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ON KULLBACK-LEIBLER LOSS AND DENSITY ESTIMATION

BY PETER HALL

Australian National University

“Discrimination information,” or Kullback-Leibler loss, is an ap-
propriate measure of distance in problems of discrimination. We examine it in
the context of nonparametric kernel density estimation and show that its
asymptotic properties are profoundly influenced by tail properties of the
kernel and of the unknown density. We suggest ways of choosing the kernel
so as to reduce loss, and describe the extent to which likelihood cross-valida-
tion asymptotically minimises loss. Likelihood cross-validation generally leads
to selection of a window width of the correct order of magnitude, but not
necessarily to a window with the correct first-order properties. However, if
the kernel is chosen appropriately, then likelihood cross-validation does result
in asymptotic minimisation of Kullback-Leibler loss.

1. Introduction and discussion. The purpose of this paper is to provide
concise descriptions of discrimination information (Kullback-Leibler loss) for
kernel probability density estimates and to explore the extent to which likeli-
hood cross-validation leads to asymptotic minimisation of the information avail-
able for discriminating between true and estimated densities. The first section
provides motivation, illustrative examples and a summary of results and conclu-
sions.

1.1. Kullback-Leibler loss and likelihood cross-validation. Let f and g
represent two probability density functions and X denote a single observation
from the distribution with density f. The expected amount of information in X
for discriminating against g is given by

(1.1) L(f,8) = [f(x)log( f(x)/g(x)} dx

[23, page 5] and is nonnegative. We call this Kullback-Leibler loss. If g = fisan
estimate of f, then the expected Kullback-Leibler loss associated with this
estimate is E{L( f, f)}.

The distance function L is not a metric and Kullback-Leibler loss is not an
appropriate measure of distance in the goodness-of-fit sense. It is purpose-built
for discrimination and in the context of density-estimation it may not have
applications outside that context.

Likelihood cross-validation represents a data-driven attempt at constructing f
so as to minimise L( f, f ). For example, if X,..., X,, is a random sample from f
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and if f is the univariate kernel estimator
(12) f(xlh) = (nh) ™" ¥ K{(x - X,)/h}
i=1

with window A and kernel K, then likelihood cross-validation recommends
choosing % so as to maximise

CV(h)=n"" Y log f{(X,lh),
i=1
where fi(xlh) ={(n—-Dh}y'L;, K{(x - X;)/h}. This procedure was proposed
by Habbema, Hermans and van den Broek [13] and Duin [9] and shown by
Titterington ([33], [34]) to be cross-validatory in the sense of Stone [29]-[31]. It
forms part of a widely used program ALLOC for discrimination, and examples of
its use may be found in [11], [12] and [25].

1.2. Influence of tail behaviour on consistency. One of the contributions of
this paper is an explicit account of how Kullback—Leibler loss and likelihood
cross-validation are influenced by interaction between tail properties of the
kernel K and of the unknown density f. This interaction can result in infinite
loss and inconsistent estimation as we show by example in the present subsec-
tion.

Suppose f is symmetric about the origin, bounded away from zero on compact
intervals and satisfies f(x) ~ c|x|™* as |x| > o0, where ¢ > 0 and « > 1. Exam-
ples include Cauchy and Student’s distributions. Take the kernel to be

(1.3) K(z) = Ajexp(—A4,|2]*), -0 <2z< o0,

where A, A, and « are positive constants linked by the requirement that K
integrate to unity. Examples include standard normal and double exponential
kernels. Define the estimator f(-|2) as in (1.2). We claim that (i) expected
Kullback-Leibler loss is infinite if k > a — 1 and (ii) likelihood cross-validation
selects a window 4 diverging to infinity and so leads to inconsistency if k > a — 1.
These results follow from the inequalities

AW, (x) + log(hA; ") < —log f(x|R)
< AW,(x) + log(nhA; 1),
n(/B-1p=A )Y, + log(hA;?) < —CV(h) < n/P~1h=xA,Z,
+log(hA5 1),
respectively, where W, (x) = min;(x — X;)/h|, Y, = {n‘l/ﬂ"(X(z) - Xa))5
Z,=2"""n"YPL)X)", B=(a-1)/k<1 and X, < - < X, are the
order statistics of X, ..., X,. Note that EW,(x) < o if and only if k < a — 1,
Y,/* converges weakly to a positive continuous limit which is the difference
between extreme and penultimate extreme value limits, and Z, has a positive

stable-law weak limit with exponent B. Incidentally, result (1.4) plays an im-
portant role in several of our proofs.

(1.4)
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1.3. Influence of tail behaviour on loss. 'The influence of tail properties of K
and f on Kullback-Leibler loss and likelihood cross-validation is both complex
and profound. In this subsection we explain the main features.

Define f(-|h) and L({, [) as in (1. 1) and (1.2), and put I, (k) = E{L(f{, f)}
Then [,(h) = V + B, where

V= [ i(x)Elog(Ef (x1k)/f (xih))] d,
B=[" f(x)log{/(x)/Ef (x|h)) ds

are variance and bias components, respectively, and are nonnegative. Analogues
of V and B in the theory of squared-error loss are typically of orders (nh)~! and
h*, respectively, for a wide variety of positive K ’s and twice-differentiable f ’s.
But in the case of Kullback-Leibler loss, orders of magnitude depend crucially
on tail properties of K and f.

Usually, V can be decomposed into three parts: a “main-effect” part arising
from “most” of the distribution and two other parts deriving from the extreme
upper tail and extreme lower tail of the distribution, respectively. The first part
can be significantly affected by tail properties of the underlying distribution, but
not to the same extent as the other two. Only the two “tail-effect” terms in V
are strongly influenced by properties of the tails of the kernel. The bias
component B is generally simpler, having either one or two significant parts.

For example, consider a density f whose support equals (0, @), where 0 < a <
oo, and which is continuous and nonzero on (0, @) and such that f(x) ~ c,x*
and f(a — x) ~ c,x* as x |0, where ¢;,¢, > 0 and a;, @, > 0. Suppose K is
given by (1.3) and 4 is chosen so that A — 0 and nkh — o as n — oo. Then the
main-effect term in V is of order (nh)~!, while the two tail-effect terms are of
orders n—l—x/(a1+l)h—n and n—l—x/(a2+l)h—n'

Overall loss V + B can contain up to five terms, any one of which may
dominate all the others. The aim is to select A& so as to minimise the total of
these contributions.

1.4. Influence of tail behaviour on likelihood cross-validation. The extent to
which likelihood cross-validation minimises expected Kullback-Leibler loss is
intimately bound up with the tail-effect terms in V. Those terms are due
essentially to a small number of extreme order statistics from the sample. Since
that number is so small, no “law of large numbers” applies. This means that if
the tail-effect terms play a role in determining minimum Kullback-Leibler loss,
then likelihood cross-validation does not lead to asymptotic minimisation of
Kullback-Leibler loss. However, if those terms are not dominant (which can be
achieved by correct choice of kernel, as we point out in the next subsection),
then likelihood cross-validation does asymptotically minimise expected
Kullback-Leibler loss. These comments apply no matter whether performance is
measured in terms of expected Kullback-Leibler loss E{L( f, f )} or in terms of
“raw” Kullback—Leibler loss L(f, ). Furthermore, if the tail-effect terms are
dominant, then minimisation of expected loss is not asymptotically equivalent to
minimisation of raw loss.
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1.5. Conclusions. A major conclusion to be drawn from our work is the
extraordinary influence which tail properties of f and K have on Kullback-
Leibler loss and likelihood cross—validation. The theory of squared-error loss
has no parallel for this phenomenon. From a practical point of view, it is
important that K be chosen so that its tails are sufficiently thick for tail-effect
terms in V to be negligible. As a general rule, “the thicker the tails of the
underlying density, the thicker the tails required of the kernel.” Tails of the
standard normal kernel are too thin for most purposes and even the double
exponential kernel is not always suitable. A practical alternative is the kernel
K (z) = const. exp[ — 3{log(l + |z])}*], — o < z < oo, whose tails decrease more
slowly than exp(—|z|*) for any k > 0. This kernel renders negligible the tail-effect
terms in all cases treated in this paper. Examples illustrating these points and
also the kernel K will be discussed in Sections 2.3 and 3.1.

Another conclusion is that the window 2 which minimises Kullback-Leibler
loss can be quite inappropriate from a goodness-of-fit point of view. For example,
consider estimating the Cauchy density f(x) = 771 + x%)~! and suppose we
use the kernel K. Then expected Kullback-Leibler loss is

1(h) = Cy(nk)™"? + Ch* + o{(nh)™/* + h*)

as n - o0, h — 0 and nh — oo, where C, and C, are positive constants. (See
Sections 3.2 and 3.3.) This formula is mlmnnsed by taking h ~ const n~ /9, By
way of comparison, the window A which minimises L? distance between [ and f
is of order n~'/® and this is much smaller than n~1/°. Therefore, minimising
Kullback-Leibler loss leads us to smooth considerably more than is “optimal” in
goodness-of-fit terms.

The basic conditions n - 0, h —» 0 and nh — oo, which are necessary and
sufficient for pointwise and L? consistency of f, are not sufficient for expected
Kullback-Leibler loss to converge to zero. An example illustrating this point will
be given in Remark 2.4.

For an appropriate choice of kernel (e.g., for K ), likelihood cross-validation
does deliver a window which asympbotically minimises Kullback-Leibler loss. In
particular, h, ~ const n~'/? is “optimal” in a Kullback-Leibler sense for the
Cauchy dlstnbutlon and the window h0 chosen by likelihood cross-validation
satisfies A,/h, — 1 in probability. (See Section 3.4.)

1.6. Related work. Numerical examples concerning likelihood cross-valida-
tion have been described in [3], [4], [10] and [27]. Inconsistency, usually with
compactly supported kernels, has been reported in [10] and [27]. On the other
hand, Chow, Geman and Wu [7] have shown that likelihood cross-validation
produces consistent estimates when f and K are both compactly supported. We
argue elsewhere [18] that despite consistency, the size of loss is unduly large in
this circumstance. The present paper appears to be the first to give a general
account of Kullback-Leibler loss and likelihood cross-validation which goes
beyond the issue of consistency. We are not specifically concerned with con-
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sistency, although sufficient conditions for consistency follow directly from our
results.

Various versions of squared-error cross-validation have been treated in [3], [4],
[16], [17], [19], [20], [24], [26] and [28]. Kullback-Leibler loss and likelihood
cross-validation in the discrete case have been considered by several authors ([2],
[5], [14], [32]), but no important parallels appear to exist with the continuous
case which is the subject of the present paper.

Section 2 will state and prove our main theorems for densities with compact
support, and Section 3 will present similar results for densities having regularly
varying tails.

2. Densities with compact support. As we indicated in Section 1, the
large-sample properties of Kullback-Leibler loss and likelihood cross-validation
are rather complex. In this section we shall attempt to give a relatively detailed
account in the case of compactly supported densities, so as to clearly demon-
strate the impact of the “tail-effect” terms mentioned in Section 1.3.

Recall that expected Kullback-Leibler loss /,(h) = E{L(f, f)} may be de-
composed as /,(h) = V + B, where V and B are the variance and bias compo-
nents, respectively, and are defined in (1.5). It is convenient to treat these terms
separately. That we shall do in Sections 2.1 and 2.2, combining them in Section
2.3. Likelihood cross-validation will be analysed in Section 2.4. Section 2.5 will
examine raw Kullback-Leibler loss and proofs will be given in Section 2.6.

Throughout the remainder of this paper the symbols C, C,, C,, C,,... will
denote generic positive constants, different at different appearances.

2.1. Variance component V. Assume the following conditions on f:

f is bounded away from zero and infinity on (e, @ — ¢) for

(2.1) each € > 0, continuous almost everywhere, vanishes outside

’ [0, a] and satisfies f(x) ~ c,x® and f(a — x) ~ c,x* as x |0,
where ¢;, ¢, > 0 and a;, a, > 0.

Suppose the kernel K is bounded, integrates to unity and satisfies either

(2.2) K(z) = Ajexp(—A,|2|*), -0 <2z< o,
or
(2.3) K(z) > Asexp(—A,|2)), -0 <2z < 00,

for positive constants A;, A, and «. In the case of (2.2) we may as well assume
k > 1, for otherwise the condition is subsumed by (2.3). By convention we shall
take k = 1 if K satisfies (2.3).

Next we define the coefficients of the tail-effect terms in an expansion of V.
Given ¢ > 0 and « > 0, let g = g(x, y) denote the solution of the equation

+g
(2.4) c/y udu =x
max(0, y—g)
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for x, y > 0. Given A}, ¢, a and «, define
0 [c o] X

(2.5) D=D(A,c,a,k) =Ac[ [“g(x, y)"e "y dudy
0 Yo .

if k>1+a " and D=0 if kK <1+ a"'. The left-hand side of (2.4) is a
continuous and strictly increasing function of g, increasing from zero to infinity
as g increases from zero to infinity, and so g(x, y) is well-defined. It may be
shown that

g(x, y) < C{xV*D A (xy~%)}.

Substituting this estimate into (2.5) we deduce that D is finite and positive for
k>1+a L

If (2.1) and either (2.2) or (2.3) hold, set D,= D(A,,c;, a;, k). Our first
theorem describes asymptotic properties of V.

THEOREM 2.1. Assume (2.1) and either (2.2) or (2.3) and that h = h(n) - 0,
nh — oo and (nh)~'(log n)* — 0 in the special case k =1+ a7! (i = 1 or 2).
Then as n > oo,

o 2
V=(nh) o[ K¥2)dz+ ¥ Dn 't/ Do
-® i=1

(2.6)

2
+o{(nh)_1 + Y n'l"‘/(""“)h"‘}.

i=1

REMARK 2.1. To determine when the tail-effect terms may be ignored, form
the ratio

n=1= /@A DRk /(pp) T = (nh(ai+l)(l—x_l))_K/(“i+l)'
Therefore, if (a; + 1(1 — k7') <1 or, equivalently, if x <1 + a; !, then the
condition nh — oo dictates that n=!~*/(«*Dp=* /(nh)~1 - (. In particular, if
k <1+ a;", then (2.6) holds regardless of the value of D, This observation
motivated our definition D(A,, ¢, a, k) = 0 in the case k <1 + a~ .
REMARK 2.2. In view of Remark 2.1, if
(2.7) k <1+ min(a;}, a;?),
then the tail-effect terms may be ignored and
(2.8) V= (nh) '3a " K*(2)dz+o{(nh)™"}.
— 00

This expansion has an analogue in the case of squared-error loss, where the
variance component is given by

V= /:E{f‘(xm) ~ Ef (x|h))” dx
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and satisfies
V*= (nh)‘lf_oo K%(z) dz + o{(nh) ).

REMARK 2.3. It is not difficult to generalise this result. In particular, if f
satisfies (2.1) and if the kernel K is bounded, integrates to unity and satisfies

K(z) = Agexp(—A4,2"), -0 <z<oo,
for A;, A, > 0 and some x with property (2.7), then V admits expansion (2.8).

REMARK 2.4. A necessary and sufficient condition for the right-hand side of
(2.6) to converge to zero as n — oo and h — 0 is nh? — oo, where

A= max[l, {"_1 + (o + 1)_1}_1’ {"_1 + (ay + 1)_1}_1].

For example, if we take k = 2 (corresponding to the standard normal kernel) and
a, = a, = 5, then we require nh*? — oo in order to achieve mean consistency
with respect to Kullback—Leibler loss. Mean consistency with respect to
squared-error loss requires only nh — oo.

2.2. Bias component B. We shall describe the bias component under the
assumption that f has two derivatives on (0, a@). The reader concerned with
“weakest possible” assumptions will notice that our regularity conditions can be
considerably weakened if max(a,, a,) < 3, since there the bias component is of
larger order than A* and so the full force of the second derivative condition is
not required. However, refinements such as this relegate against the economies in
complexity and length which we are trying to achieve.

Assume f satisfies the following condition:

f is bounded away from zero on (e, @ — ¢) for each & > 0;

f " exists and is almost everywhere continuous on (0, a);

f(x) ~ e;x™ and f(a — x) ~ cyx* as x |0, where ¢;,c, > 0
and a;, a, > 0;

f " satisfies

. Cx®~2 ifa,#0orl,
(2.9) |f (x)ls{c’ ifa1=00r]_’

Cx*"2, ifa,#0orl,

” J— <
|77(a x)l_{C, - ifay,=0orl,
f7(x) ~ (o, — 1)x*~2 asx |0if o = 3,

f(a—x)~ coa(a, — 1)x2"2 asx |0if a, = 3.

for0 < x < la;

REMARK 2.5. The bounds on |f”| in this assumption represent “second
derivative versions” of bounds on f, except for the cases a; = 0 or 1. These cases
are qualitatively different from the others, since they usually indicate expansions
such as f(x) = C, + C;x + Cyx% + - - as x | 0. Hence the condition | f ”(x)| < C
for a; = O or 1.
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Assume the kernel K is bounded, nonnegative, integrates to unity and
satisfies
0 0
(2.10) f 2™ 29K (2) dz < 0 and f zK(2) dz = 0.
— — o0
Next we define the coefficients appearing in expansions of the bias component.
Let b, and b, be the nonnegative functions given by
X
bix)= [ (1-x72)"K(2)dz and by(x) = [*(1+x7'2)"K(2) dz,
— 0 -x

both for x > 0. Define the positive constants
E, = E\(a;¢c,)

= cl[(al £ [0 (—2)" K () e + [Cx{b®) — 1~ logby(x) dx]

for0 < a, <3,
E, = Ey(ay, c,)
=G, [(a2 + 1)_1fwz“2+1K(z) dz + fwx"‘z{b2(x) — 1 —log by(x)} dx]
0 0
for 0 < a, < 3, and
0 2
E(3,¢) =9 2K (2) dzf .
It may be proved that if 0 < a; < 3, then by (x) = 1 + O(x~2) as x = + o0, SO
that
foox""|bi(x) —1—logb,(x)|dx < .
0

THEOREM 2.2. Assume conditions (2.9) and (2.10). Then if min(a,, ay) < 3,

2 2
B= Y Eh%* + o( )y h""“);
i=1

if a; # a, and a; = min(a,, a,) = 3,
B = E;h*log h™' + o(h*log A7 1);

i=1

if a; = a, =3,
B = (E, + E,)h*logh™' + o( h*log h™1);
and if min(a,, ay) > 3,

@11) B=n[” 2K () de) [((17) () e + o),

all as h - .

REMARK 2.6. Expansion (2.11) has an analogue in the case of squared-error
loss, where the bias component is given by

B*= f_woo{Ef(x|h) — f(x))" dx.
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Assuming conditions (2.9) and (2.10) and that min(«a,, @,) > 2 (rather than > 3),
0 2 a
B* = %h“{f 22K (z) dz} [*{F7(2))? dx + o(h).
— o0 0 .

2.3. Expected loss I, (h) = V + B. The formula for V involves three terms
and that for B has up to two terms. Therefore, the formula for expected loss
1,(h) contains up to five terms, of which those comprising V are decreasing in A
and those comprising B are increasing in . Minimising /(&) involves balancing
these components against one another. The overall balance may be achieved in
various ways, depending on relative values of a;, a, and k. We mention here only
one case and stress that the order of magnitude of Kullback-Leibler loss can be
minimised by judicious choice of the kernel K.

Our example shows that the standard normal kernel can be inappropriate
even for compactly supported densities. We pointed out in Subsection 1.2 that it
can lead to inconsistency with thick-tailed densities. Take k = 2 in definition
(2.2) and assume f satisfies (2.9) with 3 < min(a,, a;) < a; = max(a;, @,) > 9.
Then the bias component B is asymptotic to a constant multiple of A* (see
Section 2.2), while the variance component V is asymptotic C,(nh)™'+
C,n~1~2/(%*Dp~2 (see Section 2.1). Expected loss, /,(h) = V + B, is minimised
by taking h ~ const.n™(%*3/&%*D  which decreases more slowly than n~1/%
and leads to a minimum loss whose order of magnitude is greater than n~*/5,
Had we chosen k < 1 (e.g., the double exponential kernel), then the optimal A
would have been of order n=1/% and the minimum loss of order n~*/5, which
incidentally are the same orders as in the case of squared-error loss.

Recall from Remark 2.1 that if k < 1, then tail-effect terms make a negligible
contribution to V, regardless of the values of a; and a,.

2.4. Likelihood cross-validation. In the case of squared-error loss, the
windows which minimise expected loss and raw loss, and which maximise the
cross-validatory criterion, are asymptotically equivalent to one another. But in
the case of Kullback-Leibler loss, no one of these windows is asymptotically
equivalent to any one of the other two, in general, and so neither expected loss
nor raw loss provides a natural vantage point for viewing cross-validation. In this
subsection we shall examine likelihood cross-validation in the context of expected
loss, which is in keeping with our work in Sections 2.1-2.3. The case of raw loss
will be treated in Section 2.5.

Notice that the window fzo which maximises CV(h) does not depend on
whether we normalise by n™! or by (n — 1) ™! in our definition of f;. (In contrast,
choice of normalisation can have a slight effect in the case of squared-error
cross-validation.) We choose to normalise by (n — 1)}, and so

(2.12) ~ E(CV(R)} + [ f(x)log f(x) dx = 1,_,(h),

where [, _,(h) is expected Kullback-Leibler loss for a sample of size n — 1.
Therefore, in maximising CV we are in effect minimising an unbiased estimate of
expected Kullback-Leibler loss.
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Formula (2.12) suggests that the extent to which the windows which maximise
CV also minimise /, can be explored by studying the stochastic process

CV(k) — E{CV(h)}, h>D0.

We shall confine attention to A-values in the range n='*¢ < h < n—* for arbi-
trarily small &> 0. This restriction is slightly stronger than the minimum
required for pointwise consistency. However, Theorems 2.1 and 2.2 show that the
window h, which minimises /,(4) is asymptotic to const. n~#(log n)” for some
0 < B <1, and so restriction to n™'"* < h < n"¢ for ¢ < min(B,1 — B) seems
appropriate.

Let CV *(h) denote the criterion analogous to CV() in the case of squared-
error loss (see, for example, [3], [4] and [26]). Define /*(h) to equal mean
integrated squared error in the sample of size n. It is known that in quite general
circumstances,

(2.13) CV*(h) = E{CV*(h)} = @*(n) + o,{L¥(h))}

uniformly in A, where @*(n) denotes a random variable not depending on h.
(See [16], [17] and [28].) This result, together with the observation that

—B(CV*(R)) + [ [(x)dx =1 () = L3(h) + o{L3(h))

[the squared-error analogue of (2.12)], indicates that the window which maxi-
mises CV'* is asymptotically equivalent to the window which minimises 7*. A
key result in the case of likelihood cross-validation is that the analogue of (2.13)
fails to hold. The process CV(h) — E{CV(h)} can contain terms which depend
on h and which are not negligible relative to [,(h). Therefore, the windows
which maximise CV and minimise [, are not always asymptotic to one another.

The offending terms in an expansion CV — E(CV) are connected with the
tail-effect terms in an expansion of the variance component of V (see Section
2.1). If the kernel K is chosen so that the tail-effect terms are negligible in
comparison to the main-effect term in V, then it will be true that

(2.14) CV(h) — E{CV(h)} = Q(n) + o,{I,(k)}

uniformly in h, where @(n) does not depend on A. In this case, likelihood
cross-validation will produce a window which is asymptotic to that which
minimises /,,.

To describe the terms in CV which can cause difficulties, we introduce the
random variables

T;= min |X;,-X|, 1<i<n,
l<j<n, j#i

W n*/D NTA(X, < ta) - E{TA(X,; < %a)}],  ifx>1+q],
= i=1

nl .
0, ifk<1l+al,
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and

n*/@a*D Y TS X; > La) — E{TH(X; > a)}],  ifx>1+a5},

i=1

0, ifxk<l+a;l.

It may be proved that if xk > 1 + a; ! and if f satisfies (2.1), then
E{TH(X, < la)} = O(n~17*/(u*D)

as n — oo, so that W, = O,(1). Similarly, W,, = O,(1). Note particularly that
neither W, nor W,, depends on h. The remainder term @(n) appearing in
expansions such as (2.14) is given by

Q(n) = n" ¥ {log /(X,) — Elog f(X))).

Recall from Sections 2.1 and 2.2 that the variance and bias components of
expected loss contain terms of orders (nh)~!, n~17*/(atDp=x p=l-r/(ax+Dp=k
h®*! and h%*!, among others. Therefore, the quantity

2
J(n, k) = (nh)"' + Y (n~ 1"/t Dp=* 4 pa+1) 4 B(h)
i=1
is of the same order of magnitude as expected Kullback-Leibler loss. By using
this expansion to describe expected loss, we avoid having to impose unnecessary
smoothness assumptions on the density f; note the remarks in the first para-
graph of Section 2.2.
Assume the following condition on f:

f vanishes outside [0, a ], and satisfies C,x* < f(x) < C,x* and
(2.15) Cix2<f(a—x)<Cux* for0<x < ja,whereC,,C, >0
and a;, a, > 0.
Assume the following condition on K:

K integrates to unity, and either

K(z) = Aexp(—A,lz*), —o0 <z<oo,
for constants A;, A, > 0 and k > 1, or
K(z) = Ayexp(—Ay2)), —o00 <z <o,

(2.16) for constants A,, A, > 0. In the latter case, assume in

addition that K is of bounded variation and Holder continu-
ous on (— 00, 00) and satisfies

7 lept et (K (2) dz +]dK(2) |} < oo.
— 00
We again adopt the convention that x =1 if K(z2) > Asexp(—A4,|z]), —w <

z < oo. Hélder continuity of K means that for some C, s > 0, |K(u) — K(v)| <
Clu — v|® for all —o0 < u,v < 0.
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THEOREM 2.3. Assume (2.15) and (2.16). Then

(217) CV(R) - E(CV(R)) = Q(n) = A, T 1~ "/« R W,, + R(n, h),

i=1
where for any 0 < e <1,
sup  J(n,h) |R(n,h)| -0
nl**<h<n-e

in probability as n - oo.

REMARK 2.7. If ¥ <1+ min(a; ', a;') then W,, = W,, = 0 and so (2.17)
may be written in the form

CV(h) — E{CV(h)} = Q(n) + o,{J(n, h)},

which is the analogue of (2.13) in the case of Kullback-Leibler loss. But in
general the “tail-effect” terms cannot be ignored.

Next we shall show that when k > 1 + a; ', W,; has a proper nondegenerate
limit. We begin by defining this limit. Let Z,, Z,,..., denote independent
negative-exponential random variables. Given d > 0 and « > 0, set

Vv, —(a+1)“{§(zj—1)j—1— ii)lj-wy}], i>1,

13

1= Va(d, @) = dexp
J=1 J=1

where y is Euler’s constant. Then V,,, ; > V;; and so
Ve = Vi2(d’ a, K) = (Vi+1,1 - Vil)n’ ix1,
is well defined. Set Vj, = + 00 and
[oo]
V= V(d’ a, K) = E min(Vi2’ Vi—1,2)'
i=1
It may be shown that E(V,,) < Ci~*/**D for i > 1 and so LPE(V,) < oo if

k > 1 + o~ . This proves that V < co almost surely and E(V) < oo for k > 1 +
a~ 1. Define

W(d,a,k) = V(d,a,k) — E{V(d,a,k)}.
THEOREM 2.4. Assume condition (2.1). If k > 1 + a; ', then
(2.18) W, - W[{c[l(ai‘+ 1)}1/(u‘+1), a;, n]
in distribution as n > co. If k> 1+ max(a;',a;"), then W,, and W,, are

asymptotically independent.

REMARK 2.8. Let h, and A, be the values of A which minimise l,(h) and
maximise CV(h), respectively, chosen from within the range n='** < h < n~*
for very small & > 0. Combining Theorems 2.1-2.4 and noting the identity (2.12),
we see that ,/h, — 1 in probability if and only if the tail-effect terms make an
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asymptotically negligible contribution to /,(h) when h = h,. If the tail-effect
terms make a significant contribution, then A /h has a proper, nondegenerate
limiting distribution with no atom at the origin. In this sense, likelihood
cross-validation is guaranteed to produce a window h of the same order of
magnitude as A, but not necessarily a window asymptotlc to A,

REMARK 2.9. If the kernel K satisfies
(2.19) K(z) = Aexp(—A4,|2)), -0 <z < 00;

then the tail-effect terms are guaranteed to be asymptotically negligible (see
Section 2.1) and in that case, A,/h, = 1 in probability. It may be shown that
this result continues to hold if (2.19) is weakened to

K(z) > Aexp(—A,|2]*), - <z<oo,

where k < 1 + min(a; %, a; !). [The conditions on K in the last sentence of (2.16)
should also be assumed.]

2.5. Minimisation of raw Kullback-Leibler loss. Raw loss is defined by
(2.20) L(k)= [ f(x)og{f(x)/f (x|h)} dx

Let A, denote the value of 2 which minimises L,(h), restricted to the interval
n~'*¢ < h < n~¢ for very small ¢ > 0. Then A, h and h are all of the same
order of magnitude and if one of ,/h, h,/h, and ho/h, has a nondegenerate
weak limit, then so do the other two. But if the kernel K is correctly chosen [for
example, if K satisfies (2.19)], then all three ratios converge to unity in probabil-
ity. In this case, L (ky)/l(hy) — 1 and

(2.21) L,(hy)/L,(Ro) > 1
in probability, so that h o achieves asymptotic minimisation of raw
Kullback-Leibler loss.

We shall outline the main points of this theory. Define

Aln”"/(“l“)faﬂ{ min |X; — x|"}f(x) de, ifx>1+a?,

N = 1<i<n
D, 0

0, ifk<1+a!

and

~

a
A nttr/(eetD { m1n |X — x| }f(x) de, ifx>1+a;?,
D, a/2

1l

0, ifk<1l+a;l,

and recall the definitions of D, and D, given in Section 2.1.
THEOREM 2.5. Assume conditions (2.15) and (2.16). Then

2
(222) L,(h)-1(h)= Y n "%+ Vp=%(D, - D,) + Ry(n, h),

i=1
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where for any 0 < ¢ < 3,

sup  J(n, h)_1|R2(n, h)|-0

n~l*e<h<n~®

in probability as n - .

REMARK 2.10. Result (2.21) in the case of a kernel satisfying (2.19) follows
from Theorems 2.1-2.3 and 2.5 and the fact that D, = O,(1).

REMARK 2.11. The random variable D, — D, in (2.22) is related to the term
A,W,; in the expansion (2.17). In fact, a version of Theorem 2.4 may be proved
for D, — D;, declaring that under condition (2.1) and for x > 1 + oY, D, - D,
has a proper nondegenerate limit distribution having no atom at the origin. The
limit is different from that in Theorem 2.4. Therefore, result (2.21) will fail to
hold if the tail-effect terms make a significant contribution to (k).

2.6. Proofs. The proofs are tedious rather than difficult and so are given
only in outline.

Proor oF THEOREM 2.1. We begin with two lemmas. Let T = T(x) =
min, _; _,|x — X, r=1(x)=n Y@ if 0 <x < n V@D 7= (nxa)7Lif
x>n" V@Y and U = U(x) = {f(x|h) — Ef(x|h)}/Ef(x|h).

LEmMA 2.6. If f satisfies (2.1), then for any € € (0, a) and B > 0, there exists
a positive constant C(e, B) such that E(T?) < C(e, B)78 for 0 <x < a — «.

Proor. The distribution function G of |x — X|is given by
G(y)=Plx-y<X<x+y) =yf_11f(x + &) dt,
from which it follows that G(y) > C,y(x V y)* for small x, y. Therefore,
G Y(u) <sup{y: Ciy(x Vv y)™ < u} < Cy(ux™ A u/(@*D)
whence if 0 < x < 1,

E(T?) = n/ol{G‘l(u)}B(l —u)" du

o +1 _ 1 -
< an{x""lB TUuP1 - uw)"  du + f uP/ @D — )" 1du}.
0 xl!1+

Noting that (1 — )" ' <e-e "™ for 0 <u < 1 and changing the variable to
v = nu, we get

E(T®) < nCs(x‘“lﬁn-B-l/’”‘"‘”vﬁe—vdv + n—B/(a1+1)—1/°° uB/(ﬂ1+l)e—vdv).
0

nxa‘+1

If nx**! > 1, we bound this by

nC4{x_"‘IBn_B_1 + n—ﬁ/(al+1)—1(nxa1+1)3/(a1+1)+lexp(_mal+1)} < C51-B,
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while if nx**! < 1, we bound it by
nC‘,{::c“"'”n"g‘l(nx"‘l“)‘ﬁ+1 + n /D=1 < 9C, P,

This gives the desired result. (The case x > 1 is trivial.) O

LEMMA 2.7. If f satisfies (2.1), then for any € € (0, a) there exists a positive
constant C(¢) such that P(U < — }) < exp{—C(e)nhx™} for 0 <x <a —«.

ProOF. First we show that with W = f(x|A) and

o® = var[K{(x - X)/h}/EK{(x — X)/h}]
we have
(2.23) P(W/EW < }) < exp{—(3n/4)(602 + 1)7'}.
Notice that
W/EW=1-n""¥ [1 - u'K{(x - X))/R}],

i=1
where p; = E[K H{(x — X)/h}]. Result (2.23) now follows directly from the
one-sided version of Bernstein’s inequality (Hoeffding [21], page 17, with b = 1,
t=1and o® = p; %, - ).
A little algebra shows that g, > C,A(x + hA)* and p, < Coh(x + h)%, so that
0% < C3h~x 1. Lemma 2.7 follows from this estimate and (2.23). O

Decompose V as
V=V,+V,+V,
- (fo [T )f(x)E[1og{Ef(x|h)/f(x|h)}]dx.
To handle V,, note that
[log(1 + u) — u + Ju?| < C{|ul® — log(1 + u)I(u < —3)}, u> -1,

(2.24)

so that

D=V, 3 [ var(v)

€

<[ TEGU) + E{fog + V)V < ~)}] ds.
From this inequality, the bounds
E(UP) < (EU*)"* = 0(nh)~*"},
—log(1+ U) < A(T/h)" + log(nh) + C  [see (1.4)],
E{T"I(U < -1)} < (ET*)"*P(U < - 1)
and Lemmas 2.6 and 2.7, we may deduce that D = o{(rnh)~'}. Furthermore,
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nh var(U) — ffK? at continuity points of f and is uniformly bounded. There-
fore,

(2.25) V, = (nh) 'i(a - 2e)j_°°wK2(z) +o{(nk) ™).

The term V, is comparatively easy to treat if we assume k < 1 + a; !, since
that entails n=!"*/(*Dp~* = o{(nh)~'}. Therefore, we assume k > 1 + a; .
Noting that [log(1 + ) — u — log(1 + w)I(u < — })| < Cu?, u> —1, we find
that

(2.26) < Ce(nh)™!

v, + E{ [[t1og( f/Ef )I(1/5f < §) a)

Using the bounds A(T/h)* — Clogn < —log(f/Ef) < A(T/h)" + c log(nh)
[see (1.4)], Lemmas 2.6 and 2.7 and the fact that x> 1+ a;' implies

n®(nh)~1~ /%) = o{(nh)~! + n~1~*/(*Dp~*} for some & > 0, we obtain from
(2.26),

< Ce(nh) ™" + o{(nh) ™" + n17*/a+Dp =~}

2.27
(227) +Ch- f “r<p( f/Ef > 1)" dx.

To treat the last-written integral, observe that for 0 < x < ¢,
n
P(f/Ef> 1) < P[ Y exp{ -4,|(x - X,)/R[*} > Cn]
i=1
< nP{|x — X,| < Cyh(logn)""*)

= C3[nh(log n)l/"x"" + n{h(log n)l/x}“ﬁl].

Using this bound it may be shown that the right-hand side of (2.27) equals
Ce(nh)~! + o{(nh)™' + n~ 1~ */(a*Dp =%} A little analysis shows that

xE(T%)dx = [y dy [“g(x, y)"e
for 0 < r < s < oo. This result and judicious use of Lemma 2.6 give us

lim n”"/(“l“leOf(x)E(T") dx = D,

n—oo

lim pl+*/(a+D [sn7 /"D

n— o rn—V(a+D

and so by (2.27),
(2.28) |V, — n~17 /@Dy | < Cs(nh) + o{(nh)_1 + n'l"‘/(“l“)h"‘}.
Theorem 2.1 follows from (2.24), (2.25), (2.28) and an analogue of (2.28) for V,. O

PrROOF OF THEOREM 2.2. Write
B+ [(Ef-f)dx=B,+B,+B,

(2.29) .
= ([ [ [0 ) r0u1/Bf ) + BT - f s
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and notice that if F is the distribution function derived from f,
- [[(B =1 ax = [ K(2)[F(-he) + (1~ Fa - h2))] &z
(2.30) ~e(a + 1) R [0 (—2) K (2) de
+cy(ay + 1)_1h“2+1f°°z“2+1K(z) dz.
0
Taylor expansion shows that B, admits the formula (2.11), but with [2¢
replacing [¢. The terms in A%*! in B derive from B, B; and (2.30). We shall
prove only that if a; < 3, then B, ~ E;h**!, where
E/ = clj(; x{by(x) — 1 —log by(x)} dx.
Let Ii(x) = E(f(hx|h)}, Jy(x) = f(hx), Jy(x) = ¢,(hx)™ and
L(x) = clh“'fx (x — 2)"K(2) d=.
Define R = R(x) by I,/J, = (I,/J,)(1 + R).If h > 0, r = r(h) -  and hr —

0, then sup, _, _,|R(x)| = 0. Given r; — oo such that hr, - 0, choose r < r,
such that r — co and r**'sup, _, _,|R(x)| - 0. For this r,

/()”’{f log( f/Ef ) + Ef - f} dx
- —h fo’f(hx>[10g{zl<x>/efl(x>} — (I(x) = Jy(x)}(x) 7 o

~ —clfowx"‘l[log by(x) — {by(x) — 1}] dx.
For any r — oo such that Ar - 0 and ¢ > 0,
[ 108(1/EF ) + Bf = f | ds = o).
Combining these two estimates we conclude that B, ~ E{h**!. O
PRrOOF OF THEOREM 2.3. A key trick is the observation that several terms

are more easily handled if p = E(f ) is replaced by ¢ = p + (nh) L. Therefore,
we write CV — E(CV) = Q(n) + S, + S,, where

S =01 Y (logn(X,) - Eloga(X,)},

i=1
S,=n"" Z {108 pi(Xi) — E log Pi(Xi)};
i=1

p=¢&/f and p, =/t An argument based on subsequences shows that it is
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sufficient to prove that for each A € (0,1) and sufficiently small § = §(A) > 0,
(2.31) sup J(n, ) 7Sy (h)| -0,

n A t<h<nM
) .
(2.32) sup  J(n, k) [Sy(h) + A Y nT i@t DpmE L S 0.
n A8 <h<nA i=1

The remainder of the proof of Theorem 2.3 consists of derivations of (2.31)
and (2.32).

Proof of (2.31). First we bound the moments of S,(4).

LEMMA 2.8. Under the prescribed conditions on f and K and for any integer
t>1ande €< (0,1),

E{S,(h)*} < C(t)(h* + nh?*)d(n, k)™

uniformly in n='*¢ < h < n™¢, where C(t) does not depend on n or h.

Proor. Let y=logp(X|h)— E{logp(X|h)}. By Rosenthal’s inequality
(Burkholder [6, page 40])

(2.33) E{S,(h)*} < Cn~*{nE(Y?) + (nvarY)'}.
Since C, < p(x|h) < C,/f(x), then E(Y2*) < C,E{log p(X|h)}* < C, < oo.
Also, var(Y) < E{log p(X|h))? < 2(I, + I,), where

I, = Elog{p(X|n)/&(X|h)}]%, I, = E[log{ {(X)/n(X|R)}]".

We shall prove in the following text that I, < C(nh)~! and I, < C(h®*! +
he*! + B). It then follows that var(Y) < CJ and so by (2.33),

E{S,(R)"} < C{n 2 + (n7Y)"} < C(nh? + R*)J*,

as had to be shown.

Bound for I,. Put I,; = E((log{n(X|h)/£(X|h)}]*I(X < 1a)). Notice that
Cy(x.+ h)™ < p(x|h) < Cy(x + h)™ for 0 <x < ta. If nh®*1>1, then 1<
£(x|h)/m(x|h) <1+ Cy(nh) {(nh)™' + (x + h)®} ! for 0 <x < la, whence
it follows that I; < Cy(nh)~'. If nh®*! <1, then 1 < é(x|h)/p(x|h) <1 +
Cy{nh(x + h)®} ! for 0 < x < la and so

I, < Ch%*! fo “/*"1og1 + Cy{nho (1 + y)“‘}_ll)2 y® dy

1/

< C5(logn)2hal+1./:nha1+l)— yal dy

+Csho? f o/ (nhev*1ye) ™ y= dy

(nha]+l)—l/a1

< Cy(nh)™".
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Therefore, I,, < C(nh)~!, no matter what the value of nh“*'. An identical
argument supplies the same bound to I,, = I, — I, and so I, < C(nh)™".

Bound for I,. Write
h a—h N
L=(f"+ [ [7 )los(1(x)/m(xth)) "1 (x) d = I + Iy + D,
0 h a—h
Since C; < p(x|h)/f(x) < Cy(x + h)*/x% and f(x) < Cy3x* for 0 < x < h, then
I,; < Ch* ™!, Likewise, I,3; < Ch**'. Since C, < u(x|h)/f(x) < Cy for h < x <
a — h, then
a—h —
Iy < C[" (%) = n(xlh)}*f(x) " .

The inequality u — log(l + u) > C(n)u?, valid for any 0 < <1 and all
-1+ 1 <u<n entails

[T rog(i/m) + (n= 1)) e
= [T = 1)/1 = og(1 + (= 1)/1)] d
> " (w = 1)(F)
Therefore,
B=f0af log(f/u)dxzle}l“‘h(ﬂ_f)2(f)—1+/O“(f_ﬂ)dx
([ [ ) (osti/m)] + w4 1) d

2 CzI22 - C3(hal+1 + ha2+1).
Combining these bounds we deduce that I, < C(A**! + A%*' + B). O
Now we prove (2.31). Let 0 <8 < min(A,1 —A) and given p > 0, define
H#= H#(p) to be the set of all pairs (h,, h,) with n 2% < h, < n™**% (i = 1,2)
and |k, — hy| < n7P. If |K(u) — K(v)| < CyJlu — v|® (s > 0), then
n(xih) = w(alha)| =| [ (AR (2/h) = by K (a/m)}f(x = 2) ds

<|hyhg = Leup f + Cihg A = AP 12f(x - 2) dz.

Therefore, if p is sufficiently large, |u(x|h,)u(x|hy)~* — 1| < Cn~! uniformly in
0 < x < a and (hy, h,) € . It follows that for large p, |S,(h,) — Sy(hy)| < Cn~!
uniformly in samples X,,..., X, and pairs (h,, hy) € 5#. Therefore, if

hy,..., b, represent lattice points spaced n~? apart and satisfying n A% =
hy<hy< -+ <h,<n *’<h,,,, then
S=  sup  J(n,h)YS(R)| < sup J(n, k) Si(k)| + G

n A8 <h<n M 1<i<m
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Consequently, by Markov’s inequality,
P(S>n+Cn ™) <n™m sup J(n, h;,) "E{S,(h;)*"}

l<i<m

for any 1 > 0 and integer ¢ > 1. Take 7 arbitrary but fixed and use Lemma 2.8
to show that if ¢ is sufficiently large, then the right-hand side converges to zero,
proving (2.31).

Proof of (2.32). Let A>0, &, =(n"Na—nt), % =(0,a)\%,

i {fi(Xilh) - g(XJh)}/‘E(XJh): Sy=nt Z (4; — EA)),

i=1

>
il

s

-1
Se,=n

[E(R1X,)I(X, € &) - E{8(X, € #,)}],

1

l

n—l

s

Sp3 {A%_ E(Azilxi)}I(Xieyl)’

i=1

S=n"1Y [108(1 + Ai)I(Ai < _%) - E{IOg(l + Ai)I(Ai < _%)}]
i=1
1S4l < Cn=t X {182 + E(18°1X,) (X, € #,) + CE{|A,PI(X, € &)},

i=1
1S5l < C; ' X {42+ E(8YX,) H(X, € %) + CE{AXI(X, €%)}.
i=1

These results, together with the method in [17] based on a lattice argument and
the Kolmés—Major-Tusnady [22] approximation, give after some tedious analy-
sis, for sufficiently small 6,

5
sup J(n:h)*l 2 1S =, 0.

n—X—BShSn—}\+8

i=1

It remains to treat the term S,;. This has two facets, describing behaviour in
the lower and upper tails, respectively. We consider only the lower tail, assume
k > 1+ a; ! and show how to prove that for small & > 0,

sup J(n, h) n7t Y [log(1 + ANI(X, < la, A, < -1

n—)\fsshSnf)\-i-s i=1
—E(log(1 + A)I(X; < a,4, < —1)}]
+n 1T/ DRTRA W | 0.

Using the definition (2.2) of K, deduce that |log(1 + A;) + A(T,/h)*| < Clogn
uniformly in n 2% < A < n=**% Therefore, the desired result follows if for
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some 7 > 0,
n
(2.34) 7 sup RY I(A; < —%) -,0,

n A8 <h<n™M? =1

(2.35) ne/(@+h sup E TA(X; < a,A,> —3) -, 0.
n—)\—SShSn—)\+B i=1

These formulas are established in Lemmas 2.9 and 2.10.

LEMMA 2.9. Under the prescribed conditions on f and K and for sufficiently
small 8 and 7, (2.34) holds.

Proor. Choose § < min(A,1 — A) so small that for some 8, 8, > 0,
(2.36) (a;+1)B;>1—A+8 and oB;<1—-A-8 fori=1,2.
The event A, < — 1 is equivalent to f(X,|k) < I{u(X k) + (nh)~'}. Using
Holder continuity of K, we deduce that for some p > 0 and all large n,
(237) | fxlhy) = filxlho)| +[p(xIhy) = p(xlho)| < 3(nhy) ™

uniformly in 1 < i < n, samples X,,..., X,, —0 <x <o, n *®<h <h, <
n~**%and h, — h, < n"P. Suppose A,,..., h,, ., represent lattice points spaced
n~P apart and satisfying n™* % =h, <h,< -+ <h,<n *%<h,,,. Given
he[n 2% n2+9], let J =J(h) be that index out of 1,..., m which minimises
|h — hyl. Then |h — h;;)| < n7P and so by (2.37), the event A; < — ; implies
f(X |hj(h)) su(X; |hj(h)) Consequently, with 8, and B, as in (2.36),

sup }:I(A <—2)<1max ZI{f(X|h)s2u(X|h)}

n"“sshsn"‘”i 1 <J=< mi 1

< YI(X;<nPorX,>a- n=F2)
(2.38) i=1

+2 ) I{ fi(Xi|hj) =< %N(thj),
i=1j=1

nh<X, <a- n_”?}.

The mean of the first series on the right-hand side equals
-8 o0 .
n " + ) x)dx < Cn no(atDB 4 p—(ag+1)By ,
(fo [, )@ ( )

while the mean of the second series equals

e a—n"Fe A
vy=nk f_,g P{ H(x|k)) < %N(ﬂhj)}f(x) dx
j=1"n"
<Cn Z fli;n‘ﬁzexp["C2nhjmin{xa1’(a _ x)az}] dx,
j=1"n M
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using the argument leading to Lemma 2.7. Since m = O(n”) and each h; > n=A8,
then it follows from (2.36) that y = O(n™") for all k > 0. Combining these
estimates we see that the mean of the left-hand side of (2.38) equals

2

O( Z n1—(a,+1)ﬁ,) _ O( nx—s—m,)

i=1

for some n > 0. Result (2.34) follows from this estimate and Markov’s inequality.
O

LEMMA 2.10. Assume K(z) < Aj,exp(—A,|z|*) for —oo <2z < o0, where
k>1+a; !, and that § <min(A,1 —A) is so small that (a; + DA — 1 —
28(a, + 1)2 > 0. Then (2.35) holds under the prescribed conditions on f.

PRrOOF. Since p(x|h) > C(x + h)™ for 0 <x < {a, then for nh > 1 the
event {X, < ja,A; > — ;) implies
Y K{(X,- X;)/h} > Ci(n— 1)k h* > Cyn~*,
J*i

which in turn implies (| X; — X;|/h)* < C;log n for some j # i. Consequently,
(X;<%a,0,> -4} c {X;< $a} N U  {1X,- X< cn 220},

1<i<n, j#i
from which it follows that the left-hand side of (2.35) is dominated by
nplte/(@*+ DY where

n
U=n'Y TH(1X; - X,| < Cn %%, some j # i; X, < 1a).
i=1

For any 0 < x, < %a, the mean of U is dominated by

/Oxo{E(lex|X1 = x)nP(|x -X|< Cn—A+2a)}1/2f(x) d
+fa/2E(T1"|X1 = x)f(x) dx.

It may be shown after a little algebra that P(|x — X| < Cn™**%) <
CinHa+Dd(p=Axa 4 p=(@+DAy and it follows from Lemma 2.6 that
E(T”|X =x) < C(B)T(x)B (B > 0), where 7(x) is defined just prior to Lemma
2.6. Combining these estimates and taking x, = (C,n! M4« +D%)~V/a we may
prove that E(U) = o(n~17*/(«*D), The lemma now follows via Ma.rkovs
inequality. O

PrROOF OF THEOREM 24. Let X;) < --- < X, denote the order statistics
of the sample X,..., X,,. Rényi’s repr%entatlon ([8], page 21) may be used to
prove that for any ‘fixed m >1, nl/("‘l“)(X(l), s Ximy) = (Vigy -+, Vi) in
distribution, where we take a = a; and d = {c; X(a; + 1)}1/ (1+1) in the defini-
tion of V,;, i > 1. Observe that

n
Z THI(X; < }a) = _Zlnun{(X(i) = X)) (Xien = Xy) }I(X(i) =

a),

N =
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where we define X = — o0 and X(,,,;, = + 00, and that

D =
Q
N——

/@D Y min{( X — Xa-)" (Xgan = X(i>)K}I(X<i).5

i=1

m
- Z min(V,,, Vi—l,z)
i=1
in distribution as n — oo. Techniques used to establish Lemma 2.6 may be
employed to prove that

0
lim limsupn*/(+b " E{(X(i) - X(i—l))KI(X(i) = %a)} =0.
m—=00 p5_5 i=m

Theorem 2.4 follows from these two results. O

The proof of Theorem 2.5 is similar to that of Theorem 2.3 and so will not be
given.

3. Densities with regularly varying tails. In the previous section we
showed how choice of kernel K can profoundly affect properties of
Kullback—Leibler loss and likelihood cross-validation. Selection of K has the
same influence in the case of an f with regularly varying tails. However, rather
than dwell on details we shall summarise the main features in Section 3.1 and
then concentrate on the case where K is chosen to minimise order of magnitude
of Kullback—Leibler loss.

Recall that the variance and bias components, V and B, of Kullback-Leibler
loss were defined in (1.5).

3.1. Properties of Kullback—Leibler loss and likelihood cross-validation. As-
sume the following conditions on f:

f is bounded away from zero and infinity on (—A, A) for each
(3.1) A>0, and f(x) ~c,x” ™ and f(—x) ~ c,x”% as x > +o0,

where ¢,, ¢, > 0 and a;, a, > 1.
Suppose the kernel K satisfies (2.2). The argument in Section 1.2 may be
reworked to show that in the present circumstance, expected Kullback-Leibler
loss [,(h) is finite if and only if x < min(a,, @;) — 1. Assuming the latter
condition, the main-effect term in an expansion of the variance component V is
of order (nh)~1*1/®) 4+ (nh)~1*(/%) and the tail-effect terms are of orders
n- 1t/ (a=Dp=x gnd p~1*+*/(@~Dp=* [To be precise, the order n=!**/(%~"Dp~*
of the ith tail-effect term should be increased by a logarithmic factor in the
special case k = 1 — (1/a;) for i = 1 or 2.] Notice that

nolre/(a—Dp—s — (nh) - 1+(1/a,)( nh— (@ 1))(a.~—a.+ 1)/a,(a,~1)

and so the tail-effect terms are negligible if and only if a;x — a; + 1 < 0 for each
i; that is, if and only if k < 1 — max(a; }, @5 ). This condition excludes both
standard normal and double exponential kernels and is strictly stronger than
k < min(a,, ay) — 1.

More generally, it may be shown that a kernel K satisfying K(z) >
Aexp(—A4,|z|*), — 0 < z < o, for positive constants A, and A, and a positive



1514 P. HALL

constant k < 1 — max(a; !, a; ') will result in a variance component V contain-
ing no significant tail-effect terms. One such kernel is

Ky (z) = {(877e)1/2<1)(1)} —lexp[~—%{log(1 + |z|)}2], —00 <2 < 00,

where ® denotes the standard normal distribution function and {(87e)'/?®(1)} "' =
0.1438. This has the property that for all k > 0, K (z) > C,exp(—|z|*) and
K (2) < C,(1 +|2))™", —o0 <z < o0, where C, and C, depend only on «.

Properties of the bias component B are simpler than those of V. Assuming the
kernel K to be symmetric and the density f to be twice differentiable, the bias
component B is asymptotic to a constant multiple of A%, just as in the case of
squared-error loss.

If tail-effect terms dominate in the formula for V then likelihood cross-valida-
tion does not asymptotically minimise expected Kullback-Leibler loss, and
minimisation of expected loss is not asymptotically equivalent to minimisation of
“raw” loss, as discussed in Sections 2.4 and 2.5 for the case of compactly
supported densities. Both these negative findings are reversed if tail-effect terms
are insignificant in V.

In combination, these properties lend emphasis to the importance of correctly
choosing the kernel function so as to reduce tail-effect terms. Throughout the
remainder of this section we shall treat only those kernels, such as K, defined
previously, for which tail-effect terms in V are negligible. Sections 3.2-3.4 treat
separately the variance component V, the bias component B and likelihood
cross-validation. Proofs are given in Section 3.5. Recall that V and B were
defined in (1.5) and that expected loss is /,(h) = V + B.

3.2. Variance component V. Assume [ satisfies condition (3.1) and K

satisfies:

K is symmetric about the origin and nonincreasing on [0, «);
K integrates to unity;

0
(3.2) / |z|mex(e %K (2) dz < o0;
— 00
and for positive constants A,, A, and x with x < 1 — max(a; ', a;'),
K(z) = Aexp(—A,|z|*), -0 <2< ™.

The kernel K, defined in (1.7) satisfies (3.2) for all «;, a, > 1.

Next we define the coefficient of the main-effect term in an expansion of V. A
portion of the proof of Theorem 3.2 consists in showing that for each fixed v > 0
and for (a, ¢) = (a;, ¢;) (i = 1 or 2), the random variable

Y K [{(nh)‘/"u - Xj}/h]
J=1
has a proper limiting distribution with characteristic function
$(t) =¢(tv, a,c) = exp[—2cv“" fw{l — e'tK®) dz],
0

-0 <t< 0.

(3.3)
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A random variable Z(v) = Z(v|a, ¢) having this characteristic function has a
continuous distribution with support confined to the positive half-line and has
mean E{Z(v)} = cv™* Define

D(a,e) = [“B(2(0))E[log(E2(0)/2(0))] do

for « > 1 and ¢ > 0. The following proposition declares that this integral is
well-defined.

PROPOSITION 3.1. Assume c;, ¢y > 0, a;,a, > 1 and K satisfies (3.2). Then
the infinite integral defining D(a, c) converges absolutely when (a, c) = (a;, c;)
fori=1and 2 and 0 < D(a;, ¢;) < .

THEOREM 3.2. Assume (3.1) and (3.2) and that h = h(n) — 0 and nh — oo.
Then

(3.4) V= i (nh)_H(l/“’)D(ai,ci) + o{ i (nh)_H(l/“‘)}

i=1
asn — oo.

REMARK 3.1. Expansion (3.4) is the analogue of (2.8) in the case of densities
with regularly varying tails.

3.3. Bias component, B. Assume the following condition on f:

f " exists and is bounded and almost everywhere continuous
on (— 00, 0);

f is bounded away from zero on compact intervals;

and for constants

a,a,>1, C; >0 and C,< o,
Cix™ < f(x), |f"(x)]<Cux ™72,

Cas < f(~x) and |f”(~x)| < Gx=? forx> 1.

(3.5)

Assume the following condition on K:
[oe]
K >0, f |z|mex(en @) *2K (2) dz < o0,
o

(3.6)
J” K(2)dz=1 and f_°° 2K(2) dz = 0.

Define
Eo=3{[" 2K () o) [ (1))

THEOREM 3.3. Assume conditions (3.5) and (3.6). Then B = h*E, + o(h*)
as h — 0.
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Theorems 3.2 and 3.3 together give us an expansion of expected Kullback-
Leibler loss,

2
I(h)=V+B= Y (nh) " D(a,c,)

i=1

2
+h'E, + 0{ Y (nh) TV 4 h4}

i=1
as h — 0 and nh — co. Therefore, the window A, which minimises /(&) satis-
fies h, ~ const. n=(%~D/G%"D where «; = min(a,, a,). For example, A, ~
const. n7'/? in the case of the Cauchy density and so the window which is
asymptotically optimal from the point of view of minimising expected
Kullback-Leibler loss is of a much larger order of magnitude than that which
minimises expected squared-error loss.

3.4. Likelihood cross-validation. Our choice of kernel in Section 3.1 ensures
that the tail-effect terms in V are negligible and, hence, that likelihood cross-
validation asymptotically minimises Kullback—Leibler loss. To outline the rele-
vant theory, assume condition (3.1) on f, condition (3.2) on K and that K
satisfies

0
[ i on) dK (2)] < o0,
— 0

K(u) <CQ + u)"@*?

and

|K(u) — K(v)| < Clu— o]*{(1 + uw) P41+ v)_(“’”)}
for some 0 < s <1, ;= max(a;,a;) and all 0 < u < v < 0. Then for arbi-
trarily small ¢ > 0,

2 -1
sp ()01 B [lovin) - Blevin)|
n 't <h<nTe \i=1
+Ly(R) = 1,(R)|] =0

in probability as n — co, where L, (%) denotes raw Kullback-Leibler loss [de-
fined in (2.20)]. Therefore, if A, and #, maximise CV and minimise L,,
respectively, within the range [n~'*¢, n™¢], then L,(h,)/L,(h,) — 1 in prob-
ability. In other words, maximising CV is asymptotically equivalent to minimis-
ing L,. l

3.5. Proofs.

PROOFs OF PROPOSITION 3.1 AND THEOREM 3.2. Let 0 < r < 1 and define
Vl = Vu + V12 + V13
(37) ( r(nh)/*1 =Y nhy/a 0 ) aA A
= + + Eilog( E dx.
j;) fr(nh)l/‘xl -[r‘l(nh)l/“l ; { g( 4 )}
We shall show that V; ~ (nh)~1*®/*)D(q,, c,).
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Define U = U(x) = (f- Ef)/Ef, and to bound V,;, note that for any u > —1,
(3.8) |log(1 + u) — u| < C{u? — log(1 + wiI(u< -3)}.
Both Ef and nh varf lie within the range [Cy(1 + x)™®, Cy(1 + k)~ ] for all
x > 0 and so

[ BT e = [ v F)(E]) 7 de < Or(nh) T,
0 0

The argument leading to Lemma 2.7 gives
P(U < —1) < exp{ —Cnh(1 + x)" "}, x>0,
and so for any 0 < ¢ <1land x >0,
E{|log(1 + U)I(U < -3)}

< |E{jog + v)"*1(U < - 3)}] " TP(U < )70

< C2exp{ —eCinh(1 + x)_“‘} [h‘”'E(lmin lx — Xil“')

<i<n
+|log{nh(1 + x) ™™} |1+e + 1],

where k’ = k(1 + ). [Note (1.4).] Choose ¢ so small that «’ < 1 — max(a; ', ;")
and use the argument leading to Lemma 2.6 to obtain the bound

h""E(lnﬁn x = X'} < C{(nh) ¥ (1 + )™ + 1)

for 0 < x < (nh)/%. Taking u = U in (3.8) and combining the estimates from
there down, we conclude that

(3.9 lim limsup (nk)' " E(V;;) = 0

Y n— oo

for i = 1. A similar argument establishes (3.9) for i = 3.

It remains to estimate V,,. Observe that P[K{(x — X)/h} > y] = P{|lx — X| <
hK~Y(y)}, where K~!(y) = inf(z > 0: K(2) > y}. Take x = (nh)/*1v, where
v > 0. Then for fixed v and y,

P[K{(x— X)/R} > y] ~ 2hK"N(y)f(x) ~ n™"2¢,0” K" }(¥)

as n — oo. Also, the left-hand side is dominated by a constant multiple of the
right-hand side, uniformly in 0 < y < K(0), for fixed o. Therefore,

¥ (t) = n{l - E(exp[itK{(x - X)/h}])}
= -n[FOPIK((x - X)/h) > ylite® dy

- —2clv_°‘1fK(0)K'l(y)itei‘y dy
0

= 2cp /0 "1 - exp{itK(2)}] dz,
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whence
E|exp|it él:lK{(x - Xj)/h} = {1 - n"x[/n(t)}n - {(tlv, a, ¢;)

as n — oco. This establishes that Y(x) = LK{(x — X,)/h} converges weakly to
Z(v) as n - oo. If € > 0 is so small that k(1 + &) < 1 — max(a; !, a; 1), then
E{llog Y(x)|'**} is bounded uniformly in n and r(nh)/% < x < r~Ynh)/=,
Therefore, by weak convergence and dominated convergence,

(nh)'~ (1/“‘)/ Ty 'f(x)E{log Y(x)) dx — clfrflv""lE{log Z(v)} dv

nh 1/0y

and similarly,
(310)  (nh)" VWV, > ] "E{Z(v) ) E [log{ EZ(v) /Z(v)}] do.

[Note that E{Z(v)} = cjv™*.] A slight variant of the techniques used to
establish (3.9) for i = 1 and 3 shows that the integral on the right-hand side of
(3.10) remains bounded as r — 0. It follows by convexity that the integrand is
positive. These observations, together with (3.7) and (3.9), show that V, ~
(nh)~'*0/®)D(a,, ¢,) and that Proposition 3.1 is true in the case (a, ¢) = (a,, c,).
O

Theorem 3.3 is relatively easy to prove, and so will not be derived here.
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