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Suppose the (k X 1) vectors x and y are independent with x ~ N(p, 2)
and y ~ N(n, 2), = positive definite. If for a positive scalar ¢, n = cp, we
find the posterior of ¢, using noninformsdtive priors, given the data
(x, )\, {yj}llvl The x, are N, independent observations on x, and indepen-
dent of the y,, which are N, independent observations on y. The constant ¢
is called the magnitudinal effect, and the posterior of ¢ turns out to involve a
truncated Student-t kernel. We also discuss the situation in which we wish to
examine the truth of the statement n = cp, and proceed as follows. We first
note that the matrix A = (A, ), where A, = NwE"Tp, Ap =24y =
,/N N, w="'n, and Ay = N2v|2 m, has a zero eigenroot if and only if
n = cp, for some c. Hence, we are motivated to find the (joint) posterior
distribution of w,, w,, the roots of A, where w, > w, > 0. Then, by integra-
tion with respect to w, over the region w, > w,, we may find the marglnal of
w,, and use it to examine the statement 3 = cp.

The posterior of (w,, w,) involves the multivariate hypergeometric func-
tion | F{®, which in practice creates computational difficulties. Accordingly,
some numerical considerations are discussed for computing of the posterior of
wy, and an example using real data is given.

1. Introduction and summary. Kraft, Olkin and Van Eeden (1972) discuss
the following interesting problem. (We refer to this paper as the KOV paper.)
Suppose two methods are used and their effects can be evaluated on & character-
istics, such that Method 1 produces measurement x and Method 2 produces
measurement y, where the k-dimensional random vectors x and y have a
normal(p, =) and normal(n, X) distribution, respectively. A question of interest
that may arise is whether the model

(1.1) m=c, ¢>0,

does, or does not, hold. If the model (1.1) holds, then it may be of interest to
estimate the so-called magnitudinal effect, c.

Applications of this problem abound. The KOV paper gives an interesting
application to the field of medicine, where Method 1 and Method 2 are two drug
treatments, measurements are on £ symptoms, and if (1.1) holds, then the drugs
are doing the same kind of work, up to dosage. Still another application is in
chemical engineering: In the manufacture of soap, two different methods may be
employed and & = 2 characteristics of the soap measured, that is, ability to
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lather, and mildness. The two methods differ in whether a catalyst of type A is
used or a catalyst of type B. If model (1.1) holds, then, up to quantity, the two
catalysts are equivalent.

A quite different application is in the monitoring of nursing homes and in
particular whether private and government homes are spending in similar
fashion with respect to four types of cost (i.e., £ = 4), namely cost of nursing
labor, cost of dietary labor, cost of plant operation and maintenance labor, and
cost of housekeeping and laundry labor. Yet another application is given in
Section 4. The list of applications is indeed quite extensive.

As noted earlier, the scalar ¢ has been called the magnitudinal effect in the
KOV paper, where this problem is approached from the classical sampling route.
To test whether (1.1) is true, KOV employ the likelihood ratio test and supply a
test procedure for large sample sizes based on the well known asymptotic
distribution of the likelihood ratio test criterion. They also discuss the problem
of finding the maximum likelihood estimate ¢ of the scalar ¢, given that (1.1) is
true and supply a confidence interval for ¢ for large samples by finding the
asymptotic distribution of ¢ using well known limit theorems. All this is on the

basis of data on x and y, say N, independent observations x; on x, i = 1,..., N,
independent of N, observations y; ony, j=1,..., N,. We let
(1.2) X ={x; f" and Y= {yj}f’2

denote the two samples obtained from the two methods.

This paper is mainly given over to a discussion of the case that one first
wishes to examine whether (1.1) is true or not. For this situation, we have a
Bayesian approach to the problem, given the data (X,Y), which involves
examining the smallest root of a certain matrix, and we do the examination by
using the posterior distribution of this root. This is developed and explained in
Section 2. Some numerical considerations are discussed in Section 3, and in
Section 4 we illustrate how to use the results of this approach for an example
involving real data.

We also discuss the case of estimation of the scaler ¢ (the so-called magnitudi-
nal effect given that (1.1) holds. This is developed, using a Bayesian approach in
Section 5, and illustrated in Section 6.

2. Does the magnitudinal model hold? In this section we address the
question of how to make inference about whether or not the magnitudinal model
(1.1) is appropriate. We will of course, need sample information to do this, and to
this end, we assume thedata X = {x;,,i=1,..., N,Jand Y = (v 7=1,..., Ny}
are available, where X and Y represent independent samples of independent
observations from a normal(p, =) and a normal(y, =), respectively. We let

N, N,
(2.1) X=N"'Yx, ¥=N'Yy, S=8+8,
1 1

where

N, Ny
(217) S, =X(x;-%)(x,- %) and S,= Y-y -3
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We remind the reader that if the prior for p,m and 7! is diffuse, so that the
noninformative prior for the parameters is appropriate and used, that is, if we
take

(22) p(p"n’z—l) o IE_II_(k+1)/2!

then the posterior distribution for p, 1 and 2! is characterized by
(i) the marginal posterior of =~! is such that

(2.3) p(Z7YX,Y) a |27 kD2 etr( — 1271S),

withn=N + N,—2=N-2=>kFk,and
(ii) the conditional posterior for p,n, given 7!, is such that p and n are
independent with

(2.4) N%p ~ normal( N}/?%,=) and N,/?n ~ normal( N,/%y, =).

[See, for example, Tiao and Zellner (1964).] We note that the density of (2.3) is
that of a central Wishart distribution of order &, with n degrees of freedom, and
positive definite parameter matrix S~ 1.

Our objective now is to use the information in the posterior distribution to
determine whether or not the magnitudinal model (1.1) holds. A somewhat
obvious approach to this problem is to construct, at some level, simultaneous
posterior ellipsoidal regions for p, and for m, and examine whether any line
through the origin intersects both ellipsoids. The approach, however, does not
address the question directly since the construction of the ellipsoids places no
special emphasis on the degree of departure of p and n from a straight line
through the origin.

Another obvious approach stems from consideration of the alternative to (1.1),
namely

(2.5) n=Cp, C=diag(c,...,c,), ¢ =0.

The approach that then suggests itself is to find the posterior of the elements
(¢q,---,c,). However, for reasons best explained in Guttman, Menzefricke and
Tyler (1985), this approach too leads to a somewhat dead end.

Alternatively, we propose examining the posterior distribution of w,, the
smallest eigenvalue of the 2 X 2 symmetric nonnegative definite matrix A, where

NwE 'y (N, N,) w1

(2.6) A=MZ"'M= L2
(N N;) "2 N2~ 'q

and where M = [ N}/%yN,}/?q]. We note that w, > 0 with equality if and only if
M = cp, since n = cp if and only if M and hence A has less than full rank. It is
interesting to also note that w, has the following geometric interpretation.
Suppose we fit a straight line through the origin that minimizes the sum of the
squared distances between N}/?p and N,/?n from the line, where distance is
measured by the orthogonal distance with respect to the inner product (a,b)s =
a’S " 'b, then it can be shown that the minimum sum of squared distances so
obtained is w,. More formally, by using fundamental results from linear algebra
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it can be shown that

(27) ey = min{ min N}~ dyx]g + min | N}/n - dyx|3),
where |la||3 = (a,a)s. In view of this, if the posterior distribution of w, is
“concentrated about zero,” the data would be compatible with the magnitudinal
model. What we mean by “concentrated about zero” is discussed at the end of
this section.

We first give the joint posterior density of the roots of A. The proof of this
result is given in Appendix 1.

THEOREM 2.1. For 2 < k < n, the posterior density of (w,, w,), where w, >
w, are the roots of A defined in (2.6), is

k— —(w; tw
(2.8) P(w1, @|X,Y) = Kow0,) e rran/2(o) — o)

X 1F1(2){én; sk 3Lo(I + LO)_I’ AO}’ @1 >y 20,

where K, = «'2(2*TAR)T[L(k — 1)1} Y + 1)A + 1)} "2, with' 1, > 1, > 0
being the roots of

(2.8) L=T'S™'T, withT = [N}/?%, N,/*y],
and where
(2.8”) L, = diag{{,, I,}, A, = diag(w;, wy).

The reader is referred to the text by Muirhead (1982) for a good review of the
definition and properties of the generalized hypergeometric function ,F® intro-
duced in the theorem, in particular see his Chapter 7. It is important to note
here that the function | F® depends upon its matrix arguments only through the
roots of the arguments, and is a symmetric function of these roots. Interestingly,
there is a connection between the ;F® function with the classical univariate
hypergeometric function of Gauss,

- [} q
(2'9) 2F1(a’ b; c, y)= Z £_a—(wy_,’
a=0 (¢)g ¢!
where (c¢), = c(c +1)--- (¢ + ¢t — 1). The relationship as given by Muirhead
(1975), Lemma 1.2 [we note the omission in (1.6) of page 285 of Muirhead (1975)
of a 1/k! (Muirhead’s notation) in the summand] is

© (a),(c—a), (—hh,uu,)
1F1(2){a; c; H,U} _ Z ( )t( )t( 1702%1 2)

=0 (e = 3)(c)a ¢!
(2.10) % i) ((::;t))jj {3(h, + hzj)!(‘h + u,) )
1 1 1

X o Fy —gj,—§j+ 5;1;362 ,
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where H = diag(h,, hy), with A, > h,, and U = diag(u,, u,), u, > u,, x =
{(hy — hy)(u, — uy)}/{(hy + hy)(u, + uy)}. The o F; terms arising from (2.10)
have a finite expansion, since for g > ;j, either (— 3j), =0or (- }j + }),=0.

By inserting the expansion (2.10) into the density (2.8), making the change of
indices p = 2¢ + j, t = t and integrating over w,, we have:

THEOREM 2.2. The marginal posterior density of w,, the smallest eigenvalue
of the matrix A of (2.6), may be expressed as

(2.11) p(wyX,Y) = Kot 92 2/2 3 ¢ (w,)FP/(5k),, w20,
p=0

where K  is defined in Theorem 2.1, r = ;(r, + ry) withr,= 31,/1 + 1,),i = 1,2,
and where

[p/2] [p/21-t
cp(co2) = Y JAaZloY Y by 4 X7 (wz; p—2t— 2q,
t=0 q=0

" (2.11)
2 + 1,t+ k= 2)),

with z, = rry,/@QF)?, x, = (r, — r,)*/(47)*, J, = (“D'(k — n)/2),/
{((k=1)/2))t!, b, , , = (3n),_/{(q)(p — 2t — 2q)!}, and in general

(2.117) Q(wy; my, my, my) = f:;(wl +wy) " (0 — wy) e ? de,.

By direct integration, we note that an alternative form for @ in Theorem 2.2
is given by
m,+m,
Q(wy; my, my,mg) = ), G2 ™ ol ™ (v + my + 1)
(2.12) v=0
XP{ngzm,.,w > w2} )

where

min(my, v) m m )

(2.13) c- Y ( " )( .2)(—1)’"2‘1
J=max(0,v—m,) v=J J
are the coefficients in the expansion (s + 1)™(s — 1)™2 = ™ ™C s". For the
case when mj is also a nonnegative integer, which corresponds to % being odd,
we have the form
my;+mg
(2.14) Q(wy; my, my, my) =c /2 Y B2™m*" Il(my+ v + 1)t ™,
v=0

where

max(n,v) m m 4
(2.14") B, = Y ( 1)( _3.)2"“-/
J=max(0, v—my) J v=J

are the coefficients in the expansion (s + 2)™(s + 1)™ = Y™™ B s*.
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The posterior moments of w, can be found directly from equations (2.11),
(2.17’) and (2.11”). Using the notation of Theorem 2.2, we have

(2.15) E(of|X,Y) =Ko X p ,L(p + b+ m)2P 5P /(LE),,

p=0
where
[p/2] [p/2]-t
(2.16) Bmp= 2 J28 X bp,t,qxﬁ’am,t,q}
t=0 9=0
and

m
Crg= L (D) (7)B3(r + 2g +2), 12t + k- 1)},
v=0
with B(-, ) denoting the beta function.

We now address the question of how to decide whether the posterior distribu-
tion of w, is sufficiently “concentrated about zero” and hence that the magnitu-
dinal model is feasible. One approach, which may seem intuitively appealing,
would be to see if zero is, for some level, in the highest posterior density (HPD)
interval. The drawback to this approach is that for £ = 2, the posterior for w,
has an asymptote at zero, regardless of the data, and hence the HPD interval
will always contain zero. For £ > 4, the posterior density of w, at zero is always
zero, regardless of the data, and hence the HPD interval will never contain zero
for these cases.

In order to understand the information given in the posterior distribution of
w,, some reference point is needed. This necessity of a reference point becomes
apparent after noting that when [/, = [, = 0, which occurs when X = y = 0, the
posterior distribution of w, corresponds to the distribution of the smallest root
of a central Wishart distribution of order 2, on % degrees of freedom, and with
positive definite matrix parameter I. This implies that for large %, the posterior
distribution of w,/k would be highly concentrated about 1 whenever X = y = 0.
However, X = y = 0 would be an extreme case in support of the magnitudinal
model, and the “upward” bias present in this extreme case in the posterior of w,
can be attributed to the fact that w, is a distance measurement.

But because we feel a reference point is needed, we proceed as follows. We first
note that if we observe X and y to be proportional (thatis, y, = X, i = 1,..., k),
then [, = 0. Such an event gives extreme sample evidence support that the
magnitudinal model (1.1) holds. In order to assess whether the actual observed [,
is too large for the magnitudinal model to be feasible, we propose comparing the
posterior distribution of w, when we observe [, [,, to the posterior distribution
of w, under the same [, but with [, = 0. We call the posterior p(w,|l,, I, = 0) a
reference posterior. The proposed use of such a posterior is, we believe, new, but
of course, the use of reference priors has been employed for various situations
before (e.g., see Chapter 1 of Box and Tiao (1973)). An application of this
approach is illustrated in Section 4.
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It is interesting to draw some parallels between the frequentist approach and
the Bayesian approach. The likelihood ratio test for testing whether the magni-
tudinal model holds is based on /,, whose exact sampling distribution depends on
both w, and w,. If w, = 0, the distribution of /, still depends on the nuisance
parameter ,, although its asymptotic distribution does not. The KOV paper
gives details. In our Bayesian approach, the posterior distribution of «, is a
function of I, and [,, which of course are both known for any given sample.

3. Numerical considerations and a mixture representation. In this
section, some difficulties that may arise in the computation of the posterior
density of w, are discussed. We first note that the expansion for the hypergeo-
metric function , F{® given by (2.10) can converge slowly if the matrix arguments
are large, or if a is large. This convergence problem of the power series
representation is common to most hypergeometric functions of matrix argu-
ments. Quoting Muirhead ((1978), page 5): “These series...tend to converge
extremely slowly for cases of particular interest and it is very difficult to obtain
from them any feeling for the behavior of the density....” We now discuss in
more detail how this convergence problem specifically relates to the expansion
for the posterior density of w, given in Theorem 2.2.

By inserting the expansion (2.10) into the density (2.8) and making the change
of indices p = 2t + j and ¢ = ¢, we have

(8.1) p(w;, w,|X,Y)=2"F3K Y HP(V)Gp(o)fp/(gk)p, w, > wy >0,

p=0
where V= w, + w,, 8 = (0, — w,)/(w; + wy), H(V) = VP*k=2%=V/2 and

[p/2] [p/2]-t¢ o he2
(32)  G(0)= ¥ Jzi L b, &1 -0 e
t=0 q=0

The constants K, 2,, x,, J;, and b, , . are as in Theorem 2.2. We note that
integrating (3.1) term by term over w, yields the expansion for the posterior
density of w, given by (2.11). Although the constant JJ, can be negative, by using
the zonal polynomial expansion for the hypergeometric function ;F{? in (3.3)
and comparing it to the polynomial expansion (3.1), it can be shown that G,(9) is
a nonnegative function. The reader is again referred to Muirhead ((1982),
Chapter 7) for a discussion on the zonal polynomial expansions for hypergeomet-
ric functions of matrix arguments. If the value of n — % is even, then we note
that J,> 0 for ¢ < }(n — k) and J, = 0 for ¢t > 3(n — k).

Since the Jacobian of the transformation (made in (3.1)), (w;, wg) = (V, 8), is
1V, the joint posterior density of (V, 8) is thus

0
(33) p(V,0X,Y) = X a,x3,.2x(V)g,(0), 0<6<1,V>0,
p=0

where x2(-) represents a chi-square density on » degrees of freedom, g,(0) is the
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density obtained from normalizing G,(6), that is,

1

(34) 8,(8) = G,(8)/ [ Gy(«) de,

and the weights a, are given by

(3.5) a, = 272K FPT(p + k)/‘Gp(a) da/(3E),.
0

The posterior distribution of (w,, wy) can thus be viewed as a compound
distribution where, for a given p, the quantities V= w, + w, and 0 =
(w, — wy)/(w; + wy) are independent with densities xgp +ox(V) and g,(0), re-
spectively, and where the probability mass function for p is given by a,,.

By inspecting the weights a,, we can determine which values of p are
important in calculating (3.3) and hence in calculating (2.11). Thus, a more
detailed analysis of these weights is warranted. We proceed by first noting that
the posterior marginal density of V = w, + w, can be obtained by integrating
(3.3) over 6. This gives

[e¢]
(3.6) pP(VIX,Y) = X a,Xx5,.26(V), V>0.
p=0

A more direct method for obtaining the posterior density of V is as follows.
Since V = tr(A), where A is defined by (2.6), we note from (3.3) that the
posterior distribution of V given 2! is a noncentral chi-square on 2% degrees of
freedom with noncentrality parameter § = NX'2 " 'x+ N,y’S"'y. By using the
familiar expansion for the noncentral chi-square density as a weighted infinite
sum of central chi-square densities, and then taking the expectation with respect
to =~ ! we obtain (3.6) with

(37) ap = {(1 + ll)(l + 12)}7n/2E{(r1X?,n + r2xg,n)p}/p!,

with r, = (1,/2)/(1 + [;) for j = 1,2, and where xin and x3 , have independent
chi-square distributions, both on n degrees of freedom. Evaluation of the
expectation in (3.7) gives

P
(3.8) a,={(1+ 1)1 +1L)} 27 ¥ {(3n),(3n),—rrf "}/ (1 (D — »)1}.
v=0
Now using a, as mass function for p (see (3.5)), we may calculate the mean and
variance of this mass function, obtaining

(3.9) E(p) = in(l, +1,) and Var(p) = in(I? +13).

If the mean and variance of p are not too large, calculation of the posterior
density of w, may proceed directly via (2.11). The function Q(wy; m,, my, my)
can be calculated by using either (2.12), (2.14) or recursively for fixed m, and w,
since in cases of interest m, and m, are nonnegative integers.

If the mean and variance of p are large, direct computation of the posterior
density of w, by (2.11) is not feasible, primarily due to the computation of the
function Q(w,; m,, m,, m;) within the summations. In such cases, computations
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can be saved by first computing the posterior joint density of (w,, w,) given by
(3.1) over a nonrectangular grid

(3.10) Wy = w, ; and (w0, — wy)/(w, + wy) =0,

for a range of values of w,; and 6,, and then numerically integrating over w,.
This procedure, used in the example discussed in the next section, saves compu-
tations since the values for G,(6;) defined by (3.2) can be stored.

Alternatively, the | F® function appearing in the posterior joint density of
(w,, wy) given by (2.10) can be calculated by applying numerical integration
procedures to an integral representation of the ,F® function. This function can
be represented as an integral over the group of orthogonal matrices of order 2
where the integrand is a ,F, hypergeometric function. The | F; function can in
turn be represented as an integral over the set of symmetric positive definite
matrices of order 2 where the integrand is a | F;, hypergeometric function, which
has the closed form | Fy(c, M) = |I — M| ™. For more detail, we again refer the
reader to Muirhead ((1982), Chapter 7). Tiao and Fienberg (1969) have used
numerical integration for integrating over the group of orthogonal matrices of
order 2 in calculating the ,F® hypergeometric function. Finally, asymptotic
approximations for the , F® function can be used when appropriate; see Muirhead
(1978) and Glynn (1980).

4. Does the magnitudinal model hold?—An example. Johnson and
Wichern ((1982), page 243) give an interesting set of data on electrical usage.
Samples of sizes N, = 45 and N, = 55 were taken of Wisconsin homeowners with
and without air conditioning, respectively. The observations were on electrical
usage (kilowatt hours) during

(on-peak hours, off-peak hours)’

for both groups, and if the magnitudinal model (1.1) holds, the utility can plan
accordingly, aim advertising campaigns accordingly, etc.
The resulting statistics (with notation of Section 2) are
x = (204.4,556.6), N, = 45,
(4.1) _ ,
¥ = (130.0,355.0); N, = 55.

(Johnson and Wichern state that the off-peak consumption is higher than the
on-peak consumption because there are more off-peak hours in a month.) Also

_ (1,074,443 2,107,539
(4.2) § (2,107,539 6,238,807)'

A quick calculation shows (using the notation in Theorem 2.1) that the matrix

_(2.26787 1.59829
(4.3) L‘(1.59829 1.12642)’

with roots
(4.3) 1, = 3.39428, 1, = 0.0000134.
The next step is to compute p(wy|X,Y) = p(wy|l, = 3.39428, [, = 0.0000134),
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the posterior of w,, for the above data, from (2.11). In accordance to the dictates
of Section 3, we first compute the mean and standard deviation of the index p,
and find, using (3.9) that

(4.4) E(p)=16632, S.D.(p) = 23.7599.

Because of the above results, we use (2.11) with the index of summation ranging
over 0 < p < 300, and a calculation of £3ya,, shows that this range amounts for
99.999% of the probability for p. The results are listed in Table 1 and graphed as

TABLE 1

Tabulation of the posterior p(wy|X,Y) = p(w,|ly, = 3.39428, I, = 0.0000134) = p(w,) and the
reference posterior p*(w,|l, = 3.39428, I, = 0) = p*(w,). The actual output contains 34 other
values of p(w,) and p(w}), at selected values of w, ranging from 8.1206 to 27. For all these
cases, |p(wy) — p*(wy)| <2 X 107" In fact, as w, increases, |p(wy) — p*(w,)| decreases
rapidly, so that, for example, |p(27) — p*(27)| = 1.75 X 10~ %, The entire output is available
from the authors. Since the distributions of w, are peaked near zero and long-tailed to the right,
we have used nonequally spaced points to obtain a clear picture of the distributions.

Wy p(wy) p*(wy) Wy D(wy) . p*(wy)
0.000027 60.7312 60.7715 1.06121 0.227792 0.227783
0.000216 28.4825 28.5013 1.15762 0.207818 0.207796
0.000729 14.7067 14.7164 1.25971 0.189290 0.189257
0.001728 9.6441 9.65047 1.36763 0.172109 0.172067
0.003375 6.87252 6.88706 1.48154 0.156190 0.156140
0.005832 521769 5.22113 1.60161 0.141454 0.141397
0.009261 4,13050 4.13321 1.72800 0.127830 0.127768
0.013824 3.37184 3.37405 1.86087 0.115251 0.115135
0.019683 2.81818 2.82001 2.00038 0.103658 0.103589
0.027000 2.39723 2.39877 2.14669 0.092992 0.092921
0.035937 2.06858 2.06990 2.29997 0.083201 0.083129
0.046656 1.80579 1.80693 2.46037 0.074233 0.074161
0.059319 1.59136 1.59235 2.62807 0.066040 0.065968
0.074088 1.41344 1.41431 2.80322 0.058573 0.058503
0.091125 1.26365 1.26441 2.98598 0.051788 0.051719
0.110592 1.13592 1.13659 3.17652 0.045640 0.045574
0.132651 1.02579 1.02638 3.37500 0.040088 0.040025
0.157464 0.929879 0.930397 3.58158 0.035090 0.035030
0.185193 0.845615 0.846074 3.79642 0.020606 0.030549
0.216000 0.771007 0.771407 4.01968 0.026597 0.026543
0.250047 0.704476 0.704826 4.25153 0.023026 0.022976
0.287496 0.644784 0.645088 4.49212 0.019858 0.019812
0.328509 0.590932 0.591194 474163 0.017058 0.017015
0.373248 0.542104 0.542329 5.00021 0.014593 0.014554
0.421875 0.497635 0.497825 5.26802 0.012432 0.012397
0.474552 0.456985 0.457143 5.54523 0.010547 0.010515
0.531441 0.419705 0.419835 5.83200 0.008908 0.008880
0.592704 0.385414 0.385517 6.12849 0.007491 0.007465
0.658503 0.353796 0.353876 6.43486 0.005270 0.006248
0.729000 0.324591 0.324648 6.75127 0.005225 0.005205
0.804357 0.297567 0.297605 7.07789 0.004332 0.004315
0.884736 0.272532 0.272552 7.41487 0.003575 0.003560

0.970299 0.249323 0.249327 7.76239 0.002936 0.002923
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pluylnysty) = p(w,|3.39428, .0000134
...... p*(w2|11,0) = p*(w2|3.39428,0)
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t
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FiG. 1. The posterior and reference posteriors for the electricity data.

the solid line in Figure 1. We also (in Table 1) give values of p*(w,|l, = 3.39428,
1, = 0), the reference posterior that would give extreme sample corroboration
that the magnitudinal model holds, and graph p*(w,|l, = 3.39428, [, = 0) as the
dotted curve in Figure 1. As we can see, there is little to choose between
(w,]3.39428,0.0000134) and p*(w,|3.394282,0). The latter was computed, inci-
dentally, for the same range of the index p using (2.11), since the mean and
standard deviation for p for the case I, = 3.339428, [, = 0 have values, to two
decimal places which are the same as given in (4.4).

The mean and variance of the posterior p(w,|l, = 3.339428, [, = 0.0000134)
turn out to be:

E(wy|X,Y) = E(w,|l, = 3.39428, I, = 0.0000134) = 0.9983,
Var(w,|X,Y) = Var(w,|l, = 3.39428, I, = 0.0000134) = 1.9930.

In contrast, the mean and variance of the reference posterior p*(w,|l;, =
3.39428, [, = 0) are

(4.5)

E*(w,y|l, = 3.39428, 1, = 0) = 0.9969,
Var*(w,|l, = 3.39428, [, = 0) = 1.9878.
Inspection of the differences between the actual posterior and the reference

posterior as indicated in Table 1, Figure 1 and (4.5)—(4.6) leads to the conclusion,
as indicated, that the data supports the statement

(4.7) w, =0, n=cp.

(4.6)
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Hence, we may wish to adopt (4.7) for this set of data and turn now to the
question of estimating c. This is discussed and developed in the ensuing section,
and the development there is illustrated with the set of data of this section.

5. The posterior distribution of the magnitudinal effect. In this section,
we assume that the magnitudinal effect model (1.1) holds, and that interest is in
making inference about the magnitudinal parameter c. Specifically, we assume
that the k-dimensional random vectors x and y are independent and distributed
as

(5.1) x ~ normal(p, 2) and y ~ normal(q, =),
where
(5.2) n=cp, p#0, c>0.

As an example of how this model may arise, suppose we are dealing with two
drugs so that c represents a change needed in the dosage of the first drug whose
effects on & symptoms are measured by x to make it equivalent to that dosage of
the second drug whose effects on the same %2 symptoms are measured by y. In
such a setting, it is not uncommon to have Var(x) = Var(y) = = and we operate
under this assumption (as does the work in the KOV paper).

Suppose, then that N, independent observations on x are generated, say
X = {x,...,xy,} and that X is independent of the N, independent observa-
tions y; taken on y, say Y = {y,,..., Yn,}- The likelihood based on X and Y of
the parameters p, ¢, 27! is then

(p, e, 27YX,Y)

Nl
o |2 etr[—%z"l{z(xi —w)(x )

1

(5.3)

N,
+ 4?()'; - )y — cu)’}},

where N = N, + N, and etr(-) stands for {exp trace(-)}. We assume that we are
in a situation where, a priori, the noninformative prior of Section 2 is ap-
propriate, so that

(5.4) p(p, e, 27" =p(p,c)p(27)
is such that
(504,) p(l-", c, 2—1) o |2—1|—(k+1)/2.

We show below that combining (5.4’) with (5.3) and then integrating out
p, 27! leads to the posterior of c, given the data X, Y, which is such that

N—k-1)/2
p(c)X,Y) = K(N, + Nye2)'
(5.5) (N, + N?)

—(N-1)/2
}( /, ¢>0,

{(b; + 1/Ny)c® — bye + (by + 1/N,)
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where
(55') b, =XS7'X, by,=%S"'y, b,=yS'y and S=85 +8,

with X, ¥, S, and S, as defined in (2.1a)—(2.1b). The last factor of (5.5) could be
rewritten by completing the square in ¢, and we would then find the equivalent
form

—h— —(N-
(5.6) p(c|X,Y)=K(N, + NQCQ)(N k 1)/2{1 + ayc— 6)2} ( 1)/2, c>0,

where a, = Nyl + N;b))/t, &= Nyb,/(1 + Nb,), t= N{1 + (N,b; +
N,N,b,q)/(1 + N;b))}, ¢ = (§—bX)'S™(y—bx) and b = b,/b,. In (5.5) or (5.6),
K is a normalizing constant and may be determined numerically, and similarly,
we note here that it is an easy matter to tabulate (5.6) and to determine the
mode graphically. An example is given in Section 6.

To derive the result (5.5)—(5.5"), we first note that, after some algebra and
apphcatlon of Bayes’s theorem, we may write the posterior of p, c, 2 1 given X
and Y, in the form

(67 p(p, e, 27X, Y) « |2V 2exp( — 4 [tr S + Q)]
where
Q=N(p-X)2T ' (p—X) + Ny(cp - 5= (ep - ),

with X, ¥ and S as defined in (2.1a)—(2.1b). A routine completion of the square in
p, with some tedious simplification leads to

(58)  @= (b= BV AG—§) + gy (-eR) 2T -eX),

where
(58) A=(N+N,)=",  f=(N + Ne?) [NX+Nyey].

Inserting @ in (5.7) and integrating with respect to p, we find, using properties of
the k-variate normal, that

p(c, =X, y) o |A|—1/2|2—1|(N—k—1)/2
(5.9) A ]
Xe"p{’"w2 [S + W(i—ci)(y—ci)’]}.
Since 27 'is (k X k), |A| = (N, + 02N2)k|2—i|’ and using this in (5.9), we have

p(c, =YX, Y) « (Nl + 02N2)_k/2|2—1|[(N—1)—k—1]/2
(5.9') .
Xexp{——trz |:S + W( -X)(y— (x)’ ))]}

Using properties of the k-order Wishart distribution, we now integrate (5.9”)
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with respect to 27! and find (since S is given once X and Y observed)
p(elX,Y) a« (N, + N2C2)—k/2

(5.10)

X\ I+

NN,

N, + N,c?

S™Hy - cx)(¥—cx)|

But |I + AB| = |I + BA|, so that, after simplification,

(5.10")

or

(5.11)

p(clX,Y) « (N, + Nyc?

X(1+

)—k/2

N,

N1N2 — —\/a—1(= .
Tzcz(y—cx)s (¥—cx)

—(N-1)/2

)(N—l)/2

p(c]X,Y) « (N1 + N2c2)(N_l_k)ﬂu_“\’*”2

The posterior p(c|X,Y) = p(c) for the electricity
data. Taken from output that tables p(c) for values
of ¢ = 0.300(0.005) to 1.095 (available from the

TABLE 2

authors).

c p(c) c p(c)
0.300 0.000029 0.705 3.411992
0.315 0.000082 0.720 2.806116
0.330 0.000228 0.735 2.239178
0.345 0.000605 0.750 1.737182
0.360 0.001539 0.765 1.312955
0.375 0.003739 0.780 0.968628
0.390 0.008665 0.795 0.698872
0.405 0.019118 0.810 0.494057
0.420 0.040105 0.825 0.342823
0.435 0.079900 0.840 0.233895
0.450 0.151035 0.855 0.157160
0.465 0.270717 0.870 0.104162
0.480 0.459943 0.885 0.068197
0.495 0.740631 0.900 0.044169
0.510 1.130533 0.915 0.028336
0.525 1.636566 0.930 0.018029
0.540 2.248232 0.945 0.011390
0.555 2.933566 0.960 0.007153
0.570 3.639796 0.975 0.004695
0.585 4.299798 0.990 0.002781
0.600 4.843352 1.005 0.001726
0.615 5.210431 1.020 0.001068
0.630 5.362763 1.035 0.000660
0.645 5.290479 1.050 0.000407
0.660 5.012257 1.065 0.000251
0.675 4.569532 1.080 0.000155
0.690 4016958 1.095 0.000096
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with
(5.12) u= (N, + Nyc?) + N,Ny(¥—cx)'S~ (¥ — cX).
Some straightforward algebra yields

and insertion of (5.12’) in (5.11) is the result (5.5), which of course after
completion of the square in ¢ and introducing the notation of (5.6), leads to the
result (5.6). We turn now to an illustrative example.

(5.12,) u = N1N2{

1 1
AR bl)cz— 2b,c + (ﬁ + b,

1 2

6. Estimation of ¢ for the electricity data. Suppose we assume that the
data of Section 4 were generated under the conditions specified by (5.1)-(5.2).
The posterior of the magnitudinal effect ¢ is then given by (5.5), where for this
set of data

b, = 5.0397111 x 102, b, = 3.2126838 X 1072,

6.1
(6.1) by = 2.0480364 X 102,

pc|X,Y)

N

.00

— s

.30 0.38 0.u6 0.54 0.62 0.70 0.78 0.86 0.94 1.02 1.10

F1G. 2. The posterior p(c|X,Y) for the electricity data. The mode is at ¢ = c,, = 0.635. [ See Table
3 for the 1 — a intervals.]



1570 I. GUTTMAN, U. MENZEFRICKE AND D. TYLER

TABLE 3
Posterior intervals [ ¢,, ¢y ] for c; see (6.5).

1-a 0.90 0.95 0.99
[ 0.5217 0.5006 0.4600
cy 0.7709 0.8006 0.8600

and S is as quoted in (4.2). We also have
(6.2) N, =45, N,=55 N =100.
Using the above data, we tabulate p(c|X, Y) in Table 2, and graph p(c|X, Y) for

this set of data in Figure 2. Inspection of Figure 2 shows a slight skewness to the
right. We note that the mode, say c,,, of this posterior is at

(6.3) _ ¢,, = 0.635000.
Numerical integration yields
(6.4) E(c|X,Y) = 0.641198, Var(c|X,Y) = 0.005776,

so that S.D. (¢|X,Y) = 0.076.
The question of 1 — a (posterior) confidence intervals is quickly determined
by numerical integration. For this purpose we let ¢, and ¢, be such that

(6.5) fClp(c|X, Y)de=a/2 = foop(c|X, Y) de.
0 Co

The intervals [¢,, c,] are then of content 1 — a. For this set of data, and for
a = 0.90, 0.95, 0.99, the resulting intervals, as found using numerical integration,
are as given in Table 3. [To avoid the infinite limit, we actually found ¢, using
f§2p(c|X,Y)de =1 - a/2].

APPENDIX
Proor or THEOREM 2.1. Using (2.4), we obtain as a special case of (68) in
James (1964), that the conditional posterior density of (w,, w,), given =71, is
p("-’n w2|X, Y, 2—1) — Kle—(w,+w2)/2(w1w2)(k—3)/2(w1 _ w2)
(A1) Xetr{ — 1T'S7'T}(F®(Lk; 1T'S7'T, A),

w; > wy =0,
where K, = #'/2(2*T(1k)T(1(k — 1))} ', and T is defined in the statement of
the theorem. Thus, to find p(w,, w,|X, Y), we need to compute
(A:2) E{etr(~ W), F@(3k; 3 W, A),

where the expectation is with respect to the distribution of £~! given in (2.3),
and W = T2~ !'T. Now using well known properties of the Wishart distribution,
W = T’3S"'T has a central Wishart distribution of order 2 and n degrees of
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freedom, with positive definite matrix parameter L = T'S™'T. By making the
transformation Z = Q 'WQ~!, where @ is a 2 X 2 symmetric matrix with
Q%= 2L(1 + L)™', (A2) can be expressed as

(A3) K'[I+L|™"? fZ Oetr(—Z)|Z|‘"‘3)/20F1‘2){§k;%QZQ,A}dZ,
>

where K’ = {#'/2T(in)[[4{(n — 1)]}". As a special case of equation (31) in
James (1964), (A.3) is ,F®{in; 1k; LL(I + L)™', A}. The theorem then follows
by replacing the matrix arguments with the diagonal matrices consisting of their
eigenvalues. O
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