The Annals of Statistics
1987, Vol. 15, No. 2, 732-748

PROPORTIONALITY OF COVARIANCE MATRICES

BY P. SVANTE ERIKSEN

Aalborg University Centre

The present paper considers inference for the statistical model specifying
proportionality between independent Wishart distributions. It is shown that
the maximum likelihood estimate of the common covariance matrix and the
constants of proportionality is the unique solution to the likelihood equation
and an iterative procedure determining the estimator is given. The model is

- an exponential transformation model, which implies the existence of an exact
ancillary (a maximal invariant), and an asymptotic expansion for the distri-
bution of the estimator conditionally on the ancillary is given. In addition, it
is shown that the estimator is unbiased to order O(n~3/2). Finally, we derive
the Bartlett adjustment to the likelihood ratio statistic for the hypothesis of
proportionality and subsequently for the hypothesis specifying that all of the
constants of proportionality are equal to one. A small simulation study shows
that the Bartlett adjustment can be very effective in improving the accuracy
of chi-squared approximations.

1. Introduction. Suppose that S;, i=0,..., &, are independent p X p
matrices so that S; ~ W,(n;, n;'Z)), i.e, S; has a p-dimensional Wishart distri-
bution with n, degrees of freedom and expectation Z;. In the sequel we will
consider the estimation and testing problem for the hypothesis of proportional
covariance matrices, i.e., the hypothesis specified by

(1.1) S, =\, i=1,...,k.

My interest in this problem originates from Boldsen (1984), who wanted to
improve the estimates of the covariance matrices associated with several bi-
variate normal populations. Actually, Boldsen ended up pooling the sample
covariance matrices, as the present techniques were not available. The problem
has been considered by Kim (1971), who proves that, for £ = 1, the maximum
likelihood estimator is the unique solution to the likelihood equation.

In Section 2 it will be shown that the statistical model (1.1) is an exponential
transformation model, and this property will be the basis both for proving that
the maximum likelihood estimator (ﬁo, Xl, cee, Xk) of (25, Ay,...,A,) is the
unique solution to the likelihood equation (Section 3) and for the derivation of
the distribution of (ﬁo, 5\1, c A #» W), where W is a maximal invariant affine
ancillary (Section 4). Furthermore, in Section 4 we give an iterative procedure for
determining the maximum likelihood estimate. In Section 5 we present an
approximation to the conditional distribution of (20, 5\1, C A x) given W, and
this forms the basis for Section 6, where we consider the likelihood ratio test of
the hypothesis (1.1) and subsequently the hypothesis

(1.2) A= =A,=1.
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The Bartlett adjustment factors for these test statistics are derived, using a main
result of Barndorff-Nielsen and Cox (1984). A brief simulation study reported in
Section 7 shows that the effect of the Bartlett adjustment for testing the
hypothesis of (1.1) can be quite dramatic. We have also found that the un-
adjusted likelihood ratio test performs well for the hypothesis of (1.2).

2. Formulating the model as a transformation model. We start by
noting that the model for proportional covariance matrices is an exponential
transformation model in the sense of Barndorff-Nielsen, Blaesild, Jensen and
Jorgensen (1982). For that purpose, let T,(p) denote the group of upper
triangular p X p matrices with positive diagonal elements, ie., T =
{t.;} ET.(p)if t;>0,1=1,...,p, and ¢;=0, 1<j<i<p.Let Pk)=
{}\ e R¥A,>0,i= 1 , Rk} denote the multiplicative group of positive vectors,
ie, Ap= Ay, A kp. k), and let PD(p) denote the set of positive definite
p X p matrices. Then G = T.(p) X P(k) acts on PD(p)**! by

k+1 k+1
(2.1) G x PD(p)"" - PD(p)"",

((T, 1), (Sy,-.-58)) = (TS,T*, \\TS,T*,...,\,TS,T*).

The image of S = (S,,.. Sk) under (7T, )\) € G will be denoted by (T, A)S. Now
it S ~ Wy(n,, ny 129) ® « -+ @ W, (ny, ny! kEO), where ® denotes product mea-
sure, then it is clear that (T, a)S W(no, n0 S0 ® - - @ Wy (ny, ngt 20,
where 2 =T3,T*, Ni=a;, i=1,...,k, ie, we have a transformation
model.

Furthermore, G acts freely [i.e., for all S we have that (T, A\)S = S implies
(T,\) = e, where e = (I,,(1,...,1)) is the identity element of G] and, conse-
quently, we may parametrize the model by G. The measure

k
(2.2) du(8) = TS|+ ds,
i=0

on PD(p)**! is invariant under the action of G [see, e.g., Eaton (1983), Section
6.3], and if f is the density of S w.r.t. p, then we have in the parametrization
given by G,

p k k
f(S; (T, N) = w [Tt TTAT 2T 1182
Jj=1 i=1 i=0

(2.3)
Xexp| — 1tr( (nOSO+ Y AT nS)T* 1))
i=1
where n = X% n; and
k
W= l—[“’(ni’ p)’

(2.4) =0

p—1
o( f, p) = 7 PP=V/4( f/2)/P [1r((f -i)/2)7"

is the well-known norming constant.
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3. Estimation. Since {(Z(, A;Zg,..., A 2p)|A € P(R), 2, € PD(p)} is a set,
which is relatively closed as a subset of PD( p)**1, it follows that the existence of
the maximum likelihood estimator is ensured by Theorem 2.1 of Eriksen (1984a).
Let I((T, N); S) denote the log-likelihood function for (T, A\) € G based on the
observation S and let (T, A\); S) denote the vector of partial derivatives with
respect to (T, ). This is well defined since G is an open subset of RP(P+1/2+k
and we may conclude that the estimator exists as a solution to the likelihood
equation.

Let w'= {W € PD(p)**!|l(e; W) = 0} denote the set of observations for
which 20 =1, Xi =1,i=1,...,k, is a solution to the likelihood equation. If
(T, %) is a solution to the likelihood equation corresponding to the observation S,
then W = (T, X)~'S € #". Since there is at least one solution it follows that the

mapping

. k+1
(3.1) F:  Gx#%-PD(p),

(T, N),W) > (T, \)W

is surjective. In the sequel we will show that F is injective implying that with
F~YS) = (T(S), \(S)), W(S)) we have that (1(S), A(S)) is the unique maxi-
mum likelihood estimator. Furthermore, W(S) is clearly maximal invariant and,
as we will show, # is an affine subset of PD(p)**!, i.e., W(S) is an affine
ancillary [for a definition, see Barndorff-Nielsen (1980)].

Let us start by characterizing #”. From (2.3) it follows that if V= T-! and
S(A) = nyS, + LnA;'S;, then

p k
(82) US;(T,\))=-nY logt;— Y n,p/2log A, — Str(VS(A)V *).

j=1 i=1
Let E,;;, i <j, denote the p X p matrix with 1 on the (i, j)th place and zero
otherwise. Then it is obvious that dT/d¢;; = E,; and since VT = I, it follows

that dV/d¢;; = VE,;;V. From this it is easy to see that

al

- = —ndtyt + t(VE,VS(\)V*),
(3.3) a;’

Y = —n;p/2\; + n /20 2r(VS,V *).

This means that W = (W,,,..., W,) € #" if tr(E; L} ,n,W)) = né
p,and tr W, =p, i = 1,..., k, which can be expressed as

iy 1 <i<j<

k
(34) YnW,=nl,, tW=p, i=0,..,k
i=0
Next we show that F given by (3.1) is injective.
So suppose that (T, )W = (T, Ap)W. Setting (T, ) = (T, Ay) (T, A))
this implies that W = (T, M)W, i.e.,

-~

W,=TW,T*, W,=\NTWT*, i=1,..., k.

We will show that this is fulfilled only if T=1,, A\;=1, i=1,..., %, i.e., the
mapping (3.1) is injective.
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Now let T*T = 6D8*, where 6 is an orthogonal matrix and D =
diag(d,,..., d,)isdiagonal with d, > --- > d, > 0. First suppose that d, > d,,.
Then we have from (3.4) that

p=trW,= \tr(TW,T*) = A tr(DO*W,0)
<N dtr(6*W;0) = N\ ditr(W;) = N, d, p,
ie.,
A, >dih, i=0,...,k,
where A, = 1. From this and (3.4) we obtain
nl,= Y nW,= Y A\;n,TWT*
> ditY n,TWT* = d;'nTT *,
where A > B means that A — B is positive definite. Now, since
det(A] — T*T) = det(AI — TT*), A € R,
it follows that the eigenvalues of T*T and TT * are equal and consequently
TT* = D% * for some orthogonal matrix %. Combining this with (*) we
obtain I, > d; D, whj~ch is not fulﬁlled,~i.e., we must have that d, = d, = d, so
that T = dI,. Since W, = dW,, and tr W, = tr W, = p, it follows that we must

have d = 1. Similarly, it is now easy to see that wemust have A, = --- =X, =1.
These considerations may be summarized in a theorem.

(+)

THEOREM 3.1. The maximum likelihood estimate of (2, \) exists uniquely
and is given by (TT*, X) where (T, \) is the unique solution to the likelihood
equation determined by (3.3).

Furthermore, S = (T, \)W where W € W = {(W,,..., Wp)|tr W, = p,
Lk on;W, = nlI} is a maximal invariant affine ancillary.

The likelihood equation determined by (3.3) may be rewritten as

k
5"0 = ayS, + Z aixi_lsh

(3.5) =t
1 N
Ni=—tr(27'5),  i=1,...,k,
p
where a; = n,;/n,i=0,..., k.

These equations suggest an iterative procedure for determining (ﬁo, %) and in
fact we have the following:

THEOREM 3.2. Let A, = tx(S;)/tr(Sy), t = 1,..., k, and

k
2, =S+ Y aA;lS, m=12,...,
i=1

(3.6)

im

1
A, = ;tr(z;,l_ls,.), i=1,...,k,m=23,....
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Then
Tim (2, A) = (£, 4)-
Proor. Consider the likelihood function
3.7) L(Z,\) = |22 Ilill)\’,?lpﬂexp(—%tr(E‘IS()\))).
When A € P(k) is fixed, we have that L is uniquely maximized by S\ =
(1/n)S(M). Define the map
' v,: PD(p) X P(k) > PD(p) X P(k),
(2,1) = (E(A), A).
Then v, is continuous and
L(v,(Z,N)) = L(Z,A),
with equality if and only if v,(Z, A) = (£, A). Similarly, we can define
v,: PD(p) X P(k) - PD(p) x P(k),
(2,0 = (2,A(2)),
where >\l(2) A/p)tr(Z7'S), i=1,..., k.

Then v, is continuous and since L is unlquely maximized by A(Z), when = is
fixed, we obtain

L(V2(2, >‘)) = L(E’ >‘)’

with equality if and only if Vy(Z,A) = (2, ). It follows that v = Vv, is
continuous and (Z,,A,,) = V™ Y2, A,). By the proof of Theorem 2.1 of
Eriksen (1984a), we have that 4= {(Z, A)|L(Z,A) = L(Z, A,)} is a compact
subset of PD(p) X P(k). Now, since {(Z,,,\,,)} €4 we only have to show
that if (E s A . is a convergent subsequence with limit point (Z, A), then
0 = En A

By the properties of v we have

L(Z,\) = lim L(Z,,,A,,)
> lim L(V(Z,, »Am, ) = L(V(Z,1)).
g0
Hence, '
L(Z,A) 2 L(vsv,(2,0)) = L(vy(Z, 1)) = L(Z,A),

which at first implies v,(Z, A) = (£, ) and secondly v2(2 A) = (Z, A). These
equalities hold if and only if (£, A) is a solution to (3.5), i.e.,, (£, A) = (EO, X). O

REMARK. The starting value of A may, of course, be chosen differently, but
the proposed choice seems reasonable and is easily calculated.

4. Distributional results. In order to describe the distribution of (T, A, W)
we need to determine the measure F~'(u), where p is the invariant measure on
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PD(p)**! given by (2.2) and F is the diffeomorphism (3.1), i.e., F(T, A\), W) =
(T, MHW.

It is well known that [see, e.g., Barndorff-Nielsen, Bleesild, Jensen and
Jorgensen (1982), Section 3]

FY(p)=av#,

where « is a left-invariant measure on G and ¥ is the so-called quotient
measure on % . Since

k P
da(T,\) = TIA; T ¢7P- dTdA
i= j=1

(where dT =11, _ ;dt,;, dXA =TI, dA,) is a left-invariant measure on G [see, e.g.,
Eaton (1983), Section 6.2], we only need to determine J#. Let dS and dW denote
the Lebesgue measure on PD(p)**! and #", respectively. Then we know that
F~Y(dS) = Jz dTdX\ dW, where J; is the Jacobian of F. Since as already
stated du(S) = ¢(S) dS, where q(S) =TI~ S|~ ?*V/2, it follows that
dF~Y(pXT, N\, W) = Jp((T, N\), W)q((T, \), W) dT d\ dW. Equating this to
da(T, \) ds# (W), it follows that
dH# (W) = Jp(e, W)q(W) dW.
The evaluation of Ji(e, W) is straightforward but very tedious and is for that
reason deferred to the Appendix. There it is shown that the calculation of
Jp(e, W) can be reduced to evaluating the determinant

(4.1) J(W) = 2Pa;P(P+D/2 {3 p - tr Jaa; WW)}

i,j=1

It should be noted that dW dw, --- dW,, where W = (W,,...,W,), W,
{(Wipm} m=1 and dW, =TIJ_, dwl,lﬂ i<m dw,lm In particular, in the case of
proportionality of two covarlance matrices, we have

J(W) = 21’a51’(”+1)/2(p - altr(le)).
All things considered we have shown

k p
da(T,A\) = TIN T H7P 1 dTdA,
i=1 j=1
(4.2)
k
dA# (W) = J(W) I—[I"Vil_“’“)/2 aw,
where J(W) is given by (4.1). Denotlng the density of (T, X), W) wrt. a ® #

by f, it is clear from (2.3) that
f((T,X), w; (T, 1))

p

- o1 (55%) T (O 4)™"

(4.3) =1

X ]_[ |VV,~|”t/2exp( —n/2tr

k
T—IT(%W0 + Y A;lf\iaim)T*T*‘l)).
i=1

In principle it is now possible to determine the conditional distribution of
(T, X) given the ancillary statistic W, but there seems to be no closed form for
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the marginal distribution of W. This suggests that we try to approximate the
relevant distributions.

5. Asymptotic expansion for the conditional distribution of the maxi-
mum likelihood estimator. Let f((7, 7\); (Ty, Ao)|W) denote the density w.r.t.
a of the conditional distribution of (T, A) given W. Since f((T, R); (Ty, A o)|W) =
f((Ty T, A\g'A); e]W) we will concentrate on approximating f((T, \)|W) =
f(T, A); e]W). By (4.3) we have that

p k

F((T,\)|W) = (W) ]:[ltj'; I;[lxlup/z

(5.1) / )

><exp(—n/2tr(T(mOI/V0 + Y Aiaivvi)T*)),
i=1

where ¢(W) is a normalizing constant.

We will consider an approximation as n — co under the assumption that
a,=ny/n, i=0,...,k, is fixed. Instead of W we introduce U = (U,,...,U,),
where W, =1, + n~'2U, i=0,..., k. It is then a standard result that the
distribution of U is asymptotically normal on the vector space {U|X%_,a;U; = 0,

tr U, = 0}.
In order to expand (5.1) we will change from (T, A) to another parametriza-
tion, which eases the calculations. For that purpose let u,,..., u, € RP~! be

determined so that

p-2 p1/2
u, up,

is an orthogonal matrix. Next, for z € R?~! we denote by D(z) the diagonal
D X p matrix

p
(5.2) D(z) = ) (u}z)Ej;.
j=1
The assumption on u,,..., u, implies that
tr(D(z)) =0,
(5.3)

tr(D(z)Q) = ||2||2.

Now let M = {m,;;} denotea p X p matrix so that m;;=0,1<j<i<p,and
let v* = (vy,...,0,) € R**L,
We will then change to the parametrization (z, v, M) determined by

exp((2nop) vy Jexp((2n) "2 D(2))(1, + n~ /M),

(5.4)

A= exP((niP/2)_1/20i - (nop/z)_l/zvo), i=1,...,k,

where exp(A) = £ ,A"/r! is the exponential map defined on a p X p matrix.
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By (5.1) and a bit of calculation it now follows that the conditional distribu-

tion of (z, v, M) given U has density f(z, v, M|U) with respect to the Lebesgue
measure dz dvdM given by

(2,0, M|U) = &(U )exp

k
(np/2)"*y*0 = (n/2) govfexp((nipﬂ)‘”“’v,-)
(5.5) X (tr([Ip + n‘I/ZM*]exp((n/2)_l/2D(z))
x [L,+ n=2M (1, + n-lﬂui)))),

where y* = (al/?,...,a}/?) and &(U) is a normalizing constant. Expanding
exp((n/2)~12D(z)) and exp((n;p/2)”/%v,) then yields

f(z,0, M|U)
(5.6) = (2m) " FPETID25(U Yexp( - 2(l121I + llol® + I1M]1%))
x [1 = (20) A, + In"Y(AZ/2 - 4,) + O(n2)],
where || M||2 = tr(MM *), &U ) is a normalizing constant and
A, = 3trD(2)° + p~ 2y *o(IM|1? + ||2]1%) + tr (M*D(2)M)

k
Gny T veap u((Mr + M4 V2D(:)] X(0),
. =0

k
Xl(”) = Z y,0.U;,
i=0
and

A, =4trD(2)" + 2p~ 2y *o tr( M*D(2)M + 1D(2)’)
+ te(M*D(2)* M) + pIlol2(IM|)* + ||21|2) + 4p~" Lyi 2}
58) T (p/D 7 (MM + ‘/2_D’(z)M +V2M*D(2) + D(2)"] X,(v))
- p'tx([M* + M + V2 D(z)] X,(v)),

k
Xy(v) = Z ”?Uz
i=0

Now, denote by £(A) the quantity

&(A) = [A(2m) *PE D 2exp(— 1(2]12 + []0]]? + [ M]|*)) dz dodM.
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Then we have
éa(Al) =0,

59) éa((trD(z)a)z) =6p+12p~ ' — 18,
59
é(D(2)trD(2)*) =0,
é(urzD(2)) =E;—p7'I,, j=1,...,p.
From the last three equalities and the fact that ||y|| = 1, we may deduce
&(A}) = §(6p +12p~' —18) + p~(ip%(p + 1)’ - 1)
+p Hk+1)(p(p+1)-2) + 5(p*+ 12p? — 25p + 12)
k k
+3p7 L v+ 2p7t ¥ vRe(U2).
i=0 i=0
Furthermore, we have
é”(tr(D(z)“)) =3(p+p'-2),
and thereby
¢(Ay) =3(p+p'-2)+ (1-p " )p(p-1)/2
k
+p W (k+1)(p(p+1)/2-1) +p7' Xyt
i=0

We may now deduce that
(5.10) U) '=1+n"B(U) + O(n"%?),
where
b(U) = %(2p® + 3p> —p - 4p™")

k k
+3p 7 Xyt 4 ip7 L v2e(U2).
i=0 i=0

(5.11)

All things considered we have shown that

=g(z,v - (2n)™V?
6512 f(z,0, MIU) = ¢(z,0, M)[1 - (2n) /24,

+1in"Y( A2 - 24, - 2b) + O(n"¥2)],
where ¢ is the standard normal density on RP(P*D/2+*k and A, A, and b are
given by (5.7), (5.8) and (5.11), respectively.

Next, we will show that, conditionally on U, the maximum likelihood estimate
ANTT*, Ko =1, of A;gZg (Ag = 1) is unbiased to order O(n~3/2), i.e.,

(5.13) E(A2)U) = 2,02, + O(n=%2).
Since A,2, is distributed as AT TT *Ty*, Ay = 1, it is enough to show that
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E(\TT*|U) = I, + O(n~3?). From (5.4) and expansions of exp((2n)~'/2D(z))
and exp((n;p/2)~'/?v;) we obtain
ANIT* =L+ n V(M + M* +V2D(2) + V2 p~ 2y ',1,)
+n [ MM* + 2 p~ 2y Yo (M + M*)
+v2 /2D(2)(M + M*) + V2 /2(M + M*)D(z)
+D(2)* + y[zp_lvflp] + 0O(n=%7?)

and hence
p
ENTT*) =1, + n_l{ Y (p=JE;+(1-p ), + 'yi_zp_le:I + O(n=%?).
Jj=1
Now

8(D(2)e(M*D(2)M)) = £ (p - )E, - (p - V)21,

Jj=1
and from this and (5.9) it follows that

E(NATT*) = n“ﬂlﬁ(
J

(=08, = (0= /2,

+V2p Y p(p+1)/2 - I, + ﬁp‘lyi'2lp + O(n71).

It is now straightforward to conclude that
E(\TT*U) = I, + o(n=%2),

i, we have shown that A;7T™ is conditionally and hence unconditionally
unbiased to order O(n~%2).

6. Testing. This section deals mainly with the determination of the Bartlett
adjustments to the likelihood ratio statistics associated with the hypotheses (1.1)
and (1.2). The derivation of these quantities follows the directions of Barndorff-
Nielsen and Cox (1984).

The likelihood ratio statistic @, corresponding to (1.1) is given by
f(S; (T, 5\))/ f(1,,..., I; e), where f is the density in (2.3), i.e., we have

k k
(6.1) Q, = 2,72 [TA; 22 TTIS)™72,
i=1 i=0
where £, = T1*.
Similarly, we have for the hypothesis (1.2) that
Q2 = £(S; (15, X0))/(S; (1, 8)),

where Ao = (1,...,1) and T,T* = £*_(a;S; is the maximum likelihood estimate
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of 2, under (1.2). It follows that

k

Z a;S;

=0

-n/2

k
(6-2) Q= |20|n/2 1_[ Xr;,p/2‘
i=1

In the sequel we will show the following:

THEOREM 6.1. (i) The Bartlett adjusted likelihood ratio statistic associated
with testing the hypothesis =, = N\,2,, i = 1,..., k, is given by

k k
= By 1n(logliol + Y aplogh,— ¥ ailogISiI),

i=1 i=0
where (20, X) is determined by Theorem 3.2 and

BHP(p¥1/2-0/2 = h(n)g(np,0) " l_[h(n) 'g(n;p,0),

(63) et i) = v (3) e 2

h(n) = ng(n ).

The distribution of t, is, to order O(n~%'?), the chi-squared distribution with
k(p(p + 1)/2 — 1) degrees of freedom.

(ii) The Bartlett adjusted likelihood ratio statistic associated with testing the
hypothesis A\, = -+ =X, =1lunder 2,=N2,, i=1,...,k, is given by

t, = By 'n|log

k k
Z aiSi‘ - 10g|20| - Z a;p log xi):

i=0 i=1
where
k -1
B;”* = g(np,0) l_{)g(nip,O)
i

The distribution of t, is, to order O(n~%?), the chi-squared distribution with k
degrees of freedom.

REMARK. A set of asymptotically equlvalent adjustments is obtained by
applying the approximation

I'(a) = 2'n'a""_1/2exp(—a)(1 +(12¢) 7' + O(a_z)),
which, in particular, yields B, = B, + O(n"~2), where

k
N Y et - 1).
i=0

In the case p = 1, this is the well-known Bartlett adjustment for the testing
of homogeneity of variances.

(6.4) B, =1+ (3knp)
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The method to derive the Bartlett adjustment developed by Barndorff-
Nielsen and Cox (1984) is based on the formula for the density of the maximum
likelihood estimator 8 conditionally on an ancillary statistic w, namely

L(9)
L)

Here L is the likelihood function, j = j(é) is minus the matrix of second-order
derivatives of log L(8) evaluated at § and c is a normalizing constant. In
general, the validity of (6.5) is to order O(n~3/2), but in case of a transformation
model the formula is exact.

In order to derive the Bartlett adjustments, we have to determine the
normalizing constant in (6.5), when the formula is applied to the full model and
to the models given by (1.1) and (1.2). All three models are transformation
models, and if e is the identity element of the group generating the model, it
follows that

(6.6) o(w) = p(e; elw)| j(e, w)| ™

Let us start by considering the full model, where the ancillary is degenerate.
Since the model is a product of independent Wishart distributions, the normaliz-
ing constant ¢, is the product of the constraints associated with each Wishart
distribution. So let p(S, £) denote the density of S ~ W,(f~'Z, f). Then we
have

(6.5) p(8; 6lw) = cl]'/? —=

p(Ip,Ip)=e-'P/2(g)fp/2 P/ l'[l“(f ’) )

J=0 2

Furthermore, j(I,)”! is the covariance matrix of S when = = I,. All quantities

in S are uncorrelated, the diagonal elements have variance 2f~! and the
off-diagonal elements have variance f~}, i.e.,

|i(1,)| 7% = 2orprtonrs,

We may conclude that the norming constant of a Wishart distribution is

(6.7) e(f)=(@2m) PPV eI 2p(f),
and hence
k
(6.8) Co= (2'77)_(I“"J'I)”(‘"Jr1)/4e"“"/2 [Ta(n,).
i=0

Next, consider the density (5.1) of (T, &) conditionally on W. In Eriksen
(1984b) it is shown that the normalizing constant ¢(W) is to the order O(n~3/2)
independent of W, i.e., we may determine the constant ¢, associated with (1.1)
by

) -1/2
c1=f(Ip’ AOIVVO())IJ(IP, >\07W00)| ’

where Wy, = (I,..., I))and A\, = (1,...,1). A bit of calculation shows that
00 D P 0

k
F(I,, Xo|Wy) = w(n, p)22e="/*T(np/2) [T a2*/?T(n;p/2) "
i=0
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and in the Appendix it is shown that
k
. k
(6.9) |7(L,, Ao, Weo) | = 220PP+D/2(np /2) 1_!)01,-.
i
We may conclude that

k
(6.10) ¢, = (2m) PPV AR 2e-np /2 (n) g(np,0) ! ﬂg(n,.p,o).

Finally, we have to consider the conditional distribution of T0 given (A, W),
where T T(;“ is the estimate of 2, under (1.2). It is fairly easy to see that under
(1.2) we have that the density (2. 3) evaluated at S(T), , A, W) is the product of a
factor depending on T only and a factor depending on (5\ W) only. Since (5\ W)
is invariant under the group generating (1.2) we may conclude that T and
(X, W) are independent. This means that the normalizing constant c, assoc1ated
with (1.2) is determined by the distribution of T T0 , which is W, ((1/n)Z,, n),
i.e., we have by (6.7) that

— (2W)—p(p+ 1)/4e—np/2h(n).

The Bartlett adjustment B, to (6.1) is given by (27)~(c,cy )%/ *kP(P+D/2-k)
and from (6.8) and (6.10) we obtain

k
B{e(p(p+1)/2—1)/2 _ h(n)g(np,O)_l lj[oh(ni)_lg(nip,o)-

Similarly, the Bartlett adjustment B, to (6.2) is given by (27) Y(cocy )%, ie.,

k
B}/ = g(np,0) [1g(n:p,0) ™
This finishes the proof of Theorem 6.1. O

7. Simulation results. It turns out that both B, and B, are fairly close to
one when p > 2, so that the gain in accuracy of the approximation is modest. In
fact, the unadjusted test statistic performs satisfactorily, even for small sample
sizes.

It is apparent from Table 1, that it is important to adjust when testing
proportionality of the covariance matrices. It seems that only if all of the
nvalues are “large,” it is of no crucial importance to make the adjustment.

8. Concluding remarks. The hsrpothesis of proportional covariance
matrices may also be formulated as

S,=028, i=0,...,k,

where 3 has determinant one. In this formulation we have that the maximum
likelihood estimate of ¢? is given by

62 =exp((n;p/2)""0)),  i=0,...,k,
where © is determined from the representation (5.4) of (T }).
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TABLE 1
Simulated values of 100P(—2(adj. fac.) 'log @, = x2(d),_,), where x*(d), _, is the (1 — a)-fractile
of the chi-squared distribution with d degrees of freedom.
Based on 5000 samples

Type of Adj. o Adj. @
adjustment fac. 1% 5% 10% fac. 1% 5% 10%
p=2 n,-values: 22222 d=38 n,-values: 22333 d=38
B, 2.3166 0.68 3.50 7.68 1.8789 0.86 4.60 9.42
None 1 32.90 54.08 64.52 1 21.20 40.52 51.20
p=2 n,-values: 33333 d=38 n,-values: 33445 d=8
B, 1.6316 1.02 4.72 10.18 1.4753 0.90 4.80 9.68
None 1 13.56 29.56 41.00 1 8.92 22.02 32.54
p=2 n,-values: 224040 d=6* ng-valuess 99999 d=8
B, 1.6080 1.40 6.36 11.28 1.1521 0.94 4.76 9.88
None 1 11.80 27.36 37.36 1 2.20 9.54 17.42
p=3 n,-values: 333 d=10" n,-values: 444 d =10
B, 2.3696 1.67 6.17 10.87 1.7513 1.10 4.95 9.82
None 1 48.50 67.37 76.20 1 21.02 40.05 52.67
p=3 n,-values: 777 d=10" n,-values: 468 d =10
B, 1.3223 0.85 4.62 9.75 1.4649 1.20 5.77 10.95
None 1 5.92 17.37 26.83 1 11.55 27.07 38.33
p=5 n,-values: 55 d=14* n,-values: 10 10 d=14*
B, 2.5499 3.76 12.00 19.56 1.4080 1.20 5.20 10.88
None 1 73.04 85.92 90.68 1 11.84 29.00 40.12

2Based on 2500 samples.
bBased on 4000 samples.

The likelihood ratio statistic (6.2) for testing o2 = --- = o2 is then given by
k /2y,
A A2\ M.P/2
Q, = Z aiaiZVVi n ("12)
i=0 i=0
-n/2 k

k k

Y 620, + n 2 Y 0,620 [1(s2)™*"*
i=0 i=0 i=0

k —np/2

Z )

[1(62)""*(1 + 0,(n™Y)).

i=0

Il
—
~.
]
o

This serves to explain the fact that the Bartlett adjustment (6 4) associated
with @, is the same as the adjustment associated with the comparison of (k + 1)
variances, where the ith observed variance has n;p degrees of freedom.

Another point of interest might be the conditional density of A given w. It
Aio=1,i=1,..., &k, we have, as already stated, that (5\ W) and $,=Y% 0% S;
are mdependent This was seen by transforming ((}\ T), W) to ((>\ W), T)
where T,T* = $, = T(a,W, + £ oA W,)T*. Denoting this transformation by
H, the only problem left is to construct the measure p on P(k) X #  determined
by

H(a®#)=p®p,
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where a ® S is given by (4.2) and B is the left-invariant measure on T (p).
This may be done in the same way as for the construction of J#, i.e., essentially
by calculating the Jacobian of H~! (or H) evaluated at (A, W), L).

APPENDIX

A.l. Determination of the Jacobian of (3.1). Let (S,,...,S,) =
F(T,\),W) so that S,= TVVOT* and S;=ATWT* i=1,...,k. Since
el OaW I, we have that S, = ag'T(I, — ):f 1aW)T* Let W, = { im}E me=1s
i=1,..., k. The identity tr W, =p 1mp11es that w,,,=p — ):, L wiy In the
sequel we determine the derlvatlves of F, all of which are evaluated at (T, A) = e.

BS/BAj=8~~W 1=0,....,k, j=1,..., k,
3S,/9t,, = E,, W, + W,E.%., z=0,...,k,lslsm5p,
3SO/3wilm=—a0_aiElm, i=1,...,k,1£l<m£p,

(980/(9wi”=ao_lai(Epp—E”), i=1,...,k,l=1,...,p_1,
08,/ 0 Wy = 8;;Eyp,
3SI/Bwl” (E” ) i,j=1,...,k,l=1,...,p_1.

The determinant of the Jacobi matrix is not altered by adding a constant
times one row (column) to another row (column).

Now multiplying the rows corresponding to Sy = {Spij}1<i<j<p DY @ gives a
factor to the Jacobian, which is equal to a, ~plp+1)/ 2, Next, adding the rows

,,j=1,...,k,1<l<m<p,

corresponding to S; = (S 1 <i<cm<ps J = , k, multlplled by a; to the rows
of S, gives that
39S,/ 9N ; = aW,, J=1,...,k,
S,/ dw;,, = 0, i=1,...,k1<l<m<p,1<l=m<p,

3S,/3t,, = E,,, + E,, 1<l<m<p,

where, e.g., dS,/dw,,, = 0 means that currently the rows corresponding to S,
have a zero on the place corresponding to wy,

Now, the column of w;;,,, has 1 on the place corresponding to s,
otherwise, i.e., we may remove the row-column “passing through (s,;,,, w;;,),
i=1,...,k1<l<m<p.

Next, we add the row of s;,, I=1,...,p — 1, to the row of s;,, and we
obtain

and zero

”»

8s;,/0N; = 8,p, i, j=1,...,k,
asjpp/3t1m=2w-lm, j=1,...,k,1$l$mﬁp,
Ipp/a ”~O i,j=1,...,k,l=1,...,p_1.
It follows that we may remove the row-column corresponding to (s, wiy),

j = ,k,1=1,..., p — 1. Now, dividing the column of ¢;;, i = 1,..., p, by 2

glves the factor 2P to the determinant. Multiplying the row of s5,,,, j=1,..., &,
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by al/? and dividing the column of A;, j=1,..., &, by al/? does not alter the
determinant and we have

330ij/3t1m""3i18jma l1<i<j<p,1<l<m<p,

880ij/3}\m=a}n/2wmij, l<i<j<p,m=1,...,k,
(A1) .

08,55/ Otim = a}/2(2 — 8,m)wﬂm, 1<l<m<p,j=1,...,k,

985/ 0N = 8P, i,j=1,..., k.

Now, multiplying the row of ¢, by a}/?w;,, and subtracting this from the row of
Np,Jj=1...,k1<l<m<p, gives

330ij/3t1m = §,5;

im>» 1<i<j<p,l1<l<mc<p,

386;;/0N,, = 0, 1<i<j<p,m=1,...,k,
98pp/ Ity = a}/z(z = 80 ) Wit 1<l<m<p,j=1,...,k,
asfpp/axi = 8ijp - (aiaj)l/2tr(vvivvj)’ L,j=1,..., k.

From this it is clear that we may remove the row—column corresponding to

(sOiﬁ tij)’ 1<i Sj <p.
In other words, we have shown that the Jacobian of F at (e, W) is given by
J(W) = aap(p+1)/22p k

{sijp - aiajtr(vViVVj)}

i,j=1

A.2. Proof of (6.9). We start by evaluating the determinant of the observed
information in the parametrization (T, ), i.e., we will determine minus the
second-order derivatives of I((T, A); W), all of which are evaluated at (T, A) = e.
From (3.3) we obtain

—9%/0t=(1+8,)n, 1<i<j<p,

- 9%/dt;; dt,, =0, l<i<j<p,1<r<s<p,(iJj)#(r,s),
— 3% 9N, Bt,, = navy,, i=1,.. kl<r<s<p,
—3%/aN, 0N, = 8,mp/2, b i=1,...,k

Now, multiplying the row of A; by 2a; /%, i =1,..., k, the column of A; by

i
n~laj "%, j=1,..., k, and dividing the column of t;;by(1+8)n,1<i<j<
p, gives the factor 27~ *nP(P+D/2+ [Tk 4, to the determinant. At this stage we
have

—9%/9t;; 3t = 8,9, l1<i<j<p,1<r<s<p,
—32/9t,, I\, = &} *w,,q, i=1,...,k,1<r<s<p,

— 32/0\, 0t,, =~ aV/*(2 - 8, )wy,,, i=1,...,k1<r<s<p,
—azl/(?}\,a}\jzlsup, i,j=1,...,k,
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which is the same system as (A.1), i.e,,

k

k
| /e, W)| = 2P~ knpe+0/24k T o
m=1

(8,0 — o tx(WW;))

i, j=1
Let y* = (a1/%,..., a)/®) and suppose W = Wy, = (I,,, ..., I,). Then

k
i

}{Sijp— aiajtr(VViVlG)} o

=|P(Ik - YY*)I

= p*(1 = |I711?) = p*ay,
ie.,

k
| (e, Weo)| = 2Pn2®*/2(np/2)" T] @,
m=0
which finishes the proof of (6.9).

Acknowledgments. Thanks to the referees for useful comments and pro-
posing a simulation study, which led to considering the present version of the
Bartlett adjustment.
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