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It is well-known that the ordinary least squares (OLS) estimator £ of the
slope and intercept parameters B in a linear regression model with errors of
measurement for some of the independent variables (predictors) is incon-
sistent. However, Gallo (1982) has shown that certain linear combinations of
/? consistently estimate the corresponding linear combinations of 8. In this
paper, it is shown that under reasonable regularity conditions such linear
combinations of § are (jointly) asymptotically normally distributed. Some
methodological consequences of our results are given in a companion paper
(Carroll, Gallo and Gleser (1985)).

1. Introduction. There is a substantial literature concerning linear regres-
sion when some of the predictors (independent variables) are measured with
error. Such models are of importance in econometrics (instrumental variables
models), psychometrics (correction for attenuation, models of change) and in
instrumental calibration studies in medicine and industry. Recent theoretical
work concerning maximum likelihood estimation in such models appears in
Healy (1980), Fuller (1980) and Anderson (1984), while Reilly and Patino-Leal
(1981) take a Bayesian approach.

In an applied context, an investigator may overlook the measurement errors
in the predictors, and choose the classical ordinary least squares (OLS) estimator
of the parameters because of its familiarity and ease of use. If the OLS estimator
is used, what are the consequences?

Cochran (1968) has given a general discussion of the consequences of using the
OLS estimator in errors-in-variables contexts. For the special case of the analysis
of covariance (ANCOVA), where the covariates are measured with error, detailed
investigations have been done by Lord (1960), DeGracie and Fuller (1972) and
Cronbach (1976). It is by now well-known that the OLS estimator £ of the vector
B of the slope and intercept parameters in such errors-in-variables models is
inconsistent; that is, § does not tend in probability to 8 as the sample size n
becomes infinitely large. However, in ANCOVA with covariates measured with
error but balanced (in terms of means) across the design, the OLS estimator of
the design effects is known to be consistent. This is shown in the two-treatment
case by Cochran (1968) and DeGracie and Fuller (1972).
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More generally, Gallo (1982) has shown that for general linear errors-in-vari-
ables regression models, certain linear combinations ¢’8 of the OLS estimator are
consistent estimators of the corresponding linear combinations of B. Gallo’s
result is reproduced in Section 2 as Theorem 1.

The intent of the present paper is to go beyond consistency, and to determine
when consistent linear combinations ¢’8 of the OLS estimator are also asymptot-
ically normally distributed. Numerous papers on this question dealing with
various special cases have appeared in the literature (particularly the economet-
ric literature), but no unified approach dealing with models allowing arbitrary
collections of fixed and random predictors, measured both with and without
error, appears to have been attempted.

The key to a unified approach is to establish asymptotic normality when all
predictor variables are fixed. Let the rows of the matrix C be a basis for all linear
combinations ¢’8 of B that are consistently estimated by ¢’8. Under a reasonable
extension of the regularity conditions given by Gallo (1982), it is shown in
Theorem 2 of Section 2 that n/%(C — C8) has an asymptotic multivariate
normal distribution when all predictors are fixed. This result does not require
that the random errors (errors of measurement, residual errors) be normally
distributed, but only that these errors be sampled from a common population
with finite second moments. In Section 3, Theorem 2 is utilized to extend the
asymptotic multivariate normality results for n'/%(C8 — CB) to cases where
some of the predictors (those measured with error, without error, or both) are
random variables. )

The nature of the limiting normal distribution of n'/%(C8 — CB) depends
upon whether the predictors measured with error are random (structural errors-
in-variables models) or fixed ( functional errors-in-variables models). In the
former case, the limiting normal distribution has a zero mean vector, while in the
latter case the mean vector need not be zero (and is a function of unknown
parameters). A companion paper (Carroll, Gallo and Gleser (1985)) uses these
results to compare the asymptotic efficiencies of the OLS and maximum likeli-
hood estimators of C8 when the errors-in-variables model is of the structural
kind.

2. Asymptotic theory. Suppose that a dependent scalar variable y; is
related to a p-dimensional column vector f,; of observable predictors and a
g-dimensional column vector f,; of latent (unobservable) predictors by the model

(2.1) yi=fiB, + fiBa+ e, i=1,2,...,n,
and that f,; is observed with error by x;, where
(2.2) xi=f2i+ui, i= 1,2,...,n.

Here, B, is the p-dimensional column vector containing the unknown slopes of
the observable predictors f,;, and B, is the g-dimensional column vector of
unknown slopes for the latent predictors f,;. For fixed (f/, f5;), it is assumed
that the random vectors (e;, u})’ of errors of measurement are independently and
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identically distributed (i.i.d.) with mean vector 0 and covariance matrix

011 Oy
3= ,
( 0fy g )
where 2,, is ¢ X gq.

To state the model in more compact form, let Y= (y,...,%,), e=
(epearey), Fi=C(fr--es f1n)> Fo=(fas--es fan), X=(xp,...,%,), U=

(uy,...,u,) and
(B
h= (/3)
Then

(2.3) Y=FB, +Fp+e, X=F+U,

where the rows of E = (e, U) are i.i.d. random vectors with mean vector 0 and
covariance matrix 2.

Note. It is assumed that all design (dummy) variables are included in F,.
This eliminates the need for separately including an intercept term in the model.

When = is totally unknown, the model (2.3) is not (necessarily) identifiable,
and maximum likelihood estimators of 8 need not exist. However, the OLS
estimator,

FF, F/X _I(F'Y)
2.4 = 1,
(2.4) o-(xn xx) (v

is well defined in such contexts, and for this reason alone might be employed in
practice. The results concerning consistency and asymptotic normality of linear
combinations of £ obtained in this paper apply whether or not = is known (or
has known structure), and thus are applicable even in contexts where the
maximum likelihood estimator of 8 does not exist.

2.1. Asymptotic consistency. To give asymptotic results about B, we need to
make some assumptions about the sequence

(2.5) f={(f} f):i= 1,2,...}
of fixed predictor values. These are the following.

ASSUMPTION 1.

lim n A, A>0.
n-— oo

_1[F1/F1 Fl'Fz]= [Au A12]
F/F, FF, Ay Ap

‘ASSUMPTION 2.
lim n~?max[ F,, F,] = 0,

n—oo

where for any matrix A = ((a,;)), max(4) = max; ja;.



LEAST SQUARES IN ERRORS-IN-VARIABLES 223

We will make extensive use of the following results.

LEMMA 1. Under (2.3) and Assumptions 1 and 2,
n~Y2(F,, F,) (e,U)t - MVN(0, (¢'2t)A)

in distribution as n — oo for all (q + 1)-dimensional column vectors t. In
particular,

(26) nTVHF,F) (e~ UB,) ~ MVN(”’ [(1’ _32')2( —lﬁz)]A)
in distribution as n - .

Proor. This is a direct consequence of Corollary 3.2 and the discussion
following that corollary in Gleser (1965). O

LEMMA 2. Under the assumptions of Lemma 1,
F/F, F/X A A
—1| f1fa 1 _ 1 12
(X’Fl X'X) = (A'12 Ay + 222) + 0,(1).
PrROOF. From the weak law of large numbers,
(2.7) n~Y(e,U) (e,U) = 2 + 0,(1),

while from Lemma 1, n~(F,, F,)'(e,U) = O(n"'/?). From these facts, (2.3)
and Assumption 1, the assertion of the lemma follows. O

The following theorem is a restatement of the result of Gallo (1982) mentioned
in Section 1.

THEOREM 1 (Gallo (1982)). Under (2.3) and Assumptions 1 and 2, a neces-
sary and sufficient condition for ¢’B to consistently estimate ¢’ (that is, ¢’ — ¢'B
in probability, all B, all X) is ¢'M = 0, where

M= (-MA08 1)
and I, is the g-dimensional identity matrix.

Proor. Note from (2.3) that

A [ R e[| O 1 E S R P

By Lemma 1, the first term on the right-hand side of the above equation is
O,(n~'/%), while it follows from (2.7) that the second term on the right-hand side
converges in probability to (0/, y’)’, where

Y =01y — 2g9Ps.
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From these facts, (2.4) and Lemma 2,
A A -1 0
£ +[ 11 12 ] ( ) in probability.
A Ay Agy+ Sy Y P Y
Let

Appy =Ap — A'12A1_11A12» Q= (222 + A22-1)_1:

and note that

Ay Ay ‘1( 0 )
= M@Q.
[A'lz Agy + 2y 1, Q
Consequently, for any (p + g)-dimensional column veetor ¢, ¢’/f — ¢/ + c’M@Qy
in probability, and ¢’ consistently estimates ¢’B if and only if ¢’MQy = 0 for
all B, all 3. .
Clearly, ¢’M = 0 implies that ¢’MQy = 0 for alAl B, Z, and hence that c¢’8
consistently estimates ¢’8. On the other hand, if ¢’8 consistently estimates c¢’8,
then ¢’MQy = 0 for all B and =. In particular, for 8, = =3} (0], — M’c),
0=c'MQy=c'"MQM’c,
which, since @ > 0, implies that ¢’M = 0. This completes the proof. O

Note that
c’M=0ec= d’[Ip, AfllAm], some d.
From this fact, it is easily seen that the rows of
C =1L, A7)

serve as a basis for the linear manifold of all ¢ such that c¢’8 is consistent for ¢’B.
This motivates consideration of the limiting distribution of

T, = n'/*C(8 - B).

REMARK. Note that CB is the limit of
0 =By + Fi;'FoB,.

When both the error-free predictors f, and the error-prone predictors f, are
normally distributed, 8 is recognizable as the vector of slopes (unconditional
slopes) of the linear regression of y on f, when f, is free to vary over its
population. [In the special case where f, and f, are linearly independent
(A, = 0), 8 = B,.] Since f, is observable, it is clear from this remark that the
OLS estimator for 6 should be consistent. It is much less obvious, however, that
0 is essentially the only linear transform of B = (B}, B5)’ which can be con-
sistently estimated by ordinary least squares in the context of the model (2.3).

There are many situations where model (2.3) applies, and yet where inference
concerning 6 might be of interest. One such context, the analysis of covariance,



LEAST SQUARES IN ERRORS-IN-VARIABLES 225

has already been mentioned. One can also imagine experimental contexts where
predictors known to be measured with error are used in an attempt to reduce
variation (and thereby reduce the sample size needed for accurate inference), but
where these same predictors would not be used in applications due to their high
costs or to difficulties in obtaining measurements. In this case, the slope vector §
(rather than 8, or 8 = (B, B3)’) would be of primary interest to the investiga-
tors, and point and interval estimates of § might be desired.

2.2. Asymptotic normality of T,. Rather than state our main result (Theo-
rem 2) at once, we first derive a representation for 7, that leads us to the extra
assumption needed to obtain asymptotic normality of 7.

Let

~

1 (F{Fl F/X )]-1

(Lln, L2n) = Cl; X'Fl X'X

Wln 1 FIIY Fl’ Fl F'X
(VVZn) - ;[(X’Y) - (X'Fl X’X)(B + MQy)]

Since CM = 0, it follows from (2.4) that

and

Wi,
(2.8) T, = n'/%(L,,, L2n)( W )

2n

LEMMA 3. Under the assumptions of Lemma 1,
L,=A;'+ op(l)
and

: 1
Gn = nl/2L1n(VVIn + ;Fll('F2 - F1A1_11A12)Qy)

- MVN(O,{[ _(32‘1 Qy)]lz[ —(,32]:" Qv)]}Aﬁl)

in distribution as n — 0.

ProoF. The first assertion is a direct consequence of Lemma 2 and the fact
that

Ay Ay, )_l
C = (A;%,0).
(A'lz Agy + 2o ( ! )

Note from (2.3) and the definition of W, that
1 ’ -1 1 ’ 1
Wy, + ;Fl(Fz_FlAuAlz)QY= ;Fl(e’ U) —(By + QY|

The second assertion of the lemma now follows from this representation, Lemma
1, the first assertion of the lemma and Slutzky’s theorem. O
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LEMMA 4. Under the assumptions of Lemma 1,

Wan = [%U’(e - U(B, + Qy)) - A22~1QY]
(2.9)

1
- [;le(Fz - F1A1_11A12) - A22-1 QY + Op(n_l/z)

and
1 -1 1 -1 -1 -1 -1/2
L, = - ;F{Fl ;F{(Fz - FA AIZ))[Q + op(l)] — Oy(n ).

Proor. Use (2.3) and the definition of W,, to write W,, as the sum of the
first two terms on the right-hand side of (2.9) plus

1 1
—F{(e - U(B, + Q) = ~U'(F,, K,)MQy.

It follows from Lemma 1 that this last term is O,(n~'/?), as asserted.
Facts about inverses of partitioned matrices, (2.3), and the definitions of C
and L,, yield

1 -111 1
L,, = —(;F{Fl) [;F;(F2 - FAGA,,) + ;F{U A,
where
1 _
A7l= ;(X’X - X'F(F/F,)'F{X).
Lemma 2 can be applied to show that

A =Agp . + 25 +0,(1) = Q71 + 0,(1),

while from Lemma 1, n~'FyU = O,(n"'/?). Since n™'FyF, = A,; + o(1) by As-
sumption 1, the representation for L,, given by the lemma follows from
Slutzky’s theorem. O

Assumption 1, Lemma 4 and (2.7) can be used to show that W,, = o,(1). Let
(2.10) Z,=n"V2F/(F,— F,AG'A,).
It follows from (2.8) and Lemmas 3 and 4 that
T, = G, - (A + 0,(1))Z,@y

— (A5 +0(1))Z,[@7* + 0,(1)] “'(0,(1)) + 0,(1).

A careful look at (2.11) shows that for T, to converge in distribution for all
B, = it is necessary that Z, be O(1). Thus, we are led to make the following
assumption.

(2.11)
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AssuMPTION 3. For every sequence f defined by (2.5),
lim Z, = lim n~"2F{(F, — F,A{'A,) = Z(£),
n— oo n— oo

where the limit Z(f) may depend on {.

That Assumption 3, together with Assumptions 1 and 2, is sufficient for T, to
have a limiting multivariate normal distribution is clear from (2.11), Lemma 3
and Slutzky’s theorem. This is our main result.

THEOREM 2. Under Assumptions 1, 2 and 3,
T, = n'/*(CB — CB) - MVN(-AL'Z(H)Qy, (w'=n)A")
in distribution as n - oo, where C = (I,, A;;A}5), @ = (Mg, + Z2)7 ", and
y=(0z = 258,), 7 =(1,—-(B+Qy))

3. Discussion and extensions. Theorems 1 and 2 assume that the se-
quence f defined by (2.5) is a sequence of fixed vectors. If elements of the vectors
(f1% f5}) in this sequence are random variables, one can think of these results as
being conditional limit theorems.

When components of each (f, f5;), i =1,2,..., are random, a fairly easy
argument can be used to extend Theorems 1 and 2 to apply unconditionally,
provided that A;;'Z @y, where Z, = Z () is defined by (2.10), has an asymptotic
distribution.

Thus, let s; represent the random part of ( f,;, fs;) andlets = {s;,i = 1,2,... }.
Distributional assumptions about the s; yield a probability measure u(s) over
the sequences s. Suppose that

A= {s: lim n~Y(F,, F,)'(F,, F,) = A >0, lim n"V%(F,, F,) = o}
satisfies
(3.1) f dp(s) = 1.
A

In other words, Assumptions 1 and 2 are satisfied with probability one. Then
Theorem 1 shows that for all sin A, all ¢ > 0,

lim P{[tr(C8 — CB)'(CB — CB)]'* > els} = 0.
Thus, by the Lebesgue dominated convergence theorem, for all ¢ > 0,
lim P{[tr(CA — CB)'(CB - CB)]"* > ¢} =,

and hence Cf converges unconditionally in probability to C8. This shows that
Theorem 1 holds unconditionally (over s).

In a similar fashion, it can be shown that the representation (2 11) for T,
holds unconditionally, that G, in that representation has the limiting multl-
variate normal distribution described in Lemma 3 and that G, and Z, are
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asymptotically statistically independent. Consequently, if A;;'Z,Qy has a limit-
ing distribution, the limiting distribution of 7, is the convolution of the limiting
distributions of G, and —A;'Z,Qy.

NoTE. The preceding discussion is only a sketch of the arguments needed,
and skips over such details as measurability. A more extensive discussion in a
similar context can be found in Gleser (1983).

We will now follow the steps of the preceding analysis for some special cases
of the model (2.3) that are commonly adopted in practice. Recall that if f;,
i=1,2,..., are random vectors, the model (2.3) is called a structural linear
errors-in-variables regression model, while if the f,;, #=1,2,..., are vectors of
constants, the model is that of a functional linear errors-in-variables regression
model. Mixes of these cases, where some elements of f,; are fixed and some
elements are random, are also possible. Further, the elements of f,; (except for
the first component, which is always equal to 1 to accommodate an intercept
term) can also be fixed or random. Let

hi= (’i)

We will consider the following cases:

(1) both A; and f,; are fixed (functional model);
(2) h, random, f,; fixed (functional model);

(3) h, fixed, f,; random (structural model);

(4) both h; and f,; random (structural model).

3.1. Both h; and f,; fixed. Theorems 1 and 2 already summarize what we
can say about this case. Although Theorem 2 has some technical interest, it is
unfortunately rather useless for statistical applications. Unless we are in the
unlikely case where we either know the limit Z(f) or can consistently estimate
this quantity, we cannot use Theorem 2 to construct large-sample confidence
regions for CB. Recall that {f,;, i = 1,2,...} is a sequence of unknown parame-
ters, and that the individual vectors f,; in this sequence cannot be consistently
estimated. Thus, very strong assumptions are needed to permit us to consistently
estimate Z(f) (or A;'Z(H)QY).

3.2. h; random and f,; fixed. Here, we can assume that the vectors h; are
mutually statistically independent, but must consider the possibility that the
distribution of A, depends upon f,;, i=1,2,.... (That is, the ks are not
identically distributed.) Given the linear form of (2.3), it is natural to assume
that a similar linear model relates &; to f,;. Thus, we assume that

(3.2) hi=a+lpf2i+ti, i=1,2,...,

where the ¢;’s are ii.d. with mean vector 0 and covariance matrix A. We also
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assume that

1 n n
(3.3) Him — Y f, = p, Z faifgi =89 >0,
n—o N ;_, =
and that lim,_, n"?max| f,,..., fo,] = 0. For convenience, we here treat

only the case p = 0. Results for the general case p # 0 can be obtained by
replacing a by « + yp, and Ay, by Ay, — pp’ in the formulas that follow.
The strong law of large numbers shows that

n
hm—zt lim ) tt! =
n—»oonl=1 n—o0
with probability one. Using (3.2), (3.3) and Theorem 3'of Chow (1966),
n
lim /% 3 £/, =0
n—o i=1

with probability one. Thus, (3.1) holds with

1 a 0
A=]a aa’ + YAy’ + A YAy |,
0 Agy’ Ag

Note that
An'Ay, = [I:i][‘PAzz‘V + A7 A,
Let 1, = (1,1,...,1) and T’ = (£,,..., ¢,). Then
Z, = n"V’F{(F, - FAG',)
1
o, + yFy + T’

= p-1/2

)(sz - TQ),

where

T=1,-9Q, Q=[yAud + Al YA,
It is apparent that, in general, extra conditions on both F, and the higher order
moments of the common distribution of the ¢;’s are needed to permit Z, to have
a limiting distribution.

However, consider the special case ¢ = 0. In this case the random parts A; of
f.; are ii.d. random vectors independent of the f,;’s, and

1, F; 1’ F,Qy
-1 — p—1/2A - 2 — ,-1/2 n=2
AL'Z,Qy = n"PAL (al’F2 + T'F, )QY n (A”IT'FzQY .
An application of Corollary 3.2, and the discussion following, in Gleser (1965)

shows that the elements of n~'/2T'F,Qy have an asymptotic multivariate
normal distribution,

n~?T'F,Qy - MVN(0, (v'QA,QY)A).
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Although we could impose the condition that n='/21/, F,Qy = O(1), this is rather
restrictive and still leaves us the problem of estlmatlng the limit of n~1/21/ F,Qy
in statistical applications. Instead, we settle for a more restricted result,

(3.4) n**(0, I,_,)(CB — CB) — MVN(0,0),

in distribution as n — oo, where

o= [—(s % an) 2~k an )0 1087, | + (r@saena

- A[( (B Qv)),z( (B QY)) * *’QAZZQY]’

since A™! = (0, I, 1)Aul(O _1)’. In this context (¢‘= 0), it is worth noting
that
(0: Ip—-l)C = (O, Ip—l)(Ip’ _AﬂlAlz)
= (0 I —1’0)

so0 that the result (3.4) concerns the estimates of the slopes (0, I,_,)B, of the y;
on the h; (the random part of f,;) in (2.3).

3.3. h,; fixed and f,; random. In analogy with the discussion in Section 3.2,
we assume that

(3’5) f2i=¢fli+ti1‘ i=1121'-~’

where the ¢; are ii.d. with common mean vector 0 and covariance matrix A.
(Here, since the first element of f,; is always 1, there is no need for a separate
intercept term.) Assumption (3.5) is commonly adopted in instrumental variables
approaches to errors-in-variables models in econometrics, and in ANCOVA with
measurement errors in the covariates.

We also assume that

(3‘6) hm Z fll flz >0

n—oo l-l

and that lim,_,  n""?max{ f,,,..., f;,] = 0. An argument similar to that used
in Section 3.2 shows that (3.1) holds with

A - A11 A11¢I
tIJAII ‘PAII‘P, + A '

Hence,
AGA, =Y.
Note that
Z,=n"Y2F/(F, - F,A;!A),) = n~V2F/T,
where T’ = (t,,..., t,). Corollary 3.2 in Gleser (1965), and the discussion follow-
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ing that corollary, can be used to show that
AL'Z,Qy ~> MVN(0, A (v'QAQY))
in distribution as n — co. Consequently,
(3.7) n=%(C — CB) » MVN(0, A" [w'Zn + v'QAQY])

in distribution as n — co. It is worth noting that here

=), A=dus 1=(_(3'qn)

When ¢ = 0, there is a close parallel between (3.4) and (3.7). Note also that in
this case CB = B,.

Even when ¢ # 0 (the distribution of f,; depends on f,;), the result (3.7) was
obtained without the need to make extra assumptions on the higher moments of
the common distribution of the ¢;, in contrast to our conclusions in the case of
Section 3.2.

34. Both h; and f,; random. In this case it is more natural to make
assumptions concerning (A%, fy;), i = 1,2,... . We assume that these vectors are
i.i.d. with a common mean vector g and a common covariance matrix ®. The
strong law of large numbers shows that (3.1) holds with

1 1%
A= .
(u ‘I’ﬂm’)

2P (1)12)
P = ,
( o, Dy

Let p’ = (p3, p%) and

where p,, ®,, are the common mean vector and covariance matrix of the A;’s.
Thus,

N ™ “( [ )
noe By P+ Dy + piny

By — I"‘lq)ll (I)12
(1)111(1)12

Let H' = (h,, hy,..., h,). Then
z, - /( 4 )(Fz Lk - w@59,,) — HOGD,,).

The central limit theorem shows that the first row of Z, has an asymptotic
multivariate normal distribution. For the remaining rows of Z, to be asymptoti-
cally multivariate normally distributed, additional assumptions on the
higher moments of the joint distribution of (A, f,;) are needed. To avoid such
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assumptions, we can assume that

(8.8) foi = g — @', + OLOLA, + ¢, i=12,...,

where the ¢;’s are i.i.d. with mean vector 0 and covariance matrix
Doy = Dy — B[00y,

and statistically independent of the A,’s. If we condition on the 4;’s, (3.8) is the
model (3.5) with

¥ = (P«2 - 01,0',, ‘I’{2‘I’1-11)’ A =Dy,
We can now use the results of Section 3.2, noting that with probability one (over
sequences h,, h,,...)

1 1
lim —Fl,Fl m ;(ln’ H)’(ln’H)

n—oo N

_ ( 1 i _A
By Pyt opps w
Thus, conditional on the A;’s,
(3°9) I/Q(Cﬁ CB) - MVN(O Aul["l'z'ﬂ + v'QDP,y;,. 1QY])

in distribution as n — co. By repeating the arguments given at the beginning of
this section about converting conditional limiting results to unconditional limit-
ing results, we can conclude that (3.9) also holds unconditionally.

3.5. Conclusion. The results (3.4), (3.7), and (3.9) can be used to construct
large sample confidence ellipsoids for CB8 based on the OLS estimator CA
provided that consistent estimators can be found for the covariance matrices of
the asymptotic normal distributions. It should be noted that, in general, CB8 is a
function not only of 8, but also of Aj;'A,,, which need not be a known matrix.
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