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MONTE CARLO EVIDENCE ON ADAPTIVE MAXIMUM
LIKELIHOOD ESTIMATION OF A REGRESSION'

By Davip A. HSIEH AND CHARLES F. MANSKI
University of Chicago and University of Wisconsin-Madison

This paper reports Monte Carlo evidence on the fixed sample size
properties of adaptive maximum likelihood estimates of a linear regression.
The focus is on the problem of selecting the smoothing and trimming
parameters used in estimating the score function. We examine the perfor-
-mance of adaptive maximum likelihood estimators when these parameters are
preselected or, alternatively, are determined by a data-based bootstrap
method.

1. Introduction. Stone (1975) proposed adaptive maximum likelihood
(AML) estimation of a location parameter and proved first-order efficiency.
Bickel (1982) modified Stone’s idea and proved that AML estimation of the slope
parameters of a linear regression with random regressors and identically distrib-
uted disturbances is first-order efficient. Bickel’s work extends in a straightfor-
ward way to nonlinear regressions (Manski, 1984).

These adaptation results are impressive but leave open the question of the
fixed sample size behavior of AML estimates. This is always an issue in
evaluating asymptotic results but seems particularly critical in the present case.
One reason is that AML estimates are approximations to linearized likelihood
equations estimates. The latter estimates are themselves based on a first-order
approximation.

A second, more specific cause for concern is that an intermediate step in AML
estimation is the use of residuals to estimate nonparametrically the score
function of the disturbances. To apply the kernel method of Stone and Bickel,
the statistician must select smoothing and trimming parameters. Compatibility
with first-order theory requires only that the amounts of smoothing and trim-
ming imposed be reduced at appropriate rates as the sample size increases, so
that the score function estimate is mean-square consistent. Given a fixed sample
size, these restrictions on rates in no way constrain one’s choice of magnitudes
for the smoothing and trimming parameters. Thus, the first-order theory of
AML estimation is inherently incomplete as a guide to practice.

It is not reasonable to expect that a fixed sample size theory will soon be
developed. The usual difficulties in parametric problems are compounded by the
nonparametric step of score function estimation. The literature on kernel estima-
tion of densities has struggled to determine how the level of smoothing should be
set when estimation of the density per se is the objective. In AML estimation,
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the situation is much more complex. We need to estimate a density plus its
derivative and then to use these to estimate the parameters of interest.

We report Monte Carlo evidence on the fixed sample size properties of AML
estimates. Our focus is on the problem of selecting the smoothing and trimming
parameters used in estimating the score function. We examine the performance
of AML estimates when these parameters are preselected or, alternatively, are
determined by a data-based rule. The first-order theory of adaptive estimation
assumes preselection. From a first-order perspective, there is no reason to
consider data-based rules because preselection yields an efficient estimate. From
a fixed sample size perspective, however, data-based rules may have appeal.

2. The experiments. Our experiments concern estimation of the shift
parameter separating two distributions, which differ in location but are known
to have identical shapes. The common shape of the two distributions is assumed
not known. Equivalently, the problem is to estimate the slope parameter b of the
linear model y = a + bx + u, where x is Bernoulli and u has the same, un-
known distribution conditional on both realizations of x. The intercept a is a
nuisance parameter, identified by centering the distribution of u at zero.

The data for the experiments are generated by drawing random samples from
six populations of (x, u) pairs and converting realizations of (x, ©) into observa-
tions of (y, x) via the equation y = a + bx + © with @ = —1 and b = 1. In each
population, x and u are statistically independent and x is distributed Bernoulli
with Pr[x = 0] = Pr[x = 1] = 0.5. The populations are distinguished by their
distributions for u. These may be:

(a) normal;

(b) variance-contaminated normal, the mixture 0.9*N(0,1/9) + 0.1*N(0, 9);
(c) t with three degrees of freedom;

(d) bimodal symmetric mixture of two normals, 0.5*N(—3,1) + 0.5*N(3, 1);
(e) Beta(2,2); and

(f) log normal, being the distribution of exp(z) for z ~ N(0, 1).

For purposes of comparability, it is desirable that the various distributions
have a common scale, in some accepted sense. Where necessary, we rescale the
above distributions so that they all have a standard deviation equal to one. In
order to identify the intercept parameter, we need to center the various distribu-
tions at a common point. Where necessary, we shift the rescaled distributions so
that they all have mean equal to zero.

Pseudorandom numbers from each of the six distributions are obtained by
taking appropriate functions of standard normal pseudorandom numbers. To
generate normal numbers, we apply the polar method. We use the multiplicative
congruential method and a shuffling table to generate the underlying uniform
random numbers. These methods are described in Knuth (1969). Computer
programs for generating the random numbers may be obtained from the first
author.

In this paper, we report results for samples of 50 and 25 observations on
(y, x). In each sample, we compute the least-squares and least-absolute devia-
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tions estimates for 4. In the problem under study, the least-squares estimate is
simply the difference between the means of y in the subsamples where x = 0 and
x = 1. The least-absolute deviations estimate is the analogous difference between
subsample medians. Using the least-squares estimate as the starting point, we
compute various AML estimates based on alternative estimated score functions.
We also compute the linearized likelihood equations estimate based on the true
score function.

For each estimator, we report Monte Carlo estimates of root mean square
error and interquartile range. Given that x is Bernoulli, there is an extremely
small but positive probability that a sample contains only observations with
x = 0 or with x = 1; hence that b is not estimable. For example, the probability
that this occurs in a sample of size 25 is 1/2%%. The treatment of any such
samples as may be drawn is immaterial for the reporting of interquartile range
statistics. On the other hand, root mean square errors are well defined only if one
conditions on the event that the sample contains some observations with x = 0
and others with x = 1. The root mean square errors reported here should be
interpreted as referring to this slight modification of the random regressor
model.

The score function estimates used in our AML computations have the form
proposed by Bickel (1982). Let N be the sample size. Let (ay, by) be the
least-squares estimate for (a, b) and let

UuN=Dn — QN — ban’

n=1,..., N, be the associated residuals. Let ¢ be the standard normal density
and let s be a positive smoothing parameter selected by the statistician. Each
value of s defines a normal kernel estimate of the density function of u, namely,

i) = oy 2 o “=).

To interpret this, observe that f is the density function of the sum of two
independent random variables, one having the empirical distribution of the
residuals and the other being N(0, s2). Thus, s is the standard deviation of the
normal noise added to smooth the discrete distribution of the residuals.

Let 1, t2 and ¢3 be positive trimming parameters selected by the statistician.
Each triple (21, £2, £3) defines a score function estimate based on f, namely,

L dw 0
q(u) = f()d,f||t1f(u) t2andf()du

q(u) =0, otherwise.

< t3,

That is, the trimming parameters set the score to zero if the residual is too large,
the density estimate too small or the trial score too large. Note that if the true
density function is known a priori to be symmetric, an antisymmetric version of
g can be formed. In our experiments, the symmetry assumption is not imposed.

We compute the AML estimates in the manner proposed by Bickel except
that we do not split the sample. This technical device was used by Bickel to
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simplify certain proofs. Not unexpectedly, experiments reported in Manski (1984)
indicated that, in practice, AML estimation works much better when the sample
is not split.

Our alternative AML estimates differ in the manner that the parameters
(s, t1, £2, t3) are chosen. A set of estimates is obtained by fixing these parameters
at predetermined values. In particular, we produce estimates for all cells in a
two-dimensional design selected after a round of preliminary experiments with
the six distributions. In this design, the smoothing parameter takes the values

s = 0.01,0.05,0.10,0.25,0.50,0.75,1.00, 1.50, 2.00.

The three trimming parameters are covaried as follows
[61=t¢,t2=exp(—t%/2),t3=1¢t], ¢t=3,4,8.

Based on the preliminary experiments, we concluded that little would be learned
by independently varying the three trimming parameters. Note that the specified
linkage between #1, t2 and t3 is such that when the estimated density f is
normal, all three parameters are effective at the same values of u.

One further score function estimate is obtained using a data-based method for
selecting the smoothing parameter. The data-based method evaluated here uses
the bootstrap. The sample distribution of x is taken as the population distribu-
tion, the least-squares estimates of a and b are taken as the true values, and the
sample distribution of least-squares residuals is taken as the population distribu-
tion of u. The bootstrap idea is to determine the optimal amount of smoothing
and trimming for AML estimation on this artificial population and then to apply
the optimum values to the original problem.

One might reasonably question whether a bootstrap approach makes sense
here. After all, if the distribution of u really were that of the least-squares
residuals, this distribution would not have a Lebesgue density as assumed in
adaptive estimation theory. It is therefore not a priori clear that optimal
smoothing and trimming for the bootstrap population should be close to optimal
for the true population. Nevertheless, we decided to proceed based on the
intuitive appeal of the bootstrap and its apparent success in other contexts.

To locate the bootstrap optimum in practice, we perform Monte Carlo AML
experiments on the bootstrap population. For this purpose, an experiment
consists of 50 independent trials, a rather small number dictated by computa-
tional concerns. We define the optimum values of smoothing and trimming
parameters to be those yielding minimum mean square error in the AML
estimate for b across the 50 trials. The results reported here fix the trimming
parameters and use the bootstrap only to optimize the smoothing parameter.
This simplification seemed warranted because our experiments with preselected
smoothing and trimming parameters indicate that it is always best to trim only
rarely. Given this and given that the computation of the bootstrap estimates is
very burdensome, we decided to fix the trimming parameters by setting ¢ = 8
and to make a line search for the best smoothing parameter.

As programmed, the line search evaluates the mean square errors of the AML
bootstrap estimates on a grid of s values in the interval [0.01,4.00] and finds a
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trial optimum. This is then compared to the mean square error at a predicted
optimum s value obtained by fitting a quadratic function to the grid. The better
of these two points is used.

3. Findings. Tables 1-3 present the results of the experiments. Table 1
shows the precision of the various estimators in samples of 50 observations of
(y, x). Both root mean square error and interquartile range are reported. Table 2
reports the precision of a subset of the estimators in samples of size 25. Table 3
gives quantiles for the sampling distribution of the bootstrap AML estimate.

Each experiment consisted of 2000 independent trials. We have not assessed
formally the sampling error of the statistics presented in the tables. We have,
however, performed several independent repetitions of some experiments with
smaller numbers of trials. We have also, where possible, checked the internal
consistency of the experimental findings. In particular, the root mean square
errors for least-squares estimation should be the same in all experiments with a
given sample size and should differ by a factor of V2 across sample sizes. Based
on these repetitions and checks, we judge that the precision statistics reported in
Tables 1 and 2 are generally within 5-10% of the actual ones. The quantiles in
Table 3 may be less accurate in the tails.

The findings reported below refer to Table 1 until stated otherwise.

Comparability of root mean square error and interquartile range results.
Measurements of estimator precision by root mean square error and by inter-
quartile range yield very similar results, in the sense that these two statistics
almost always rank the various estimators in the same order. The one exception
is in the log-normal distribution. There the two sets of statistics for AML
estimation have somewhat different patterns as one varies the amounts of
smoothing and trimming.

Effect of trimming on AML estimates. Holding the amount of smoothing
fixed, the performance of the AML estimate almost always improves as one
decreases the extent of trimming by increasing ¢ from ¢ = 3 to ¢t = 8. The one
exception is in the interquartile range results for the log-normal distribution.
There ¢t = 4 gives the best performance.

Experiments not reported here show that as one reduces ¢ below ¢ = 3, the
performance of AML estimates deteriorates. As ¢ rises above ¢t =8 to ¢ = 16,
performance tends to remain unchanged. As ¢ rises beyond ¢ = 16 or so, the
almost total absence of trimming begins to admit rare, outlying estimated score
values and performance begins to deteriorate. Not unexpectedly, these rare
events affect root mean square error much more than they do interquartile
range.

Effects of smoothing on AML estimates. Holding the amount of trimming
fixed, AML performance generally improves as one increases the extent of
smoothing by increasing s from s = 0.01 to s = 0.10. In all cases, the root mean
square error and interquartile range reach a local minimum in the region
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TABLE 1

Precision of the estimators in samples of size 50

Root mean square error Interquartile range
AML t=3 t=4 t=8 t=3 t=4 t=8
A. Normal distribution
s = 0.01 5.44 2.88 0.46 0.42-1.55 0.58-1.41 0.75-1.24
s = 0.05 0.41 0.33 0.29 0.75-1.27 0.78-1.23 0.82-1.19
s =0.10 0.36 0.32 0.30 0.76-1.25 0.79-1.22 0.81-1.22
s = 0.25 0.35 0.35 0.35 0.78-1.24 0.77-1.24 0.77-1.24
s = 0.50 0.32 0.32 0.32 0.80-1.21 0.80-1.21 0.80-1.21
s=0.75 0.30 0.30 0.30 0.81-1.21 0.81-1.21 0.81-1.21
s = 1.00 0.30 0.29 0.29 0.80-1.20 0.81-1.20 0.81-1.20
s = 1.50 0.32 0.29 0.29 0.80-1.20 0.81-1.20 0.81-1.20
s =2.00 0.36 0.28 0.28 0.78-1.20 0.82-1.20 0.82-1.20
Bootstrap AML 0.31 0.79-1.20
Least squares 0.28 0.82-1.18
Least-absolute deviations 0.35 0.76-1.22
Linearized likelihood 0.28 0.82-1.18
B. Variance-contaminated normal distribution
s = 0.01 > 10 9.51 0.33 0.50-1.55 0.62-1.40 0.77-1.20
= 0.05 0.36 0.31 0.26 0.76-1.23 0.80-1.19 0.84-1.16
=0.10 0.27 0.22 0.18 0.83-1.16 0.87-1.13 0.89-1.11
= 0.25 0.23 0.18 0.17 0.83-1.16 0.88-1.12 0.89-1.12
= 0.50 0.41 0.41 0.40 0.73-1.32 0.74-1.31 0.74-1.31
=0.75 0.72 0.70 0.69 0.59-1.52 0.60-1.51 0.60-1.50
= 1.00 1.06 0.98 0.94 0.45-1.72 0.53-1.59 0.55-1.59
= 1.50 2.16 1.57 1.16 0.12-2.29 0.62-1.55 0.74-1.38
s =200 3.82 2.64 1.17 —0.93-3.15 0.56-1.78 0.83-1.21
Bootstrap AML 0.17 0.90-1.11
Least squares 0.28 0.82-1.17
Least-absolute deviations 0.13 0.92-1.09
Linearized likelihood 0.16 0.91-1.09
C. t distribution with 3 d.o.f.
s = 0.01 1.39 0.88 0.40 0.45-1.58 0.60-1.43 0.78-1.21
s = 0.05 0.40 0.35 0.29 0.74-1.26 0.79-1.21 0.82-1.19
s =0.10 0.32 0.30 0.27 0.79-1.20 0.81-1.18 0.83-1.17
s =025 0.25 0.24 0.24 0.83-1.18 0.84-1.16 0.84-1.16
s = 0.50 0.24 0.24 0.24 0.85-1.16 0.85-1.16 0.85-1.16
s =0.75 0.28 0.27 0.27 0.83-1.17 0.83-1.16 0.83-1.16
s = 1.00 0.35 0.32 0.31 0.80-1.21 0.82-1.19 0.82-1.18
s = 1.50 0.63 0.51 0.42 0.73-1.29 0.80-1.20 0.81-1.17
s =2.00 1.06 0.83 0.56 0.68-1.35 0.78-1.21 0.82-1.17
Bootstrap AML 0.23 0.85-1.14
Least squares 0.28 0.82-1.17
Least-absolute deviations 0.23 0.84-1.14
Linearized likelihood 0.22 0.85-1.13
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TABLE 1
Continued
Root mean square error Interquartile range
AML t=3 t=4 t=8 t=3 t=4 t=8
D. Bimodal symmetric mixture of normal distributions
s = 0.01 591 5.78 0.35 0.48-1.50 0.64-1.42 0.77-1.22
s = 0.05 0.39 0.32 0.27 0.75-1.25 0.80-1.22 0.82-1.18
s =0.10 0.27 0.22 0.19 0.84-1.15 0.86-1.13 0.88-1.10
s =0.25 0.23 0.19 0.18 0.83-1.16 0.87-1.12 0.87-1.12
s = 0.50 0.57 0.57 0.57 0.53-1.46 0.53-1.45 0.53-1.45
s =0.75 0.60 0.60 0.60 0.57-1.42 0.57-1.42 0.57-1.42
s = 1.00 0.18 0.18 0.18 0.89-1.10 0.89-1.10 0.89-1.10
s = 1.50 0.26 0.26 0.26 0.83-1.16 0.83-1.16 0.83-1.16
s = 2.00 0.28 0.28 0.28 0.80-1.19 0.80-1.19 0.80-1.19
Bootstrap AML 0.16 0.90-1.11
Least squares 0.29 0.81-1.19
Least-absolute deviations 0.84 0.40-1.59
Linearized likelihood 0.16 0.91-1.09
E. Beta(2,2) distribution
s =0.01 2.33 1.67 0.39 0.38-1.53 0.60-1.41 0.77-1.24
s = 0.05 041 0.34 0.30 0.72-1.26 0.77-1.24 0.79-1.19
s = 0.10 0.36 0.33 0.31 0.74-1.24 0.78-1.21 0.79-1.20
s =0.25 0.36 0.33 0.33 0.76-1.23 0.78-1.23 0.78-1.24
s =0.50 0.29 0.29 0.29 0.81-1.19 0.81-1.19 0.81-1.19
s =0.75 0.28 0.28 0.28 0.82-1.18 0.82-1.18 0.82-1.18
s = 1.00 0.28 0.28 0.28 0.81-1.19 0.82-1.19 0.81-1.19
s = 1.50 0.28 0.28 0.28 0.80-1.19 0.80-1.19 0.80-1.19
s = 2.00 0.29 0.29 0.29 0.80-1.20 0.80-1.20 0.80-1.20
Bootstrap AML 0.29 0.80-1.20
Least squares 0.29 0.79-1.20
Least-absolute deviations 0.42 0.70-1.28
Linearized likelihood 0.29 0.81-1.18
F. Log-normal distribution
s = 0.01 > 10 > 10 0.34 0.44-1.54 0.59-1.39 0.64-1.38
s = 0.05 0.38 0.31 0.27 0.77-1.24 0.80-1.17 0.78-1.23
=0.10 0.31 0.26 0.21 0.83-1.19 0.87-1.14 0.85-1.15
s =0.25 0.24 0.22 0.22 0.84-1.16 0.86-1.16 0.82-1.20
s = 0.50 0.36 0.35 0.35 0.77-1.25 0.78-1.25 0.72-1.29
s =0.75 0.50 0.48 047" 0.71-1.32 0.72-1.28 0.70-1.30
s = 1.00 0.66 0.61 0.59 0.66-1.37 0.74-1.28 0.75-1.25
s = 1.50 1.21 1.02 0.86 0.52-1.69 0.82-1.22 0.79-1.21
s = 2.00 2.08 1.70 1.18 0.19-2.18 0.83-1.22 0.80-1.19
Bootstrap AML 0.17 0.90-1.10
Least squares 0.27 0.83-1.18
Least-absolute deviations 0.17 0.89-1.11
Linearized likelihood 0.25 0.84-1.16
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TABLE 2
Precision of the estimators in samples of size 25

Estimator Root mean square error Interquartile range

A. Normal distribution

Bootstrap adaptive 0.42 0.72-1.29
Least squares 0.40 0.73-1.28
Least-absolute deviations 0.51 0.67-1.34
Linearized likelihood 0.40 0.73-1.28

B. Variance-contaminated normal distribution

Bootstrap adaptive 0.25 0.84-1.14
Least squares 0.40 0.76-1.26
Least-absolute deviations 0.19 0.87-1.12
Linearized likelihood 0.27 0.85-1.14
C. t distribution with 3 d.o.f.
Bootstrap adaptive 0.34 0.77-1.22
Least squares 0.39 0.76-1.24
Least-absolute deviations 0.32 0.79-1.21
Linearized likelihood 0.32 0.81-1.20
D. Bimodal symmetric mixture of normal distributions
Bootstrap adaptive 0.31 0.84-1.16
Least squares 0.41 0.72-1.30
Least-absolute deviations 0.95 0.31-1.73
Linearized likelihood 0.27 0.84-1.16
E. Beta(2,2) distribution
Bootstrap adaptive 0.42 0.72-1.28
Least squares 0.41 0.72-1.27
Least-absolute deviations 0.58 0.63-1.40
Linearized likelihood 0.45 0.72-1.29
F. Log-normal distribution
Bootstrap adaptive 0.27 0.86-1.14
Least squares 0.40 0.76-1.23
Least-absolute deviations 0.27 0.84-1.15
Linearized likelihood 0.43 0.81-1.18

between s = 0.05 and s = 0.50. The location and depth of this minimum,
however, vary substantially across distributions.

In other respects, the performance of AML as a function of s depends
critically on the distribution generating the disturbances. Under the variance-
contaminated normal, #(3), and log-normal distributions, the RMSE function is
unimodal as a function of s. Under the normal and Beta(2,2) distributions, the
local minimum noted above has a small local maximum to its right. As s rises
beyond this, the global minimum root mean square error is attained and the root
mean square error function becomes flat as a function of s. Under the bimodal
distribution, there are two isolated global minima separated by a steep local
peak.
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TABLE 3
Quantiles of the standardized bootstrap AML estimate

Quantile
1 5 25 50 75 95 99
N(0,1) quantiles —-2.33 —1.65 -0.67 0 0.67 1.65 2.33

Sample size
A. Normal distribution

50 —241 —1.65 -0.67 0.03 0.65 1.61 2.34

25 —-2.36 —1.64 —0.66 0.02 0.69 1.63 2,43
B. Variance-contaminated normal distribution

50 —241 —1.56 —-0.59 0.01 0.64 1.66 2.61

25 —2.45 -1.60 —-0.63 —-0.04 0.54 1.59 2.77

C. t distribution with 3 d.o.f.
50 —245 —-1.73 —0.65 —0.04 0.61 1.60 2.27
25 —2.50 —1.65 —0.67 —-0.01 0.65 1.61 2.27

D. Bimodal symmetric mixture of normal distributions
50 —-2.24 —1.55 —-0.62 0.01 0.65 1.64 2.37
25 —-2.93 —1.54 —-0.53 0.01 0.52 1.56 3.03

E. Beta(2,2) distribution

50 —2.26 —1.66 -0.70 —-0.01 0.68 1.62 2.46

25 —-2.25 —1.64 -0.67 0.01 0.67 1.73 2.27
F. Log-normal distribution

50 —2.69 —-1.62 —-0.62 —-0.02 0.59 1.53 2.49

25 -3.01 —-1.556 —0.52 —-0.01 0.52 1.43 2.55

Performance of bootstrap AML relative to AML with preselected s and t.
Under all distributions, except the normal, the bootstrap AML estimate per-
forms as well as or better than the best AML estimate with preselected s and ¢
parameters. Under the normal distribution, the bootstrap estimate performs
slightly less well than the best AML estimate.

Performance of bootstrap AML relative to least squares. Under the normal
distribution, the bootstrap estimator performs slightly less well than its least-
squares starting point. Some deterioration should be expected since least squares
is optimal under this distribution. In the other cases, least squares is suboptimal
and we would hope that the bootstrap estimator would outperform it. In fact,
bootstrap AML outperforms least squares under the variance-contaminated
normal, £(3), bimodal mixture and log-normal distributions. It performs as well
under the Beta(2, 2) distribution.

Performance of bootstrap AML relative to least-absolute deviations. In
these experiments, the bootstrap AML estimator outperforms least-absolute
deviations more often than not. In particular, the bootstrap estimator performs



550 D. A. HSIEH AND C. F. MANSKI

substantially better than least-absolute deviations under the normal, bimodal
and Beta(2,2) distributions and about as well under the #@3) and log-normal
distributions. Least-absolute deviations appears to perform slightly better under
the variance-contaminated normal distribution.

Performance of bootstrap AML relative to linearized likelihood equations.
In adaptive estimation theory, the linearized likelihood equations estimate is the
ideal that AML estimates seek to emulate. It is of obvious interest to see how
closely AML estimates can match this ideal. For all distributions but the
Beta(2,2) and log-normal, computation of the linearized likelihood equations
estimate is straightforward. The latter two distributions have bounded support.
In these cases, the least-squares residuals sometimes fall outside the permissible
range for the disturbances. When this occurs, we set the score equal to zero.

We find that under the variance-contaminated normal, ¢(3), bimodal and
Beta(2,2) distributions, the bootstrap estimator performs about as well as the
relevant likelihood equations estimator. Only under the normal distribution does
the latter perform noticeably better and even here the difference is small. Under
the log-normal distribution, the bootstrap method performs much better. We can
offer no persuasive explanation for this. It may be associated with our treatment
of outlying residuals in linearized likelihood equations estimation.

Performance of bootstrap AML in samples of size 25. Table 2 reports the
precision of the bootstrap AML, least-squares, least-absolute deviations and
linearized likelihood equations estimators in samples of size 25. Examination of
the table reveals that the qualitative patterns observed in samples of size 50
continue to hold. In particular, the performance of bootstrap AML relative to
the other estimators does not deteriorate.

Under all distributions except the bimodal, the root mean square error of
bootstrap AML estimation in samples of size 25 is close to V2 times the
corresponding root mean square error in samples of size 50. Under the bimodal
distribution, the root mean square error doubles.

Shape of the distribution of the standardized bootstrap AML estimate. The
interquartile range entries in Tables 1 and 2 suggest that the sampling distribu-
tion of the bootstrap AML estimate of b is symmetric around b. Table 3
provides more detailed evidence. Let b denote a bootstrap estimate and let r( b)
be its root mean square error, as reported in Tables 1 and 2. Table 3 reports
selected quantiles of the distribution of the standardized estimate (b-b)/ r(b)

Inspection of the table indicates that in all cases, the standardized estimate is
at least roughly standard normal. The distributions all appear to be median
unbiased. Skewness is minor, if present at all. There is some evidence of
moderate long-tailedness, particularly for the bimodal and log-normal cases in
samples of size 25.

4. Conclusions. Should some version of the adaptive maximum likelihood
method be used in practice? It would be too much to expect the experiments
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reported here to provide a definitive answer to the statistical aspect of this
question. Moreover, use in practice must depend on the cost of computations.
Our findings do, however, suggest two statistical conclusions.

(i) Application of AML estimation with a preselected smoothing parameter
should be avoided. The performance of AML estimates has been shown to be
rather sensitive to one’s choice of smoothing parameter. Moreover, behavior of
these estimates as a function of the smoothing parameter is not uniform with
respect to the distribution generating the disturbances.

To preselect the smoothing parameter with any confidence, one apparently
needs good prior information about the distribution generating the disturbances
and possibly about other characteristics of the estimation problem. Such knowl-
edge, of course, assumes away the problem to which adaptive estimation has
been proposed as a solution.

(i) Application of AML estimation with bootstrap selection of the smoothing
and trimming parameters warrants serious consideration. In our experiments, the
bootstrap estimator performs as well as the AML estimate with the best
preselected smoothing and trimming parameters. It compares favorably with
both least-squares and least-absolute deviations. It even appears to perform as
well as linearized likelihood equations estimation. These findings are very en-
couraging.

It is sometimes asserted that satisfactory nonparametric estimation of score
functions requires very large samples; hence, adaptive estimation should perform
poorly in moderate size samples. Qur experiments indicate otherwise. The
bootstrap AML method appears to work well in such samples, at least for the
estimation problems we have examined.
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