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CONVERGENCE RATES FOR THE BOOTSTRAPPED
PRODUCT-LIMIT PROCESS

By LaJos HORVATH! AND BRIAN S. YANDELL?

Szeged University and University of Wisconsin—Madison

We establish rates for strong approximations of the bootstrapped prod-
uct-limit process and the corresponding quantile process. These results are
used to show weak convergence of bootstrapped total time on test and Lorenz
curve processes to the same limiting Gaussian processes as for the un-
bootstrapped versions. We develop fully nonparametric confidence bands and
tests for these curves and apply these results to prostate cancer. We also
present almost sure results for the bootstrapped product-limit estimator.

1. Introduction. We determine convergence rates for strong approximations
of the bootstrapped product-limit process and the uniform product-limit quan-
tile process and present almost sure results for the bootstrapped product-limit
estimator. We prove the weak convergence of bootstrapped versions of the total
time on test and Lorenz curve processes to the same limiting Gaussian processes
as were found by Csorg6, Csorgé and Horvath (1986b) for the unbootstrapped
case. This allows us to develop fully nonparametric confidence bands and tests
for these curves. We apply these results to data from studies of prostate cancer
and pacemakers.

Asymptotic properties of bootstrapped (uncensored) empirical processes were
first studied by Bickel and Freedman (1981). Horvath and Yandell (1985) derived
strong approximations of the bootstrapped multidimensional product-limit pro-
cess. Akritas (1986) independently developed asymptotic results for the
bootstrapped product-limit estimator using martingale theory.

In this section, we briefly review results for the product-limit process and the
uniform product-limit quantile function. Section 2 presents the bootstrapped
versions of the processes and our main results. The total time on test transform
and the Lorenz curve are introduced in Section 3. Bootstrapped confidence bands
are illustrated for both these curves in Section 4, for data on prostate cancer.
Section 5 establishes preliminary results which are used in Sections 6-8 for the
proofs.

Let {X?, i > 1} be a sequence of independent, identically distributed random
variables (iidrv’s) with continuous survival function S%#) = P{X{ > ¢} and
distribution function F(¢) = 1 — S°(¢). Denote the quantile of F° by Q°%u) =
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1156 L. HORVATH AND B. S. YANDELL

inf(¢: FO(¢) > u}. Let {Y,, i > 1}, be an iid sequence of rv’s, independent of { X2,
i > 1}, with “censoring” survival function G(¢) = P(Y; > t}. We can only ob-
serve the random vectors {X,,8;}’,, where X;=min{X?, Y} and §;=1 if
X, = X2, 8,=0if X, <X By the independence of {X?} and (Y;} S(¢) =1 —
F(t) = P{X, > t} = SAt)G(¢t).

Kaplan and Meier (1958) proposed the product-limit estimator of S°,

n—1i

§o(t) =1-F¢) = (———
) (t) (i X ,<pp\n—1+1

si,n
) , ft<X, ,,
and SX(t) = 0if ¢ > X, ,, where X; , < -+ < X, , are the order statistics of
{X;}’-., and {(§; ,}7_, are the induced order statistics of {§;}7,. Denote the
product-limit process by

1a(t) = n'2(S)(2) - 8°(2)).

Aalen (1976) and Breslow and Crowley (1974) proved the weak convergence of
Y,(t) in D(—o0,T], S(T) > 0. Burke, Cs6rg6é and Horvath (1981, 1986) studied
the speed of the weak convergence of vy,. Csorgd, Csorgé and Horvath (1986b)
showed the weak convergence of y, in weighted metrics. They considered the
integral

I(g,c) = fopt“exp(—cq2(t)/t) dt,

in which g € K(p), the class of weight - functions on (0, p] such that
inf, _,_,q(¢) > 0 for all 0 < ¢ < p and g is nondecreasing in a neighborhood of
zero. Without loss of generality, we can assume that the underlying probability
space is so rich that it accommodates all the random variables and processes
introduced so far and later on. We formulate the strong approximation results of
Burke, Cs6rgé and Horvath (1981, 1986) and Csorgd, Csorgé and Horvath
(1986b) in the following:

THEOREM A. Let S(T) > 0. We can define a sequence of Wiener processes
{W,(t), t = 0}%_, such that

(1.1) P{

with

sup _[1,(¢) = S°()Wi(d(t))| > An~"logn} < Bin™,

—o0<t<T

d() = [* [S(s)]*dF(s),

forall ¢ > 0, where A, = A,(¢) and B, are constants. Further, if g € K(F%T)),
then

(1.2) sup _ [,(t) - SU()W,(d(1))|/a(F°(t)) - O,

—owo<i<

if and only if I(q, ¢) < oo for all ¢ > 0.
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We can transform X, < --- <X? , the r, ordered uncensored observa-
tions, into censored uniform order statistics. Let

Fo(x?,), itosu<FEYX?,),
(13) En(U) = FO(Xi(,)n)’ if F;tO(Xio—l,n) <us ﬁno(Xi?n)’ 2<ix< Tns
FO(X? ), #EYX0,)<us<1

denote the uniform product-limit quantile function and let
B.(u) = n**(E,(u) — u)

be the uniform product-limit quantile process. Aly, Csoérgé and Horvath (1985)
proved the following: ’

THEOREM B. Let S(Q°(p)) > 0. Then we have that

» P sup [£,(u) - (1 = ) W(d(Q(w)))| = Agn~4(log n)"}

O<u<p
< B,n¢,

for all e > 0, where A, = Ay(¢) and B, are constants. Further, if g € K(p) and
I(q, c) < oo for all ¢ > 0, then

(1.5) sup |B,(x) = (1 - w)W,(d(Qw))) | a(x) ~p 0.

1/(n+1l)<u<p

In the applications of Theorems A and B it is very essential that we have used
the same Wiener processes. We can show that the limit of a transformation of v,
or B, is a time-transformed Wiener process, or Brownian bridge. The distribu-
tions of the supremum and square-integral of the obtained time-transformed
processes could be calculated. This idea was introduced by Efron (1967) and later
used by Aalen (1976), Nair (1981), Gillespie and Fisher (1979) and Hall and
Wellner (1980). A very general form of this transformation method can be found
in Cs6rg6é and Horvath (1986).

The weak convergence of y, and 8, in weighted metrics was used by Csorgd,
Csorgé and Horvath (1986b) to study the asymptotic behavior of the total time
on test transforms and Lorenz curves under random censorship. They proved the
weak convergence of these processes to Gaussian processes, but the limits depend
on the unknown S° and G. Therefore, their results cannot be applied im-
mediately in practice. The bootstrap offers a solution to these problems.

2. The main results. We introduce the bootstrapped processes and state
the main results. Efron (1981) proposed the following bootstrap for censored
data. Draw m iid random vectors {(Z;, p;)}/~, with common distribution func-
tion

2.1 n"'#{1<i<n: X;,<x,8,<y).
12
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Using the bootstrap data, the bootstrapped product-limit estimator is defined by

R m_j Fj,m
SO (8)=1-F° (¢)= (————) , ift<2Z, .,
m,n( ) m,n( ) ‘{j:Zl:,‘[,,st} m_]+ 1 m, m
and S (t)=0if t>Z, ,, where Z, ,, < -++ <Z, ,. are the order statistics
m, n m, m 1,m m, m

of {Z}, and {p; ,,}]-, are the induced order statistics of {p;}~ 1. Denote the
bootstrapped product-limit process by

T, nl(8) = M8 (2) = S(2)).

We can define the bootstrapped uniform product-limit quantile function in a

manner similar to (1.3). Let Z?, < --- <Z? , denote the s, uncensored
bootstrapped data. Let ’
F%z?,), ito<us<E? (20,),

E, J(u) = {FA(Z,), #E2(Y2,,) <us<F2(2),), 2<j<s

F(22 ), iER (20 ,)<us<1,

Sm, M

and
B, n() = m/*(E,, (u) — E,(u)).

The main results of this paper are contained in the following bootstrapped
versions of Theorems A and B.

THEOREM 2.1. Assume that
(2.2) 0 <-liminfm/n < limsupm/n < oo

n— o0 n— o

and S(T) > 0. We can define a sequence of Wiener processes {Wm( t), t=>0}x_,
such that

(2.3) P{ sup lem’,,(t) — S%(t)W,,(d(t))| = Asn~*(log n)5/4} < B;n~¢,

—o00<I<

for all ¢ > 0, where A; = Ay(¢) and B, are constants. Further, if ¢ € K(F(T))
and I(q, c) < oo for all ¢ > 0, then

(24) sup T|v,,,,n(t)—s°(t)v‘vm(d(t))|/q(F°(t)) —p 0.

—o0<t<

THEOREM 2.2. Assume (2.2) and let S(Q°(p)) > 0. Then

(25) PSR [Bas(0) = (= ) (d(@w)] 2 Aun 4 (0gm) )
< B;,n"¢,

for all ¢ > 0, where A, = A (¢) and B, are constants. Further, if ¢ € K(p) and
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I(q, ¢) < oo for all ¢ > 0, then
(2.6) sup  |Bp () — (1~ w)W(d(Q(w)))| fa(u) »p 0.

1/(m+1)<u<p
REMARK 2.1. We used the same Wiener processes W in Theorems 2.1 and
2.2. It will follow from the proof that {W, (¢), t> O}m , are independent of
{(X;,8,))2, and {W,(2), t = 0}7_,. Results of Falk (1986) show that the rates in
(2.3) and (2.5) are optimal except for the log terms.

REMARK 2.2. Bickel and Freedman (1981) showed the weak convergence of
the bootstrapped uniform empirical and quantile processes in the uncensored
case. Their results were extended into a weak convergence in weighted metrics by
Csorgd, Csorgd and Horvath (1986a) and Csorg6, Csorgd, Horvath, Mason and
Yandell (1986). Theorems 2.1 and 2.2 imply the weak convergence of v,, , and
B, » in the usual function spaces 2(—c0,T] and 2[0, p]. The weak conver-
gence of v,, , is also a consequence of a more general multidimensional result of
Horvath and Yandell (1985). Akritas (1986) and Lo and Singh (1986) proved that
Ym,» @nd B, , converge weakly for almost all realizations of {(X;, §;)}%2,; the
results of the ﬁrst paper are also true for discontinuous F°. Their results do not
immediately imply the usual unconditional weak convergence of v, , and B, ,.
However, by Remark 2.1 we can reformulate our results to conditional ones.

Next, we consider two corollaries of our results. Let P, and P, , be the
measures induced by the processes v,(Q°(%)) and v,, (Q%¢)), 0 < ¢ < p. These
measures are defined on 2, where (D, 2) is the Skorohod space of functions
defined on [0,1]. Let p be the Prohorov-Lévy distance of two measures.

COROLLARY 2.1. Assume that the conditions of Theorem 2.1 are satisfied
with T = Q% p). Then
p(Py, Py, ) = O(m="/4(log m)™").

A similar result holds for the measures induced by the uniform quantiles.
Next we consider an unconditional almost sure result for the bootstrapped
product-limit estimator.

COROLLARY 2.2. We assume that the conditions of Theorems 2.1 and 2.2 are
satisfied. Then

(2.7) limsup (m/log m)"/* sup |S§2 (t) — S%(¢)| < 4; a.s.,

m— oo —o0<t<T
(2.8) limsup (m/logm)”> sup |S3 .(¢) — S%t)| < A a.s.
m— oo —o0<t<T
and
limsupm®4(log m)">* sup |E2 (Q°(w)) + E,, ,(u) — 2u|
(2.9) m— oo O<u<p

<A, a.s,
where Ay, A; and A, are nonnegative constants.
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Aly, Csérgé and Horvath (1985) established the Bahadur—Kiefer représenta-
tion for the product-limit estimator and its quantile function. By (2.9) a similar
representation holds for the bootstrapped versions except that we proved (2.9)
with rate m3/4(log m)~%* instead of the usual m%“(log m)~'*(loglog m)~ /4,

3. Implications for test transform and the Lorenz curve. We briefly
review results on the total time on test transform and the Lorenz curve for
censored data, and present our bootstrapped versions of these results. In this
section we assume that F° is a life distribution function, i.e., @°0) = 0, and Q°
is continuous on (0, 1). The total time on test transform of F° is defined as

Hy(u) = f“(l ~5)dQ%s), O=<u<l,
0 .
and the unscaled Lorenz curve of F? is

Mpo(u) = fO"QO(s)ds, O<us<l.

Using the continuity of Q° we can write

(31)  Hyiu) = j(;Qo(“)So(s)ds and  Mpo(u) = j()‘?“("’deO(s),

The function Hys' has been useful to characterize various aging properties of life
distributions. There is a one-to-one correspondence between life distributions
and their total time on test transforms. Recent surveys of the characterizations
can be found in Klefsjé (1982) and Bergman (1985). For statistical applications of
Hgd we refer to Doksum and Yandell (1984) and Csorgd, Csorgé and Horvath
(1986a). The unscaled Lorenz curve is used in economics. For its many-sided
usefulness and applications we refer to Goldie (1977) and Csorg6, Csérgé and
Horvath (1986a).
Define the empirical quantile function

§2(u) = inf(s: F(s) > u) = Q(E, ().

Csorgd, Csorgé and Horvath (1986b) proposed the following estimators for Hyo
and Mpo based on (3.1) when data are censored:

H;Y(u) = ff’““’ﬁ,g(s)ds and  M,(u) = [#“saR)(s).

Define the processes
h,(u) = n'/*(H; (u) — Hyd(u)) and m,(u) = n'/*(M,(u) — Mpo(u)).

Although Csorgd, Csérgdé and Horvath (1986b) proved that (1.2) and (1.4) imply
the weak convergence of k, and m,, the limiting distributions depend on the
unknown survival F° and censoring G. It is natural to consider the bootstrap.
Let

O, () = inf{s: B (s) 2 u} = QE,, ,(u))
and define the bootstrapped total time on test H,', and Lorenz M, , curves in
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a similar fashion to H, ! and M, . The corresponding bootstrapped processes are
P, () = m*(H, ' (u) — H;'(u))

and .
My, n(0) = M2 (M, (w) — M,(u)).

Define the Gaussian processes

6(u) = ['(1 - ) W(d(Q%(s))) d@(s),
A(w) = ©(u) + W(d(Q"(x)))(1 - u)"/f *(Q(w)),

where {W(¢), ¢t > 0} is a Wiener process and f° is the derivative of F°. If we
replace (1.2) and (1.4) by (2.4) and (2.6) in the proofs of Csorgd, Csérgé and
Horvath (1986b), we obtain the following two results:

THEOREM 3.1. Let F(Q°(p)) > 0, and assume that (2.2) holds and that f ° is
continuous and positive on (0, Q% p)]. If there exists a q € K(p) such that
I(g,c) < oo forall c > 0 and

sup g(u)(1 - u)/f°(Q°(u)) < oo,

O<us<p
then
hm,n(u) ~9[0, p] Au), mAn-— .

THEOREM 3.2. Let F(Q% p)) > 0, and assume (2.2) holds. If Q° is continu-
ous on (0, pl, then

m, (¥) 2gp 1 0(¥), mAR-—> .

We can now develop Kolmogorov—Smirnov type procedures for the total time
on test and Lorenz curves. For convenience, we focus on the total time on test
transform. Theorem 4.1 of Cs6rg6, Csorgd and Horvath (1986b) and Theorem 3.1
imply that supy ,lk,| and supg, |7, ,| both converge to sup(, ,i/A|. In other
words, the corresponding distributions U, and U, ,, respectively, converge to
U(u) = P{sup, ., . ,|A(s)| < u} at every continuity point of U. It can be shown,
using Theorem 1 of Tsirel'son (1975) and the tightness of {A}, that U is
continuous. The distribution of U can be approximated by the empirical distri-
bution based on a large number of bootstrap samples. Let Uy ,, , denote the
empirical distribution based on N independent realizations of the bootstrap
process based on samples of size m drawn from (2.1). By the Glivenko—Cantelli
theorem, Uy ,, , — U, , converges to 0 uniformly, a.s., as N — co for each m
and n. Hence, Uy ,, ,— U and Uy ,, , — U, converge to 0, as N — oo and
m A n - o, at every continuity point of U. This suggests approximating the
critical value of U, by the empirical critical value of Uy ,, ,,

CNmal—a)=inf{lu>0:Uy , (u)21-a}, O0<ac<l,

which converges a.s. to ¢(1 — a) =inf{u > 0: U(z) > 1 — a}, 0 < a < 1. This
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bootstrap-based test will have asymptotic power 1 and asymptotic size a. The
asymptotic consistency of statistical procedures based on other functionals can
be discussed in a similar way.

As was pointed out by a referee, asymptotically distribution-free confidence
bands can be constructed without resorting to the machinery of the present
paper. For instance, noting that F, < F, implies Hy' < Hg! and My < My,
one could use simultaneous confidence bands for S° to construct bands for the
total time on test and Lorenz curves. However, such bands would be very
conservative.

4. Simulations and example. In this section we present simulation results
and graphical analysis of data on prostate cancer. We focus on graphical
summaries of the data using the biometric tools of the previous section to
develop simultaneous confidence bands. For each set, we constructed N = 1000
bootstrap samples of size m and developed the empirical distribution functions
of h, , and m,, , simultaneously. That is, the same bootstrap samples were
used for the total time on test and Lorenz curves. We focused on 90% critical
values read from the empirical distribution functions, using these to construct
90% simultaneous confidence bands for the total time on test transform and the
Lorenz curve.

Akritas (1986) showed empirically that the bootstrapped confidence bands for
the survival curve seem to have the right level for censored data. Simulation
results presented by Csérg6, Cs6érgd, Horvath, Mason and Yandell (1986) showed
that the uncensored bootstrapped empirical distribution function of maximal
deviations for the scaled total time on test transform with true exponential
survival (the one known theoretical case) is approximately correct.

We present results of some simulations with survival being exponential (1) and
censoring being either uniform (0, ¢) or exponential (c), with ¢ chosen to induce
0%, 20% or 50% censoring. We considered sample sizes n = 20, 50, 100 and 200,
with N = 1000 and m = n. Table 1 contains the means and SD’s for the
bootstrapped statistics of the 90% critical values from 30 independent repli-
cations of the bootstrapped empirical distribution. Note that the SD’s are large
for sizes below 100, but the mean values remain fairly constant. The bandwidth
is considerably narrower for the Lorenz curve when there is 50% uniform
censoring, presumably reflecting the heavy censoring of large values. This is true
to a lesser degree for the total time on test transform. We investigated 80% and
95% critical values and found similar results, the 80% being more benign and the
95% more pathological.

Common sense and a closer examination of the variance process for 4, , and
m,, , suggested standardized versions of the processes. Bands based on such
statistics would have variable widths but equal probability, asymptotically, at
all points. Arguing in a similar manner to Csorgo, Csorg6, Horvath, Mason and
Yandell (1986) we examine sup|h,, ,/6y,| and sup|m,, ,/Gy,|, with sup over an
interval [a, b], with 0 < @ < b < 1 and 6y, and 6,,, being uniformly consistent
estimators (with probability 1) of the standard errors o and o,,, respectively, of
h, and m,. Provided o, and o,, are bounded away from 0 on [a, b], the
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TABLE 1
Critical values for constant width 90% simultaneous bands

Total time on test Lorenz curve

Censoring Uniform Exponential Uniform Exponential
Size 0% 20%. 50% 20% 50% 0% 20% 50% 20% 50%

20 201 195 154 200 191 155 149 118 148 151
(043) (0.50) (0.46) (0.67) (0.73) (0.41) (0.45) (0.38) (0.61) (0.56)
50 210 208 173 218 247 163 158 105 161  2.02
(0.50) (0.46) (0.34) (0.39) (0.83) (0.39) (0.36) (0.13) (0.29)  (0.89)
100 213 231 200 227 265 164 18 111 170  2.00
(027) (044) (029) (0.37) (0.51) (0.22) (0.45) (0.10) (0.32) (0.54)
200 209 236 213 243 283 165 177 113 183 234
(0.18) (027) (0.25) (026) (0.53) (0.15) (0.22) (0.06) (0.23) (0.64)

empirical distributions of maximal deviations have the same limiting distribution
as sup|h,/oy| and sup|m,/a,,|, respectively. We used the natural extensions of
the variance estimators of Csorg6, Csorgd and Horvath (1986b),

() = 2 Vi(s) dH (s),

(1) = 8fa(1) + u[2Vi(u) + wVi(u)/E2(QN(w))] /£2(QS(w)),
with
Va(u) = [ Vs(s) dH;(s),
Vo(u) = [HOLE(s)E,(s )] " dBS(s)

and £°(Q%w)), a uniform kernel density estimate with bandwidth n~1/%,

Table 2 contains the means and SD’s for the standardized bootstrapped
statistics of the 90% critical values from 30 independent replications of the
bootstrapped empirical distribution, restricting to the interval [0.1,0.9]. Note
that the mean values do not settle down as quickly as in Table 1, and that the
SD’s are quite large for the Lorenz curve when 7 is small. The variable width
critical values are not directly comparable to any tabled distribution to our
knowledge. ‘

We examined prostate cancer data on 211 patients who were treated with
estrogen [see Hollander and Proschan (1979)]. Ninety patients died of prostate
cancer during the 10-year study, 105 died of other diseases and 16 were alive at
the end of the study. These data have been examined by Koziol and Green
(1976), Hollander and Proschan (1979), Csérg6 and Horvath (1981) and Doksum
and Yandell (1984). Doksum and Yandell (1984) constructed (asymptotic) simul-
taneous confidence bands for the hazard rate and the survival curve, finding
some evidence for deviation from exponentiality. They also plotted the total
time on test transform, but their definition of the total time on test differs
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TABLE 2
Critical values for variable width 90% simultaneous bands

Total time on test Lorenz curve

Censoring Uniform Expbnential Uniform Exponential
Size 0% 20% 50% 20% 50% 0% 20% 50% 20% 50%

20 243 228 198 226 175 539 386  9.08 3.66 3.08
(0.33) (0.37) (0.51) (0.30) (0.38) (9.92) (2.00) (31.60) (3.45)  (1.09)
50 262 263 239 261 229 264 2.88 2.63 2.69 2.73
0.23) (0.26) (0.34) (0.24) (0.28) (0.48) (0.88) (0.53)  (0.57)  (0.81)
100 287 284 252 276 251 247 2.49 2.30 2.42 2.38
029) (0.26) (0.18) (0.23) (022) (0.22) (0.26) (0.19) (0.23)  (0.26)
200 283 287 260 280 261 228 2.33 219 2.27 2.22
(017) (029) (0.17) (0.18) (0.20) (0.089) (0:13)  (0.076) (0.087) (0.12)

slightly from ours. We present the total time on test transform and Lorenz.
curves with simultaneous 90% confidence bands on the interval [0, 0.6], based on
N = 1000 trials with bootstrap samples of size m = 211 (Figure 1). Simultaneous
90% bands based on the standardized statistic are presented in Figure 2 on the
interval [0.1,0.6], along with pointwise 90% confidence intervals at selected
times.

The critical values for pointwise intervals were determined directly from the
bootstrap distributions using trials which were independent of those used for the
simultaneous bands. Note in Table 3 that the critical values for constant width
bands are about the same as those for the pointwise interval at © = 0.6. In fact
the difference may be due simply to chance variation, since the variance
increases over time for each curve, and the constant width band often picks up
the maximal deviation at the upper endpoint. The variable width critical values

100

o [
w0
ol | |
gl |
QL
<
QL
) (@) (b)
oy ‘ | | |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

F1G. 1. Prostate cancer data with constant width bands (n = 211). Solid line = confidence band,
dashed line = curve. (a) Total time on test transform with 90% confidence bands on [0,0.6], (b)
Lorenz curve with 90% confidence bands on [0, 0.6].
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F1G. 2. Prostate cancer data with variable width bands (n = 211). Solid line = confidence band,
dashed line = curve, vertical bar = pointwise confidence interval. (a) Total time on test transform
with 90% confidence bands on [0.1,0.6], (b) Lorenz curve with 90% confidence bands on [0.1,0.6].

are similar to those of Table 2 with 50% censoring, though they are not directly
comparable. Note that the variable width band in Figure 2 is wider than the
pointwise intervals, as expected.

5. Preliminaries. We present a result on the rates of strong approximation
of the bootstrapped subdistribution functions which is useful for the proofs of
the main results. We use a representation similar to Bickel and Freedman (1981).
For convenience, let f(oo) stand for lim,_, . f(¢). Consider the subdistributions
FO()=P(X, <t and 8, =2 — i}, i =1,2, and their empirical and
bootstrapped counterparts F()(¢) =n~'#{l<i<n: X;<t and §;=2 — i},
i=12 and FY()=m #{1<j<m: Z;<t and p; —2- i}, i=1,2. For
convenience let F®(¢) = F(t), and smularly for £® and E®,. Let {§,)%, and
{n;}%, be independent sequences of uniform [0, 1] 11drv s, w1th empirical distri-
butions, respectively,

K(u)=n"#{l<i<n: §<u} and L,(u)=m #{1<j<m: n,<u}.

TABLE 3
Bootstrapped critical values for prostate data

Total time on test Lorenz
80% 90% 95% 80% 90% 95%
Pointwise
0.2 49.59 65.82 74.62 7.364 9.300 11.03
" 04 56.17 75.20 93.62 16.64 20.97 25.44
0.6 206.2 243.7 285.4 49.30 70.66 96.22
Constant 204.3 254.4 285.1 37.73 50.55 61.60

Variable 1.825 2.220 2.630 1.602 2.017 2.343
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The lemma below follows by lengthy elementary calculations, using the
conditional probabilities with respect to X;,..., X, and the conditional indepen-
dence of {Z;}™, from {X )} ,.

*

LEMMA 5.1.
{FD(s), E(2), FL,(x), FP(y), =00 <s,8,%,y < o)
=0 {K.(FO(5)), K,(FO(t) + FO(w)) = K,(FV(w)),
L (K (FO(x))), Lp(K(F(y) + FO(c0))) = Ly, K,(F(c0))),
-0 <s,tx,y< oo}.

We also will use the following immediate consequence of the tail behavior of
the Brownian bridge {B%«), 0 < u < 1).

LEmMMA 5.2. For all ¢ > 0 and some C = C(¢) and D constants,
P{ sup |B%u)|> C(log m)l/z} < Dm™e.
0

<ux<l

The following result is a generalization of Theorem 3.1 of Burke, Csorgd and
Horvath (1981). Define the processes

a)(t) = nV2(EO(t) - FO(¢)), i=1,2,3,
and their bootstrapped counterparts a{ (¢), i = 1,2,3.
THEOREM 5.1. Assume that (2.2) holds. We can define two independent

sequences of Gaussian processes {B{, B®, B®}_, and {CP,CP,CP)¥=_,
such that

(5.1) P{ sup |a{P(¢) — BY(t)| > Agn~/?log n} < Bgn¢,

—00<t<o0
1=1,23, and
(5.2) P{ sup |a) (2) — CP(t)| > Agm~*(log m)3/4} < Bym™s,
—o00<t<oo

i=1,2,3, forall e > 0, where Ag = A(e), Ay = Ay(¢), By and B, are constants.
Moreover, EB{)(t) = EC{(¢t) =0, i = 1,2,83, and

EB{(t)B{(s) = ECH(t)CO(s) = FO(t A s) — FO()FO(s), i=1,2,8,
EB{(¢)BP(s) = ECH(t)CP(s) = FO(t)F(s) — FO(tns), i=1,2,
EBO()B(s) = ECP(1)0R(s) = —FO(£)F®(s).

ProOF. We sketch the proof only for af),, using the representation of

y

Lemma 5.1. Komlds, Major and Tusnady (1975) allow the approximations

Pl s (R0 - ) - B0 > Ay~ Plgin) 5 B
(53) O<ux<l
P{ sup |m"*(L,(u) - u) - Bm(u)l > Ay, ym”~/*log m} < By, m”",

O<ux<l1
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for all & > 0, where Ay, = Ag,(¢) and B,, are constants and (B,)>., and
{Bm -1 are two 1ndependent sequences of Brownian bridges. Using (2.2), Lemma
5.2 and Theorem 2.C of Burke, Csérgé and Horvath (1981) [cf. Lemma 1.1.1 of
Csorg6 and Révész (1981)], we obtain

P{ sup | Bu(K(FOt))) — B (FO(2))| > Ag ym 1/4(logm)3/4}

—o00 <t<o0
< By ,m”",
for all & > 0, where A , = Ay 5(¢) and B, , are constants. Combining this with
(5.3), with u replaced by K, (F®(¢)), and Lemmas 3.1.1-3.1.3 of Csorg (1983)
yields (5.2). O

6. Proof of Theorem 2.1. We proceed along similar lines to Burke, Csorg6
and Horvath (1981) by constructing a strong approximation, with rate, to the
cumulative hazard process. We proceed to the proof of Theorem 2.1 by using the
same trick as in Breslow and Crowley (1974). Finally, we show the convergence of
the weighted process. Denote the empirical and bootstrapped cumulative hazard
curves by

M) = [0 [1 = F(s)] 7 dEO(s),
B8 = [* 1= B o(6)] 7 dED(5)

and the bootstrapped cumulative hazard process by A, ,(¢) = mY/%( Ay, o(t) —
A (2)).

LEMMA 6.1. Under the conditions of Theorem 2.1, for all ¢ > 0 and some
constants A, = A,y(¢) and By,

P sup [A, (8) = Tu(t)| > Aygm™4(logm)*"} < Bgm™,
—o0<t<T
with
[t -1 4o oo -2 Jp@®)
T(¢) = [* [S(s)] 71 dCP(s) = [* CD(s)[S()] 7> dFD(s).
Proor. We decompose A, , and argue as in the proof of Theorem 4.2 of
Burke, Cs6rgé and Horvath (1981):
Amon(8) = = [ a® (5)[S(s)]7* dFO(s)
+ [ [8()] 7 daD (s) + AQ(2) + AD(2) + AR(2),
— 0
with
400 = [ a@,(s)(18(5)) ™ =[S, n(5)S:(5)] ") L),
420 = [ ([8.)]7" = [8(5)] 7)) da@ (s),

AQ(0) = [ a2 (s)[8(6)] " d(FO(s) = F,(s))-
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By Theorem 5.1 we need only show that A, i = 1,2, 3, are negligible, which is
established later.

LEMMA 6.2. Under the contlitions of Theorem 2.1, for all ¢ > 0 and some
constants A, = A,(¢) and B, k = 11,12,13,

P{ sup |AD(¢)| > A, ym~?log m} < B;m™¢,

—o00<t<T

P{ sup |AD(¢)| > A,m=*(log m)5/4} < B,m™¢,

—oo<t<T

P{ sup |AD(¢)| > A;3m~/4(log m)5/4} < B;ym™.

—oo<t<T
Proor. Theorem 5.1, (2.2) and Lemma 5.2 give

P{ sup lag)(t)l > A11,1m_1/2(10g m)l/z} < Bll,lm_sy

—o00 <t<oo

for i = 1,2,3. Thus, if m, n > N, = Ny(e),
(6.1) p{ sup S(¢)/S,(t) > z} < B, ,m.

—oo<t<sT
Similar statements obtain for afY,, i =1,2,3, and S, ,. The result for AJ
follows from
sup |AQ(2)]
—oo<t<T
SUp_ . < <710 () I[28Up_ <, o 7|a@()| + sup_ o<, < T]a .(2)]]
< .
[S(T)1*Sp, n(T)SA(T)
The last two terms are more difficult, but can be handled in a similar manner to

the proof of Theorem 4.2 of Burke, Csorgé and Horvath (1981). We consider only
AP, By (6.1) it is enough to deal with

m2 [* a®(s)[S(s)] 7 dag ().

It follows from Theorem 5.1 that

P s |[* (a2(s) - BO6))IS(s)]  daa(s)]| > sy log m]
—oo<t<T!"—o
< B, m™".

We can divide the half-line (— 0, T'] into % = [m!/2] parts with the points
—0 =t <ty < --+ <t, =T such that F(¢;,, ,) — F(¢,— ) < 2/k. We define
the jump process

BX(t) = BO(t,,1)[S(tis1)] 2 it <t <ty
and proceed by repeated use of Theorem 2.C of Burke, Csorgé and Horvath
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(1981) to show

—o00<iI<

(6.2) P{ sup |BX(t) — BO(t)| > 2A,, ;m”~*(log m)l/z} < By m™®
T

and

@) (¢ —a® (¢ — -1/4 3/4
(6.3) P{ 151?53'5—1 Iam,n(tz+1) am,n(tt ) | > 2A12,3m (lOg m) }
< 2B, sm™".
From (6.2),
[ _(Bi(s) = BO(s))[8(6)]) ™ dal o(8) | > ygom(l0g m) )

— o0

P{ sup

—oo<t<T
< By m™°.
By the definition of B},
[©_Bi(s) da (s)

— o0

k-1
sup < X [BO(8)(oR altin1) — o a(t:—))]-
—oo<t<T i=1
Combining this with (6.3) and Lemma 5.2 [for B®(Q°)] yields
[ Bi(s) da@,(s)
— 00

< (312,2 + 2312,3)’"'_8,

P{m‘l/ 2 sup > 2455 3A1 sm~ V4 (log m)™ 4}

—oo<t<T

which completes the proof of Lemma 6.2. O

Now we can turn to the proof of the main results of Theorem 2.1 concerning
the bootstrapped product-limit process. The product-limit curves can be ap-
proximated in a standard fashion [cf. Lemma 1 of Breslow and Crowley (1974)
and Horvath (1980)] using (6.1), via

0< ~logS2(t) ~ A(t) s n™ [* [8(s) — 1/n] 2dED(s),
(6.4) P{

sup |S2(¢) — exp(=A,(8))| > A5,,m "} < By m ™
T

—00<i<

and analogously for SA,S, »» With the same rate. Thus, to prove (2.3), we need only
show that

P sup _|ma(exp(=A,(1)) = exp(~ A, (£))) = SADT)]

—oo<i<

> Az ,m~*(log m)5/4}

—E€
< By ,m™¢,
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but this follows from Lemma 6.1, Lemma 5.2 [for T,,(Q°)] and
Iml/z(exp(_An(t)) - exp(— Am, n(t))) - So(t)}‘m, n(t) I

= m_1/2 [>\m, n(t)] 2‘
For the proof of (2.4), let Ty < K < T, with T, = sup{t: F°(t) = 0}. Csorgd,
Cso6rgd and Horvath (1986b) showed that

66)  Jim P{ sup [S()W,(d()|/a(F(0) > ¢f =0,

—oo<t<
for all ¢ > 0 and m > 1. Therefore, by (2.3) we need only show
(6.7) lim limsup P{ sup v, (£)/a(F°(t)) > s} =0,
K->To man—oo —oo<t<K ’ N
for all ¢ > 0. In fact, it is enough to deal with the limit as K - T, =
sup{t: FO(t) = 0}. We leave out elementary calculations and application of
O,(1) rates for inverses of S, and S, ,,, which follow from Theorem 5.1, (6.1),
Lemma 5.1 and Wellner’s (1978) inequality. Csorg6, Csorgd, Horvath and Mason
(1986) proved that under the conditions of Theorem 2.1,

qw)u™"?2> 0, u-0,
lim lim supP{ sup  [a®(2))/a( FO(¢)) > s} -0,
—oo<t<K
for all & > 0, where T} = sup{t: F(¢) = 0}, i = 1,2,3. Theorem 17.11 in Csbrgd,
Cso6rgd and Horvath (1986a) implies the analogous result for of),, i =1,2,3.
Thus, we have
lim limsup P{ sup v o(t)/a(FO(t)) > s} =0.
K->Ty mAan— oo —oo<t<K ’
Using (6.5), we obtain

lim limsupP{ sup m'?lexp(—A,, ,(t))
(6.9) K->Ty mAan— oo —oo<t<K

(6.5)

(6.8)

K-T, pnoe

—exp(— A,(6)I/a(FO(8)) > ¢f = 0.
Some elementary calculations and (6.4) lead to
lim limsu P{nl/2 sup |So(t) — exp(—A(t FO(¢)) > s}
(6.10) Al limsup _sup 153(2) — exp( = A,(2))l/a(FO(2))
=0
and a similar expression for SA,?,, - It is immediate that (6.9) and (6.10) imply (6.7),
which completes the proof of (2.4) and Theorem 2.1.

7. Proof of Theorem 2.2. The proof follows similar lines to that of Aly,
Csorgd and Horvath (1985). The bootstrapped uniform product-limit quantile
function can be written as

(71) Bm, n(u) = Ym,n(Qo(Em,n(u))') + ml/z(Em,n(u) - ﬁ;tO(QO(Em,n(u))))
+m%(E) (QEy, A(w))) - u) + m*(u — E,(u)).
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In order to prove (2.5), it is enough to show

P 5D 1, o(Q(En, () — (1 = )W, (A(@(w)))
(7'2) O<u<p

L

> A, ym*(log m)5/4} <B,,m*

and that the other terms are negligible. Theorem 2.1 and Theorem A and
arguments as in the proof of Theorem 3.1 of Aly, Csorg6 and Horvath (1985),
with the help of Lemma 1.1.1 of Csorg6é and Révész (1981) at Step 4, establish
the negligibility. Further application of Lemma 1.1.1 of Cs6rgé and Révész (1981)
yields

P sup [(1= B, o) W (@B, o(w)) = (1 = )W (@)

O<u<p
> A, ,m~*(log m)3/4} < B, ,m™".

Now applying Theorem 2.1 with ¢ replaced by Q°(E,, ,(u)) completes the proof

of (2.5).
Let 0 < 8 < p. In order to prove (2.6) we need only show
(7.3) hm lim sup P{ sup |B, (u)/q(u) > e} =0,

mAnR— o0 1/m<u<$é

for all & > 0, since (2.5) implies

sup |B,,,.(u) = (1 — )W, (d(Q°()))I/q(u) ~

d<u<p

and (6.6) yields
lim P{ sup |(1 - u)Wi((@(w)))/a() > ¢ =,

O<u<$8
foralle> 0and m > 1.

Theorem A [cf. Theorem 3.3 in Csorg6, Csoérgé and Horvath (1986b)] states
the analogous result to (7.3) for the unbootstrapped B,. If g satisfies (g, ¢) < oo
for all ¢ < 0, then so does g)(u) = g(Au), A > 0. Thus, by Theorem A and O,(1)
results for E (u)/u, E, (u)/u and their inverses [cf. Csorgd, Csérgd and
Horvath (1986a, b)] and (6.4), we have

(7.4) lim limsup P{ 2 sup  |v,(Q%(E, (»)))l/q(u) > e} =0.

§-0mAn—o0 1/m<u<8

A similar result obtains for vy,, , via Theorem 2.1. We can show using (6.8) and
intermediate steps in the proof of (2.5) that

lim limsup P{sz sup B (QE,, .(v))) — ul/q(u) > e} = 0.
-0 mAn—o 1/m<u<é

Combining these and recalling (7.1), we establish (7.3) which completes the proof
of (2.6).
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8. Proof of the corollaries. Corollary 2.1 follows from Theorems 2.1 and
2.2 and [cf. Koml6s, Major and Tusnady (1974)]

(P Ba)  inf o+ 2{_sup i @(w) - (1~ w)W(a(@w)) > o]

OsuSp

+ inf (e—P{ SUp [¥,,, (Q%(w))— (1 —u)W,,(d(Q°()))| >8})-

e>0 O<u<p

For Corollary 2.2, we use Borel-Cantelli and
P sup B2 () - BA) > Agm(logm)*?) < Bym™?,
—oo<t<T *

for some A5 and Bj;, which follows from Theorem 2.1 and Lemma 5.2, to get
(2.7). We obtain (2.8) in a similar way. Theorems 2.1 and 2.2 imply that

limsupm®4(log m)~** sup |E? (Q°(4)) + E,, ,(v) — FX(u) — E,(u))
m— o0 O<u<p
<A, as.

Combining this with (2.2) and the unbootstrapped version of (2.9) [cf. Aly,
Csorgb and Horvath (1985)] completes the proof of (2.9).

Acknowledgment. Computing was performed on the UW-Madison Statis-
tics VAX 11 /750 Research Computer.
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