln - Bl

B2n -n 1/22

where n”'/2y "M (B) -, U, as defined by (3.9). Since C~! = (g;), (3.8) follows
readily from (2.22), (3.10), (3.11) and (3.13). O

(3.13) nl/2( ) = C7ly7InT2M,,(B) + 0,(1),

THEOREM 3.2. Under the hypothesis of Theorem 3.1, the following ADR
results hold:

(3.14) R(Bs W) = (o2v72)tx(WCL,),

(3.15) R(B;; W) = (o2y72)tx(WC!) + £'ME,
R(BY™; W) = (o2y2){t(WCiL,)[1 = H,,1o(x2, o5 A)]

(3.16) +tr(WCL ) H,,, o X2, o A)}

+(§ME)[2H,,,.5(x2, o A) — Hy,. X2, A),
R(BS; W) = (of‘y'2){tr(WCfll.2)
(8.17) - Ctr(Mcz_z%l)[2E(X;22+2(A)) - CE(X;:+2(A))]}

+e(c + 4)(EME)E(x74,4(A)),
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where A and H/(-) are defined in (34), E(x,*(8)) = [°x~"dH(x; A) and
(3.18) M = C,,C;!WC;!'Cys.

Proor. Note that (3.14) and (3 15) follow directly from (3.3), (3.5) and (3.6).
For the asymptotic distribution in (3.7), we use the results in Section 4 of Sen
and Saleh (1979) and obtain the correspondmg dispersion matrix VFT as

H, (%2, o )y %00CH + [1 - H,(x2, o A)]y203Dy,
+D,,D;; D21[1 Hyyoox%, o A)]
(3.19)  +Ci'CbtCrCil[2H,, 1o(x2, o A) = Hyd(X2,.0 b))
= v 20 [CiMH,, 1a(x3,. 05 A) + Cita(1 = o303 8)) |

£ CRIC LR CoCR 2H, o x50 B) = Hoped(X2,.05 8.
Then (3.16) follows directly from (3.19), (3.3) and the definition of M in (3.18).
Next, we note that by (3.3), (3.8) and (3.9), the left-hand side of (3.17) is equal to
(DU + £)'C,,C;WDU }
(DU + £)'Cyy (DU + £)

y~ %} tr(WD,CD]) + 27_2o,ch{
(3.20)

5 4 —am] (DU + £)'Cy,C1i' WC;'C1p(DU + §)
+co,y °E 5 ,

[(DZU + g),022~l(D2U + g)]
where tr(WD,CD}) = tr(WC;;*,). Using (3.18) and the Stein identity [viz.,
Appendix B of Judge and Bock (1978)], the last two terms in (3.20) reduce to
(321) - 2y %2 tr(MCzY,) E(x;22(A)) + 4c(§ME)E(x;2 4(4))
and
(322) v %02e?tr(MCyYy)E(xp2o(8)) + c2(§ME)E(x52 4(4)),
respectively. (3.20)-(3.22) lead to (3.17). O

In the light of these ADR results, the asymptotic distributional risk-efficiency
(ADRE) results are considered in the next section.

4. ADRE results. Note that for C;, = 0, we have M =0 and C};, , = C;
and, hence, (3.14)-(3.17) all reduce to the common value o)y~ *tr(WC") (V £),
so that all these versions become ADR-equivalent. Hence in the sequel, it will be
assumed that C,, # 0. Also, note that (3.14) does not depend on £ and, as argued
before (2.22), we may choose W as proportional to C,; ,. In fact, we let
W = y%, Cy, ,, so that (3.14) reduces to p;. Then let

(4-1) M* = C2101_11011-201_11012 and M°= 01202_2102101_11'
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THEOREM 4.1. For W = y%,2C,, .,, under the hypothesis of Theorem 3.2,
(g/ *2)

%

(42) R(B;W)ZR(B;W) accordingas v? S tr(M°),

(Bp ) % (31”, W) according as
4'2 “Ztr(M° )IIp2+2(X‘,,2 o A)
2sz+2(xf>z,a; A) - Hp2+4(Xp2,a; A) .

(4.3)

(EIM*E) s

The proof follows directly from (3.14)—(3.16) and the particular choice of W.
Since tr(M°) is positive for C,, # 0, it follows from (4.2) and (4.3) that the UME
fails to dominate the RME or the PTME in the light of their ADR. In a similar
manner, it follows that the PTME fails to dominate the UME or RME. Note
that at £ = 0 (i.e., under H,),

Ro(gl;w) 2p;— tr(M**)Hp2+2(xl272,a; A) = Ro(BlpT; W)

> p, — tr(M**) = Ry(B;; W),
where R () stands for the ADR under H, and
(4.5) M** = C;;!C,C5'Cyy  [s0 that tr(M**) = tr(M°)].

On the other hand, as £ moves away from 0 (i.e., A* = £M*{ increases),
R(B,; W) monotonically (in A*) increases and it goes to + oo as A* — + co. The
ADR of the PTME also increases as £ moves away from 0; in fact, this ADR
crosses the line p, as £ moves out of a closed neighbourhood of the pivot and
then continues to stay above this line. However, this excess over p, is usually
small, and as A or A* goes to + co, this ADR approaches the limit p,. Thus, the
PTME has a bounded ADR, and though its value may exceed the ADR of the
UME, its smaller values in the neighbourhood of the pivot and its small excess
over the asymptote p, for large values of the noncentrality parameter make it a
very attractive estimator under certain prior information on B,.

The conclusions derived from Theorem 4.1 do not need any condition on the
matrix M (apart from its nonnull character). In the case of the SME, however,
we need to introduce extra regularity conditions on the shrinkage factor ¢ as well
as the design matrix C (and p,, p,). To derive a clear picture, we present this in
two phases. First, we consider the dominance of the SME over UME (in the light
of their ADR) and then we draw a relative picture of the ADR of the PTME and
SME. We define M? as in (4.1) and let ch,(+) stand for the largest characteristic
root. Let

(4.6) h = ch,(M?)/tr(M°), sothat0 <% < 1.

(4.4)

THEOREM 4.2. A sufficient condition for the asymptotic dominance of the
SME over the UME [i.e., for R(B; W) > R(B1 ; W) for all £ € RP?] is that the
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shrinkage factor c is positive and it satisfies the inequality

7 2B{x;25(8)) — B(xp4a(8)} — (¢ + DRAE(x;% (8)) 20,

VA >0,
which, in turn, requires that

(4.8) P23, 0<c<2p,—2) and h(c+4)<2.

Proor. With W, M* and M° defined as in Theorem 4.1, we note that by
(3.14) and (3.17) we have some simplifications,

) R(By; W) — R(BS W) = ctr(MO)[2E(x52.(8)) - cB(xpia(8))]

—c(c+ 4)720[2(€'M*$)E(X;:+4(A))’
where we have made use of the identity that tr(MC!,) = tr(M°). Note that
(E'M*2)72°¢_2/A = (elM*i)/(ngz-l&)

< ch (M*C3},) = ch,(M°) = A tr(M°),

where h is defined by (4.6). Hence, for the positivity of the right-hand side of
(4.9), for every £ (including the null case), we must have ¢ positive and, with
that, (4.7) and (4.10) ensure the positiveness of (4.9). Next, we note that

(411)  E(x;2(8)) = (1 — DE(x5ho(A)) = AE(x54(8)):
Using (4.11), we rewrite (4.7) as

(412) [2(ps — 2) — ] E(x542(8)) + [2 — h(c + ]AE(x;44(8))-

From the nonnegativeness of (4.12) at A = 0, we conclude that ¢ has to be
< 2(p, — 2) (which also needs p, > 3). Further, using the crude inequality that
E(xpt ) = (p+2)7Xp - 2)E(x,2,5(A)) and allowing A to be adequately
large, we conclude that for (4.12) to be positive for all A, we must have
h(c + 4) < 2. This completes the proof of (4.8). O

(4.10)

Let us crucially examine the conditions laid down in (4.8). The quotient % in
(4.6) plays a basic role in this context. Note that by (4.1),

(4.13) tr(MO) = tl'(lpl - 01_11C11.2)(= tr(lp2 - 0521022.1)) < p*

= min(pl’ p2)'

Also, for & > 1, for any positive ¢, h(c + 4) cannot be < }. Further, tr(M°) is
the sum of the positive characteristic roots of MY, so that if rank(M°) < 2, then
by (4.6), h is > 3. Thus, we may reframe (4.8) as

p* = min(p,, p,) 2 3,
h<! and 0<c<min{2h7'-4,2(p,-2)}.
Fortunately, this condition is verifiable from the given matrix C, (or C). For any

(4.14)
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given linear model, when seeking a partial shrinkage M-estimator, the first
condition that needs to be verified is that 2 < ; and p* > 3. Only then a
positive ¢ can be chosen, such that the third condition in (4.14) holds. Thus, the
shrinkage factor ¢ depends on the desgn matrix C and requires bth p,, p, > 2
and, moreover, A needs to be strictly < 3. The situation is quite different from
the classical location model where we only need that p > 3. We shall take into
account these points in comparing the PTME and SME in the light of their
ADR.

THEOREM 4.3. Under the hypothesis of Theorem 4.2, the PTME fails to
dominate the SME. Also, if for a, the level of significance of the PT, we have

H, (x2,.0) = q{2(p, — 2) — a}/po( P, — 2),

qg=(py—2) A(2/h - 4),

(4.15)

then the SME fails to dominate the PTME.

Proor. With W, M* and M? defined as in Theorem 4.1, we have
R(B; W) - R(BI™; W)
= (M) H,, 52,0 B) — ¢[2E(x;22(8)) = cB(xp2a(8))]}
— (EM*8)0; 2y} (2H,,, o X2, o A) = Hppad( X2, 0 A)
—c(c+ 4)E(X;2“+4(A))}.
We rewrite the right-hand side of (4.16) as
(MO, o(x3, 0 4)
— oy Y (EM*E)[2H,, 5(x3, 0 ) = Hpyod(x3,. 8)])
+ {e(e + DEM*E) o7 v E(x;4(8))

— tr(MO)e[2E(x;22(8)) — cE(xpha(2))]}

By (4.7) and (4.10), the second term of (4.17) is always nonpositive, while the first
term is negative whenever .

GJZYZ(QM*E) > tl‘(Mo){2 - Hp2+4(xzz>2»a; A)/HP2+2(X3’2*"‘; A)}_l'

Hence, (4.16) is negative outside a closed neighborhood of the pivot, so that the
PTME fails to dominate the SME when (4.7) [or (4.8)] holds. Next, we note that
under H,: £ = 0, (4.16) reduces to

(4.18) (M) {H,, ox%,,00) — pi'e(2 = (P2 = 2)"e)}.

Now, ¢p; (2 — ¢/(p, — 2)) attains a maximum [over ¢ € (0,2(p, — 2))] at ¢ =

(4.16)

(4.17)
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P, — 2, while, by (4.8), ¢ < 2h~! — 4. Hence, defining q as in (4.15), we note that
(4.18) is bounded from below by

(M), o(x2, o 0) ~ q[2(p; — 2) — g1 /po((Ps — 2)}-

Thus, (4.15) ensures the positiveness of (4.18) and this, in turn, implies that the
SME fails to dominate the PTME. O

We may remark that (4.15) holds for small a, for a wide range of values of p,
and q. For example, for a = 0.10, (4.15) holds for all p, < 11 (and even larger
values of p, when q is small); for « = 0.05, it holds for all p, < 21. Further, the
maximum excess of the ADR of the PTME over the SME is generally small
compared to (4.18). Also, for the asymptotic dominance of the SME (over the
UME), we require some stringent conditions on C, p, and p, (viz., Theorem 4.2)
which are not required for the PTME. From these considerations, for small
values of a and for p,, p, not too large, we may find the PTME quite
comparable to the SME. It is difficult to prescribe a clear-cut recommendation in
favor of one over the other.

5. Some general remarks. It follows from the results of Section 4 that
both the PTME and SME are robust from the risk-efficiency point of view. Of
the two, the SME may have generally the asymptotic minimax character (in the
light of the ADR), while, in view of Theorem 4.3, the PTME is not an
asymptotically minimax estimator. However, comparing the regularity condi-
tions needed to achieve this asymptotic minimax character for the SME with
those for the PTME, we feel that in many practical applications, the SME would
not be that attractive, while the PTME may still lead to a robust alternative to
the UME or RME.

In Section 4, we have mainly considered the SME in (2.22) and the specific
case of W ~ C,, ,. For the general SME in (2.18) with an arbitrary W, we may
virtually repeat the steps in Theorems 3.1 and 3.2 and, denoting by

(5.1) M® = Cy;C'Cy; W 'C,,.,Ci'Cyy,

we arrive at the same expression for the ADR in (3.17), where the matrix M has
to be replaced by M®. With this change, the results in Section 4 (viz., Theorems
4.2 arid 4.3) also extend readily for the SME in (2.18) and an arbitrary W. For an
arbitrary W, the SME in (2.18) would have the asymptotic minimax character
[under additional regularity conditions; such as in (4.7) and (4.8)] and the one in
(2.22) may not be so. However, as we have already justified the use of the
particular W in Theorems 4.1-4.3 on the ground of the Mahalanobis distance,
there is no real demand for the general case in (2.18) and, hence, our discussions
in Section 4 remain pertinent for the comparative study made here.

Finally, let us comment on the positive-rule PTME in (2.23). For the multi-
normal mean problem, Sclove, Morris and Radhakrishnan (1972) have shown
that a positive-rule MLE dominates the usual shrinkage MLE (SMLE),
although it fails to dominate the usual PTMLE (which may rest on a different
choice of ¢). In view of the asymptotic theory developed in Section 3, for the
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M-estimators, we are able to make use of the asymptotic multinormality prop-
erty and thereby extend their conclusions to the case of the PTME, SME and
the positive-rule SME. This suggests that under the specific choice of W =
n~1'C,.,, the positive-rule SME should be used instead of the usual SME.
However, for the PTME, the regularity conditions in (4.7) or (4.8) are not
needed, and for small values of a and for p,, p, not large, the PTME in (2.16)
may turn out to be a better competitor. For (2.18), one may also define a
positive-rule version, but that may not dominate (2.18) (in the light of their
ADR) and the appeal for the positive-rule version is thus diminished.

Acknowledgments. Thanks are due to the Associate Editor and the referees
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