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A COMPARISON OF CLASSES OF SINGLE REPLICATE
FACTORIAL DESIGNS

By D. T. Voss aND A. M. DEAN

Wright State University and Ohio State University

The classes of designs produced by well-known confounding methods are
compared for single replicate factorial experiments involving a single blocking
factor. It is shown that several of these methods produce equivalent classes of
designs, whilst others produce a subset of this common class. It is shown that
in certain experimental settings the use of pseudofactors does not enlarge the
size of the common class of designs.

1. Introduction. The problem of confounding in factorial designs is well
known. A variety of methods exists in the literature for the construction of single
replicate designs for factorial experiments. The earliest method is by Bose (1947)
and is only applicable for symmetrical prime-powered experiments. A number of
authors have given generalizations of this method; see, for example, White and
Hultquist (1965), Raktoe (1969, 1970), Worthley and Banerjee (1974) and Sihota
and Banerjee (1981). All but the latest of these are reviewed and discussed by
Raktoe, Rayner and Chalton (1978). Voss (1986) investigates the relationships
between the various methods and shows that, with the exception of the method
of Raktoe (1970) for experiments involving factors with number of levels being
different powers of the same prime, they each produce classes of designs which
form a subset of a more general class, namely the general classical class of
designs.

More recently, authors have used a variety of techniques in order to provide
confounding methods applicable in more general settings. Cotter (1974) presents
a method applicable for general symmetrical factorial experiments based on
orthogonal arrays, which is essentially a generalization of the method of Das
(1964). A confounding method involving abelian groups produces the class of
single replicate generalized cyclic designs [see John and Dean (1975) and Dean
and John (1975)]. Patterson (1976) and Patterson and Bailey (1978) describe an
algorithm called DSIGN which can be used for constructing factorial designs
with a wide variety of blocking structures. Bailey, Gilchrist and Patterson (1977)
and Bailey (1977) give a method of identifying confounding patterns in a large
subclass of the designs produced by DSIGN. The latter method, which can also
be used for construction, will be called the bilinear classical method in this paper.
An alternative, but related, method is given by Collings (1984).

Comparative illustrations of the above construction methods and of various
methods of determining the confounded degrees of freedom are given by Voss
and Dean (1985).
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The purpose of this paper is to show that the seemingly different construction
methods, in most cases, produce equivalent classes of designs. In particular, it is
shown in Section 2 that (i) the bilinear classical method, when restricted to the
single replicate, single blocking-factor setting, is equivalent to the generalized
cyclic method, (ii) for factor levels being equal or relatively prime, the general
classical method is equivalent to the generalized cyclic method and (iii) the
designs of Cotter (1974) form a subclass of the generalized cyclic class.

In Section 3, the use of pseudofactors is discussed. If prime-leveled pseudofac-
tors are used, the generalized cyclic, bilinear classical and general classical
methods generate the same class of designs, referred to in this paper as the
pseudofactor class of designs. For experiments in which the numbers of levels of
each factor has no prime-powered divisor, the classes of generalized cyclic,
bilinear classical and general classical designs are each equivalent to the pseudo-
factor class in the sense of producing designs which confound the same number
of degrees of freedom from the same factorial spaces.

2. Comparison of classes of designs. Throughout this paper we will
consider a general s™ X s X - -+ XspP* factorial experiment with n = X% n;
factors, F;;, where F,; has s, levels, j= 1,2,..., n, i= 1,2,..., k. A
treatment combination will be denoted by ¢ = ¢,,¢;, -+ 1,80 *** Lz, Where
0<t,;,<s;—1fori=1,2,..., k. The factorial experlment will be arranged in b
blocks of size k, where bk = I'If 8. The hth block of a design will be denoted
by B, = {¢: t occurs in the hth block}. The block containing the zero treatment
combination will be called the principal block and denoted by B,,.

The set of treatment combinations forms a group G, with group operation

addition componentwise modulo s; defined as follows:
b vt e, T e, = Y By

where t% = (¢;; + t/;) (mod s;), j=1,...,n;,1=1,..., k.

Note that G can be represented as the direct sum (@ 1 /%, Z(s;)) [see, for
example, Herstem (1964), Chapter 4.5], where Z(s;) is the nng of integers modulo
sp,i=1,...,k.

REMARK. If s, is a prime-power, then the ring Z(s;) may be replaced by the
Galois field GF(s;) and the group operation of G, is addition componentwise
GF(s;). A similar remark applies to G, below.

2.1. Equivalence of generalized cyclic and bilinear classical designs.
Patterson (1965, 1976) presents an algorithm, called DSIGN, for the computer
generation of factorial designs. The algorithm is applicable to any of the simple
block structures described by Nelder (1965). The class of designs generated by
the algorithm is large and includes the class of generalized cyclic designs as a
special case. The use of prime-leveled pseudofactors in the DSIGN algorithm for
both treatment and plot factors is described by Patterson and Bailey (1978), who
give several examples.
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In this paper, we restrict attention to single replicate experiments and only
one blocking category. In addition, we consider only those designs for which each
confounded degree of freedom corresponds to a contrast belonging to a single
factorial space. Bailey, Gilchrist and Patterson (1977) discuss a theoretical
framework which is applicable to such designs and which does not require the
use of pseudofactors.

The DSIGN algorithm requires the specification of a key matrix, K =
[B’, D'}, where the rows of B define the generators of the subgroup of
treatment combinations in the principal block, B,. The other blocks of the
design are the cosets of B, that is, the quotient group G,/B,.

Let T be a diagonal matrix with elements ys; !, where y is the lowest common
multiple of s, s,,..., s;, and let P be a diagonal matrix with elements 8p;’,
where 8 is the lowest common multiple of the levels p,, p,,..., p, of the plot
factors. Define K, =[B/, D,]’ = P7'KT. If the inverse of K, exists, then
K,'=[E,C] and the columns of C specify the generators of the subgroup of
degrees of freedom which are confounded [see Bailey, Gilchrist and Patterson,
1977N)].

Now B,C =0 since K,K,'=1I, and hence the rows of B, generate the
annihilator subgroup of the group of degrees of freedom generated by the
columns of C. It is therefore possible to obtain the principal block corresponding
to a given set, A, of confounded degrees of freedom by computing the annihila-
tors of the generators of A. This method, which was introduced by Bailey (1977,
1982), is more general than that of Bailey, Gilchrist and Patterson (1977) since it
does not require that K, be invertible. For a general method of computing the
annihilators of a subgroup see El Mossadeq, Kobilinsky and Collombier (1985).
Collings (1984) also gives a method of determining K from C without inverting
K, but his method is only applicable to prime s,, s,,..., s; or to prime-leveled
pseudofactors.

Since the anaihilator method of Bailey (1977) is the most general of the
DSIGN related construction methods mentioned above, it is the only approach
that will be considered in this paper. When restricted to single replicate experi-
ments involving only one blocking category, the resulting class of designs will be
referred to as the class of bilinear classical designs.

Let G, be defined as above. Let G, = {a: a = a;;Q;5 *** Q1,91 * " Cpy,
0<a;<s;—-1j=12,...,n5i=12,..., k}, and define the group operation
of G, to be addition componentwise modulo s;. Then G, and G, are isomorphic
groups.

For each pair of elements ¢t € G,, a € G,, define the integer [a, ¢] as

[a,t]= Z_Zaijtij'ysi—l (mod v),
|2
where v is the lowest common multiple of s;, s,,..., S;.
DEFINITION (Bailey, 1977). A bilinear classical design is a design such that,

for a fixed subgroup A of G,, the principal block is the subgroup B, = {¢: t € G,,
[a, t] = 0 for all @ € A}, and the other blocks are cosets of B,.
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Following Bailey, Gilchrist and Patterson (1977), each a =a,, .-+ a,, a5
“* @y, € G, denotes one degree of freedom belonging to the interaction

between' those factors for which a;; # 0. The set A represents the subgroup of
degrees of freedom which are confounded with blocks.

Bailey (1977) states that the bilinear classical class of designs includes the
generalized cyclic designs of John and Dean (1975) and Dean and John (1975), as
well as the classes generated by the methods of White and Hultquist (1965) and
Bose (1947). In Theorem 1 it is shown that the classes of single replicate
generalized cyclic and bilinear classical designs are, in fact, identical.

DEFINITION (Dean and John, 1975). A single replicate generalized cyclic
design is a design whose principal block, B, forms-a subgroup of G,, the other
blocks being the cosets of B,

THEOREM 1. The classes of single replicate generalized cyclic designs and
bilinear classical designs are identical.

Proor. It follows from the definition of Bailey (1977) that any bilinear
classical design is a generalized cyclic design.

Conversely, consider the generalized cyclic design with principal block B,. Let
B0 = {a: a € G,, [a, t] = 0 for all ¢ € By} denote the annihilator of B,. Since
B0 is a subgroup of Gt, the annihilator of BY, namely (BJ)’ = {¢: t€ G,
[a,t]=0 for all a € BY}, is B, itself. Thus A = B{ generates the bilinear
classical design with principal block B,. O

REMARK. The DSIGN algorithm is capable of producing a wider class of
single replicate designs, but the confounded degrees of freedom span more than
one factorial space [see Patterson (1976)].

2.2. Equivalence of the generalized cyclic (bilinear classical) and general

classical designs. For i=1,...,k, let G, = {t;: t;=1tyt; -+~ i, 0<¢; <
s;—1, j=1,...,n;} and G ={a; a;=aya; - @, 0<aUSs 1,
J=1...,n}. Thus, t=tt, tk denotes a treatment combination in G, and
a = a,a, -+ a, an element of G,. Then G, and G, form isomorphic groups

under componentwise addition modulo S

DEFINITION (Voss, 1986). A general classical design is a design such that,
for fixed subgroups A, cG,,i=12,...,k, the principal block is the subgroup
B, = {t: t=tt, - tk eEG,t € Gt,andEJ 1@;;t;; = 0 (mod s,)forall a, €A,

i=12,...,k}, and the other blocks are obtained as cosets of B,.If s; is a prime
power, GF(s ) can be used instead of Z(s;).

The general classical method is equivalent to applying the classical method of
Bose (1947) separately within symmetric subexperiments using either Z(s;) or
GF(s;). As such, the resulting class of designs encompasses the classes of designs
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generated by the method of Bose (1947) and the generalizations of White and
Hultquist (1965), Raktoe (1969), Worthley and Banerjee (1974) and Sihota and
Banerjee (1981), and that subclass of the designs of Raktoe (1970) for which any
two factors have either the same or relatively prime numbers of levels. That each
of these methods generates a subclass of the general classical designs is a
consequence of the existence of a unique decomposition of each element of the
superalgebra employed by each author into the sum of elements, one mapped
from each subring or subfield employed [see Voss (1986)].

THEOREM 2. The class of general classical designs using the rings Z(s,;),
i1=12,...,k, forms a subclass of the generalized cyclic (bilinear classical)
designs. .

ProoF. From the definition of a general classical design, B, is a subgroup of
G, and the other blocks are cosets, so the result follows. O

For the general classical method, the smallest block size possible in an
sM X sf2 X - -+ XsJ* experiment keeping all main effects unconfounded is IT%_;s;
[see Voss (1986)]. The generalized cyclic design generated by 11 - - - 1 has all main
effects unconfounded and a block size equal to the lowest common multiple of

$1,89,..-5S; [see Dean and John (1975)]. Hence, if s;,s,,..., s, are not all
relatively prime, the general classical designs form a proper subclass of the
generalized cyclic designs. However, when k2 =1 or s, s,,..., s, are relatively

prime, the two classes of designs coincide as shown by Theorems 3 and 4.

THEOREM 3. For an s X s}z X --- Xsp* experiment, the generalized cyclic
(bilinear classical) designs form a subclass of the general classical designs if
Sy, Sg, ..., S are relatively prime.

ProOF. From Theorem 1, the principal block of a generalized cyclic design
can be expressed in the form B, = {t: [a,t] =0 for all a € A} for some
subgroup A C G,, where [a, t] = yL;5;'E;a;;t;; (mod y) = yL;s; 'm; (mod )
for m; = ¥a,;t;; and where y = II;s; since s,, s,,..., s, are relatively prime.
Consider ¢ € B, Since [a, t] = 0 (mod v), L;s; 'm, is an integer. For s,, s,,..., s,
relatively prime, it can then be shown that m; = ¢;s; for some integer g, that is,
m;=X;a;;t;;=0(mod s;), i =1,2,..., k. Writing a; = a,a;5 - - a;, and a =
a8y - a,, let A;={a;aa, - a,€A} Then A=A, 06A,0 - A,
where @ denotes external direct sum. Hence,

B,c By = {t:X;a,it;;=0(mod s;) forall a, € A;, i =1,..., k}.
Also, if ¢ € B, then s; divides m;, so [a,t] = yL;s;'m; =0 (mod y) and

t € B,. Hence, B, = B, which is the principal block of a general classical
design. Other blocks are cosets. O
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THEOREM 4. The classes of generalized cyclic, bilinear classical and general
classical designs are equivalent using the rings Z(s;), i =1,2,...,k, for
815 Sg5 .+ -5 S relatively prime.

Proor. Follows directly from Theorems 1, 2 and 3. O

REMARK. For any s; which is a prime-power, one could use GF(s;) in place
of Z(s;) in the construction of both generalized cyclic and general classical
designs, in which case the resulting classes are still equivalent.

2.3. Equivalence of orthogonal array designs and a subclass of generalized
cyclic designs. The symmetrical orthogonal array designs of Cotter (1974) form
a subclass of the generalized cyclic designs as shown in Theorem 5.

DEFINITION (Cotter, 1974). For an s” single replicate experiment, an
orthogonal array design consists of s”~™ blocks of size s™ where the
principal block B, C G, is given by By = {t =¢, -+ t, t, .1 " t,: t; € Z(8),
i=1,...,m, and ;=X c;;t; (mod s), c;;€Z(s), j=m+1,...,n}. The
c;; are chosen so that the elements of B,, when written as an n X s™ array,
form an orthogonal array of strength p,1 < p < m. The Ath block of the design,
h=0,...,s" ™ —1,1is of the form

B,={t':t'=t+b,,t€Byand by = (0,...,0, by 1yps---» Bur)

for fixed by, € Z(s), j=m+1,...,n}.

THEOREM 5. The orthogonal array designs are equivalent to a subclass of
the class of generalized cyclic designs.

Proor. Consider an orthogonal array design with principal block B,. Let
t=1t - t,t' =1t - t)€By,andlet t +¢t'=¢t"=1¢ --- ¢t/ with addition
defined componentwise modulo s. Then ¢ = ¢; + ¢/ (mod s), j =1,..., m. For
J=m+1,...,n, ¢ =Xct;+ et (mods) = X;c; (¢ + ¢t/) (mod s)
= Xc¢;;t!’ (mod s). Hence ¢/’ € B, and B, is a group. From the definition B, is a

ijvi
coset of B,. O

REMARK. The method of Cotter (1974) is essentially a generalization of the
method of Das (1964) which was only applicable for s being a power of a prime.

2.4. Other classes of designs. Mukerjee (1981) and Gupta (1983) considered
the construction of Kronecker product designs, a design being obtained by taking
Kronecker products of incidence matrices of varietal designs. In the single
replicate case, each design produced by these methods has incidence matrix of
the form N =N, ® N, ® --- ® N,, where N, is the incidence matrix of a single
replicate varietal design in the levels of F,. As a consequence, some main effect
degree(s) of freedom must be confounded in any single replicate block design.
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Hence, the corresponding classes of designs will not be considered further in this
paper.

The designs of Raktoe (1970) are shown by Voss (1986) to be general classical
designs if, for each pair of factors, the respective numbers of levels are either
equal or relatively prime. Otherwise, the method of Raktoe (1970) does not seem
in general to generate a large class. For example, in a 2 X 4 experiment, the only
block sizes possible are 1, 2 and 8, whilst the methods considered in this paper
also allow blocks of size 4. This class of designs will not be considered further in
this paper.

3. Use of pseudofactors. Several authors have discussed the use of pseu-
dofactors; see, for example, Kempthorne (1952, page-343), Giovagnoli (1977) and
Collings (1984). Pseudofactors are commonly employed to enlarge the class of
designs generated by a given method, and it is stated by Giovagnoli (1977) that
the use of prime-leveled pseudofactors gives the largest class of designs. The
purpose of this section is to identify the cases in which the use of pseudofactors
does not enlarge the class of designs under study.

By virtue of Theorem 4, all the standard construction methods yield exactly
the same class of designs when prime-leveled pseudofactors are used. This
common class of designs will be called the pseudofactor class of designs. In
Theorem 6 we show that, under certain restrictions, the class of single replicate
generalized cyclic (bilinear classical) designs using Z(s;) and the class of pseudo-
factor designs are equivalent in the sense of the following definition.

DEFINITION. Two classes of designs will be called d.f. equivalent if for each
design in one class there exists a design in the other class with the same number
of degrees of freedom confounded in each factorial space.

THEOREM 6. Consider an s X si? X -+ X s experiment such that s; has
no prime-powered divisor, for i = 1,2,..., k. Then the classes of generalized
cyclic (bilinear classical) and pseudofactor designs are d.f. equivalent.

Proor. Let y denote the lowest common multiple of s,,..., s,. Since each s;
has no prime-powered divisor y factors into distinct primes p,,..., p,,, say.
Thus,fori=1,..., &, s; ij forsome {Jir-++s Jm@iy} € {L,-.., m}.
Let R; = {(r;,-.-, Jmm) Z(pj ), q .,m(i)}. Let ¢;: Z(s;) > R; be
the functlon deﬁned by ¢,(z) =zX lm(,), where 1, denotes the 1 X m(i)
vector of unit elements and where the gth component is reduced modulo Py
g =1,..., m(i). Note that ¢, is a one-to-one function and ¢,(2) =0 X 17, it
and only if z = 0 (mod s;). Defining addition of vectors in R; to be component-
wise addition modulo P it follows that ¢, is an 1somorph1sm

Now, for each generalized cyclic (bilinear classical) design, the degrees of
freedom confounded with blocks correspond to a fixed subgroup A € G,, where
G,={a=a; +* a,8y """ A, @;€Z(s;), i=1,...,k j=1,...,n;}
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Similarly, for each pseudofactor design, the degrees of freedom confounded
with blocks correspond to a fixed subgroup A* C G}, where

Gy = {¢(a) = ?1(“11) T ¢1(a1n1)¢2(a21) tee ¢k(aknk)3 a < Ga}.

Defining addition of elements of G* to be addition componentwise modulo
p;, it follows that ¢: G, — G is an isomorphism and ¢,(a;;) = 0 X 17, if and
only if @;; = 0 (mod s;). Hence, given the subgroup A for a generalized cyclic
design, $(A) = {¢(a): a € A} determines a d.f. equivalent pseudofactor design,
and similarly, given the subgroup A* for a pseudofactor design, ¢ '(A*) =
{a: a € A, ¢(a) € A*} determines a d.f. equivalent generalized cyclic design. O

A result corresponding to that of Theorem 6 does not hold if any s; has a
prime-powered divisor. For example, Giovagnoli (1977) gives a 2 X 3 X 4 X 6
single replicate pseudofactor design in 12 blocks of size 12 confounding F;Fy(1)
(that is, one degree of freedom from the interaction between F, and F;), F;F,(1),
F,F,?2), F,F,F,1), F,F,F,2) and F,F,F,F,(4). Consider a 2 X 3 X 4 X 6 gener-
alized cyclic design with principal block denoted by B, and the same confound-
ing pattern as above, and let ¢ = ¢,¢,¢,t, denote a treatment combination. Then,
the requirement that F,, F, and F,F, are unconfounded implies that each of the
12 subtreatment combinations ¢,f; occurs in B,, including ¢,¢; = 11; Since
|By| = 12 and #11¢, generates a subgroup of size 12 for any choice of ¢, and
t,, B, is a cyclic group. However, B, cyclic with F, at 2 levels and F, at 6 levels
implies at most 6 subtreatment combinations #,¢, occur in B,, and hence a
degree of freedom from F,, F, or F\F, is confounded. Hence, no generalized
cyclic design with the above confounding pattern exists.

REMARK. Since this paper was first written, a result similar to that of
Theorem 6 has been published by Bailey (1985).
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