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ON THE BOOTSTRAP AND CONFIDENCE INTERVALS!

By PETER HaL1?

University of North Carolina

We derive an explicit formula for the first term in an unconditional
Edgeworth-type expansion of coverage probability for the nonparametric
bootstrap technique applied to a very broad class of “Studentized” statistics.
The class includes sample mean, k-sample mean, sample correlation coeffi-
cient, maximum likelihood estimators expressible as functions of vector
means, etc. We suggest that the bootstrap is really an empiric one-term
Edgeworth inversion, with the bootstrap simulations implicitly estimating
the first term in an Edgeworth expansion. This view of the bootstrap is
reinforced by our discussion of the iterated bootstrap, which inverts an
Edgeworth expansion to arbitrary order by simulating simulations.

1. Introduction. Several authors [2, 3, 4, 15] have used sample path proper-
ties to argue that Efron’s [8, 9] bootstrap is an empiric one-term Edgeworth
inversion. In this paper we shall tackle the problem from a different viewpoint—
that of coverage probability of confidence intervals. Arguing in that vein we shall
show the bootstrap to have two important advantages over simpler inversions—it
is smooth (i.e., uniform) and automatic (i.e., does not require preliminary theoret-
ical calculation of the expansion’s first term).

We shall show that the bootstrap may be iterated to yield an approximation
with an error of arbitrarily small order, in the same way that direct Edgeworth
inversions were iterated in [12]. Bootstrap iteration involves simulations of
simulations, and although it is almost prohibitively laborious to implement in
practice, its theoretical properties provide new insight into the nature of the
bootstrap algorithm. Bootstrap iteration is very different from the type of
“Edgeworth correction” advocated by Abramovitch and Singh [1], Hall [12] or
Withers [16, 17]. All those techniques require explicit calculation of terms in
Edgeworth expansions, and explicit correction for them. In comparison, bootstrap
iteration involves no calculation of Edgeworth expansions and no explicit correc-
tion. All “corrections” are implicit, via a nested sequence of resampling oper-
ations.

We shall obtain an explicit formula for the first error term after the bootstrap
correction, in a very wide class of “Studentized” statistics including the mean,
variance, correlation coefficient, maximum likelihood estimators expressible as
explicit or implicit functions of vector means, etc. The formula for the error term
may be used to predict the performance of the bootstrap; see the comments
following Eq. (3.2). Our expansion is entirely different from earlier expansions
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1432 P. HALL

connected with the bootstrap, such as those described by Babu and Singh [13]
and Singh [15] in the case of k-sample Studentized means. The expansions
studied by Babu and Singh hold with probability 1 along a sample path, and are
of interest if a statistician wishes to know the order of approximation for his
particular sample. In contrast, our expansions are not conditional on a sample
path, and so are useful in describing coverage probabilities or significance levels
in the classical frequentist sense. They help to explain the encouraging perfor-
mance of the bootstrap method for constructing confidence intervals, described
empirically in other work (e.g., [10, 11]). Our general formulation of the problem
includes k-sample means as a particular case.

The basic result is described in Section 2 and proved in Section 5. Its
implications and issues arising from its proof are discussed in Section 3. These
matters lead naturally to bootstrap iteration, described in Section 4.

Several ideas in our proofs are borrowed from [5, 6, 12], and in those places we
omit many details. In addition to the works of Babu and Singh already cited, the
reader is referred to Beran [3, 4] and Bickel and Freedman [7] for an asymptotic
account of the bootstrap.

2. Notation and basic result. Let Y,Y,,Y,,... be independent and identi-
cally distributed d-dimensional random vectors w1th mean p = E(Y). Define
Y= {Yl, .,Y,}and Y = n7'E"_Y,. Denote the ith elements of Y, Y,, Y and p
by Y, Y,,, Y and p,, respectlvely. Let f be a real-valued function on IRd with at
least one continuous derivative. We shall consider the problem of interval
inference based on v,(%) = f(Y) — f(p). Typically f(Y) = § is an estimate of a
parameter f(p) = 6.

Under appropriate regularity conditions, n'/2y,(%) is approximately normally
distributed with zero mean and variance given by

(2.1) 0% =330, fi(p)f(p),

where o, = cov(Y,, Y;) and f,(p) = (9/du,)f(p). Usually the value of 6? would
not be known and would be replaced by an estimate such as

(22) = 23,6, (DY),

where 6;; = n7'E"_(Y,; — Y,-)(Y,j - Y;-). We would focus attention on v,(%) =
67 'y(%), rather than v,(%).

Let us adjoin to the vector Y, the set of those products Y”Y,j, l1<i<j<d,
which do not already appear m Y,. Thus, Y, is expanded to Y, say, of length
dy<d(d+3)/2.Let Y%and p° = E(YO) denote the corresponding lengthenings
of Y and p, and let Y° = n~1¥"_ Y°. We may write y,(%) as a function of Y°
alone: g(Y°|p) = {f(Y) f(p)} /8. Clearly g(p°|p) = 0. The asymptotic vari-
ance of n'/?g(Y°|p) is unity, which is reflected in the fact that if we construct
the quantity o2 at (2.1) for g(-|p) instead of f(-), we obtain precisely 1.

The bootstrap argument runs as follows. Condition on the sample #, and let
2,Z,,...,Z, be independent and identically distributed with the n-point distri-
bution P(Z =Y, |%)=n"",1<r<n.Set Z=n"'Y"_,Z,. We may work out
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the distribution of g(Z°|Y), conditional on %, to arbitrary accuracy using
simulation. The distribution is discrete. Define

=t,(%) = inf{t: P[n'"%(Z°Y) < )] > a},

for 0 < @ < 1. Then ¢, is the (nonparametric) bootstrap approximation to the
upper (1 — a)-level critical point of n'/%g(Y°|n), and may be used in the
construction of confidence intervals or hypothesis tests. Theorem 2.1 describes
the accuracy of the approximation.

Before stating the theorem we list notation and technical conditions. Given
any vector u® = (Uy, ..., Uy, Uy, Upgy s Ugg) = (Uyy ..., Ugo)T of length d°, de-
fine u = (u,,..., uy)" (the first d elements of u°),

o*(u’) = Zizj(uij - uiuj)fi(u)fj(u),
g(v) = {f(w) - f(v)} /{o*@")}”,
&, .‘.i(uolv) = (Bp/dui‘ e Quy )g(u°|v).

(Recall from the definition of Y° that only those products Y,Y; not already
occurring in Y appear in the extension Y°. If YY =Y, €Y, we deﬁne u;; = Uy
Let B(u, p) denote the open ball in R¢ centered at u and of radius p, and define
B(u®, p) analogously. Given an extended mean vector u® with o%(p%) > 0, as-
sume that on some set B(p’,p) X B(p,p) of vectors (u’v), o2u’) >0
and g(u’|v) has four continuous derivatives with respect to u’. Let A(u’v)
denote any of these derivatives of order 1, 2 or 3. Assume that A(u’lu)
has four continuous derivatives with respect to u’ for each choice of A
and all u® € B(p?, p). Suppose the distribution of Y satisfies E(Y?) = p° and
E(|[Y?)|#"%) < o, for some & > 0. Lengthen Y° to Y! (of length d,) by adjoining
those triples Y;Y}Y, that do not already appear, let t be of length d,, and assume '
Cramér’s condition,

(2.3) limsup|E{exp(i(t, Y'))}| < 1.

[t| =0

(One consequence of (2.3) is that Y! has nonsingular variance matrix.) Note that
by definition of g,

d d
(24)  g(u'u) =0 and Y ¥ (u;— uuy;)g(ulu)g,(u’fu) =1
i=1j=1
for all u® € B(pY, p). Define
Liiy= & i(0I0), 105 = (8/0u,)g;, .. i (0Olw)]wo_

and «; .., = E{II7 1(Y B )} In terms of these functlons let ¢ be the odd,
qu1nt1c polynomlal defined by (5.28) in Section 5. Let ¢, be as in the previous
paragraph, and let ® and ¢ be the standard normal dlstrlbutlon and density
functions, respectively.
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THEOREM 2.1. Under the previous conditions,
(25) P(n%g(Y%) < (%)) = a + n "y (2(@)}6{2(a)) + o(n""),

uniformly in a, 0 < a < 1, where z(«) is the solution of ®(z) = a.

An alternative approach would be to bootstrap the statistic g*(Y|u"), where

1/2
g*(ulv®) = {f(w) = {(v)}/{e*(v°)} ",
instead of g(Y°|p). In that case we would use the critical point estimate
t¥ = tX(¥) = inf{t: P[n'%g*(Z|Y°) < %] > o},

instead of ¢. If %) on the left-hand side of (2.5) were to be replaced by ¢*(%),
then a term of order n~'/2 would be introduced into the right-hand side, due to
the fact that the statistic being bootstrapped is not pivotal. However, if the true
sampling variance of the estimator were known then the statistic would be
pivotal; a version of Theorem 2.1 is available for this case. In fact, under
conditions similar to those in Theorem 2.1,

P{ V2g%(Y|u°) < t*(@)} =a+n Y z(a)}y{z(a)} +o(n ),

where y* is essentially the same as y but with g* replacing g in the definition.
3. Discussion. Our discussion will be confined to Theorem 2.1.

3.1. A Cornish-Fisher view of the bootstrap. Let s = n'/*(§ — 0)/é be a
general Studentized statistic. In a great many cases, s admits an Edgeworth
expansion,

k
P(n'?(-0)/6 <x} =0(x) + ¥, n 2 (x)e(x) + o(n */?)
J=1
uniformly in x, where 7, ; is a polynomial of degree 3j — 1. Whenever it exists,
this expansion may be inverted to yield an expansion of (inverse) Cornish—Fisher
type,

k
P{n]ﬂ(é— 0)/6<x+ Y n_j/z'rrzj(x)} =®(x) + o(n"*?2)

j=1
uniformly on compact intervals, where {7, ;} is a new sequence of polynomials.
An alternative, equivalent form is

n'2(6 - 8)/6 < z2(a) + Y, n‘j/2w2j{z(a)}} =a + o(n"*?)

Jj=1

(31) P

uniformly in a € (g1 — ¢), any ¢ > 0, where z is the solution of ®(z) = a.

The coeflicients of 7,; depend on the sampling distribution through its
moments. Let II,; denote the version of 7,; with each population moment
replaced by the correspondmg sample moment. It is not difficult to show that for
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each % (modulo regularity conditions), and for each a € (0,1),

k
ty=2(a) + L n?, {z(a)} + 0,(n~*/%)
J=1
as n — oo. In this sense, the bootstrap critical point estimate ¢, is asymptoti-
cally equivalent to the critical point estimate obtained by empiric inverse
Cornish-Fisher expansion.

3.2. The bootstrap and Edgeworth inversion. 1f we replace each ,; in (3.1)
by II,;, then that expansion fails for £ > 2. This follows from the fact that the
cumulants of ©,(z) =n"*(0 — 6)/6 — X*_,n"7/*II, (2) coincide with those
of O,(z)=n"%f-0)/6 - Xk _\n/2m, (2) only to order n~'/% Even-order
moments of ©,(z) contain terms of order n~! that do not appear in the
corresponding moments of 0,(z). As a result, with z = 2(a),

P(n'/2(§ - 0)/6 < t,}

2
= P{n1/2(é— 0)/6<z+ ) nf/QHQj(z)} +o(n71)
j=1
= P{nl/z(é— 0)/6 <z+ n V2,(z) + n*1w22(z)} +o(n™1)
= P(n'2(0 - 0)/6 < 2+ n™my(2) + n"'my(2)}
+n Y (2)9(2) + o(n7?)
= a+n Y(2)9(2) +o(n7'),
where ¢ has the meaning it did in Theorem 2.1. This is essentially the argument
used in Section 5 to prove Theorem 2.1.
Note that ¢, and z + X3_,n//*I1, (z) produce confidence intervals with the
same coverage probability, up to terms o(n™!). The latter critical point estimate
results from a direct Edgeworth inversion of the type studied in [12, 16, 17].

Edgeworth expansions are generally not monotone functions, and so problems
are bound to arise if we attempt to invert them. In particular, the statement

2

P{n‘ﬂ(é -0)/6<z+ Y, n‘j/zﬂzj(z)} =a+n W(2)e(z) + o(n?)
j=1

does not hold uniformly in a. On the other hand, the bootstrap involves

inversion of a monotone function (the distribution function of the resampled

bootstrap statistic), and as a result, the statement

P(n'*(0 - 8)/6 < t,} = a+ n""(2)$(2) + o(n”")

is available uniformly in «. Simulations summarised in [12] indicate the disad-
vantages of the former approximation; in particular, it can overcorrect for small
n. Neither coverage statement holds uniformly in F.

3.3. An example. As an illustration, we shall consider use of the bootstrap
to set confidence intervals for a population mean. There, f(u;) = u,



1436 P. HALL

representing the mean, and u’ = (u,, u;;)" = (u,, u,)7, with u, representing
mean square. The Studentized mean is given by
1/2
&(uy, uylvy) = (u, — Ul)/(u2 - u12) .
Assume without loss of generality that E(Y) = 0 and E(Y?) = 1. Then [, = 1,

Lpy=—51P=—4,10 =212 = 2, and other terms are zero. Let p, = E(Y?)
and p, = E(Y*). It follows from the definition of ¢ that
(3.2) ¥(2) = —(2/6)(1 +22%){n, — 3 — (3/2)u2}, -0 <z < .

Therefore, y(z) vanishes if kurtosis and skewness are both zero. Formula (3.2)
suggests that the bootstrap approximation may be noticeably in error for skew,
platykurtic distributions. On the other hand, contributions of skewness and
kurtosis have some tendency to cancel in the case of skew, leptokurtic distribu-
tions.

It was shown in [10] that statistics that are representable as functions of
vector means admit directly invertible Edgeworth expansions. See [1, 12] for
alternative approaches. A simple way of tightening the bootstrap approximation
is to directly invert the expansion in Theorem 2.1. To this end, define

¥(2) = —(2/6)(1 + 22°)(, - 3 — (3/2)43),
where

-4

n~! E (Yr_ ?)4»
“ \3
fis=67n"1 Y (Y, -Y),
§>=n"' L (Y,- 7).
r=1

Under the conditions of Theorem 2.1,
(3.3) P[n'%g(Yl) < t (%) — nY(z(a)}] = a+o(n?)

uniformly in a € (¢,1 — ¢), any & > 0. In a sense, this procedure is the reverse of
one suggested by Abramovitch and Singh [1]: they first-order-corrected and then
bootstrapped, while we bootstrap and then first-order-correct. The end result is
very similar.

A more detailed argument shows that under appropriate moment conditions,
the right-hand side of (3.3) may be written as a + n= 3%y (2)¢(2) + O(n"2),
where y, is an even polynomial. This observation is particularly relevant when
using the tightening procedure to construct a symmetric, two-sided confidence
interval. Recalling that g(Y°p) = {f(Y) — f(pn)}/8, with é defined at (2.2), we
see that the interval

(F(Y) = n 2% [t,_oo(¥) = n "W {2(1 - 2/2)}],

f(Y) - n_l/z(f[ta/z(@/) - n‘llﬁ{Z(a/2)}])
covers f(p) with probability 1 — a + O(n"2), not just 1 — a + O(n~3/2). This
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property motivates bootstrap tightening: a single correction which improves the
bootstrap approximation to order n~%/2, actually gives an error as small as order
n~? in the case of two-sided confidence intervals.

A disadvantage of the approach described by (3.3) is that it does not apply
uniformly in a. Unless p, — 3 — 2p% = 0, (3.3) will fail either as « = 0 or as
a = 1. An alternative, smooth bootstrap tightening may be constructed as
follows. Calculate the value A = i, — 3 — 2fi2. Conditional on %, construct a
known, “comparison distribution” with zero mean and unit variance, having its
third and fourth moments p o, and p,, satisfying A = p, — 3 — 2u2,. By simula-
tion or otherwise, calculate that value 8 = B(«) such that the bootstrap con-
fidence interval (— oo, ¢4) for the comparison distribution covers the comparison
version of n'/%g(Y|p) precisely 100a% of the time. Then

(3.4) P{nlﬂg(?m) < tB(a)(OJ/)} =a+o(n?)

uniformly in a € (0,1). The right-hand side of (3.4) may be expanded as a +
n=%%(2)$(2) + O(n~2) for an even polynomial ¥,. Therefore the two-sided
interval

(f(?) - n_l/zétﬁ(l—a/Z)(@)> f(Y) - n_l/zatma/m(@/))
covers f(p) with probability 1 — a + O(n~2), not just 1 — a + O(n~%2),

3.4. Methods related to the bootstrap. If resampling can be conducted rapidly
and inexpensively then even traditional statistical methods based on tabulated
critical points may become obsolete. The “parametric resampling” used to
generate statistical tables, and the “nonparametric resampling” used to con-
struct nonparametric bootstrap critical points, are just two extremes of a vast
array of techniques that use resampling to solve problems that are essentially
numerical.

For example, it is possible to construct a smooth (i.e., uniform in a € (0, 1))
resampling-based approximation, based on the sample % only through its first
four moments, which corrects two-sided confidence intervals to order n~2. (The
tabular analogue of this method was mentioned in [13].) Among these methods
related to the bootstrap, the bootstrap itself stands impressively tall because of
its great flexibility and its “automatic” correction of normal approximations to
order n~!. Other, intermediate approaches may prove well suited to specific
problems.

The bootstrap technique discussed in this paper has been termed the “per-
centile-¢£ method”. Efron [9] has proposed a bias correction for the percentile
method. That correction is intended for use only with two-sided confidence
intervals, and so has been omitted from our work so far. Its aim is to “centre” a
two-sided interval. Expansions of coverage probability similar to those given
here may be derived for the bias-corrected interval, and terms of order n~!
persist in the expansion.

4. The iterated bootstrap. In Sections 3.1 and 3.2 we demonstrated that
the bootstrap may be viewed as a first-order inversion of an Edgeworth
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expansion; in Sections 3.3 and 3.4 we described relatively simple corrections of
second order. We shall show now that an arbitrarily high degree of correction
may be obtained by iterating the bootstrap argument. Once again, we shall tailor
our discussion to the more general context of Theorem 2.1, where o2(p°) is not
assumed known.

So as to clearly explain the procedure, we shall abbreviate our earlier nota-
tion. Distributions, empiric or otherwise, will be represented by their distribution
functions. Let G, and G, be any two distributions on R let p, and p, be their
means, and define

h(GylG,) = n/2( f(po) = f(w))}/{o%(n3)}"".

Given a distribution F;_,, draw a random n sample from it and take F, to be the
(empiric) distribution functlon of that sample. Repeat this for all i > 1, with F,
being the (nonrandom) distribution of Y. In this notation the random sample @
introduced in Section 2 has distribution function F,, and our aim is to determine
approximate critical points for the statistic A(F,|F, ) Those points are calculated
as follows. (Of course, mention of a single random sample drawn from F,_
serves only to define F;. Calculation of F,, or more importantly of functlonals of
F;, requires repeated resamphng from F;_,. Calculation of F,,, requires repeated
resamplmg from every one of the many samples drawn from F,_,, and so on.
Therein lies the exponential computational tedium of the iterated bootstrap.)

Given an (r — 1)th order approximation ¢t~ V(F)), define t((F,) by
tO(F)) =t (F)) + t, (F)), where for any i > 1,

to, (F;) = int{t: P[A(F,,,|F) < t{"(F,,,) + tiF}] = a}.

Assuming Cramér’s condition (2.3) and appropriate moment conditions on Fy, we
have

@y PORRIR) < €0(R))

=a+n V2N ()} o{z(a)} + o(n~"T/2)
uniformly in « € (¢,1 — ), any ¢ > 0, where " is a polynomial. In the
notation of Theorem 2.1, ¢t = ¢, and Yy = ¢.
Calculation of t{(F,) requires simulation up to and including the level of
F, ... We shall illustrate methodology in the case r = 3. Note that t()(F,) =
L1t (F1); we shall show how to construct ¢, (F)), ¢ o, 2(F) and ¢, ((F).
Deﬁne t, (F)) = t{)(F,) using the usual bootstrap argument, i.e., by s1mulat1ng
conditional on F,. To calculate ¢, ,(F)), first compute ty 1(F) for each F,
derivable by samphng F,, by s1mulat1ng conditional on F:

toi(F,) = int(t: P[R(FyFy) < 0F,] > a}.
Next calculate ¢, ,( F;) by simulating conditional on F,:
to,o(Fy) = inf{¢: P[R(F)F,) < t, (F,) + t|F,] > a}.

To derive ¢, ((F)), first calculate ¢, ,(Fj), then by o(Fy) (using t, ((Fy)), and
finally ¢, 5(F,) (using ¢, ,(F;) and ¢, 2( E)).
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The time taken to construct successive approximations t{”(F)) increases
rapidly and exponentially with r. We have introduced the iterated bootstrap to
clarify the role of the ordinary bootstrap as an empiric one-term Edgeworth
inversion. It could not be regarded as a general practical tool for the continuous
case that is the subject of this paper. If the iterated bootstrap were to be
applied, one would have to decide on the order of the iteration, r. Since the
support of F, decreases with increasing r, one cannot iterate indefinitely. (A
decision on order must also be made for techniques based on Edgeworth
inversion or Cornish-Fisher inversion.)

Result (4.1) may be proved along the lines of Theorem 2.1, and so will not be
derived here.

5. Proof of Theorem 2.1. It is inconvenient to continue using the super-
script on vectors Y°, p etc., so we shall drop it, writing g(Y|p) instead of
&(Y°|p), and so on. This amounts to assuming that the vectors of interest are
already sufficiently long, so that further extension is unnecessary. Write V, =
(v;;) = var(Y) (var(Y?) in the old notation). .

We begin by introducing polynomials #;; and II,;, for i, j =1,2.
Bhattacharya and Ghosh [5, Theorem 2] provide explicit conditions under which

P{n/%(Yp) < x) = @(x) + L nm,(x)6(x) + o(n ")

uniformly in x, where 7,; is a polynomial of degree 3j — 1 whose coefficients
depend on the first j + 2 moments of Y and the first j + 1 derivatives of g(u|p)
at u = p. Applied to the bootstrap distribution, this would give us formally

2
P(n'?g(Z|Y) < x|%} = ®(x) + Y n /2L, ;(x)$(x) + o(n™?).
J=1
Notice that only derivatives of order 3 or less are involved; hence the condition
on derivatives of order 3 or less in the paragraph preceding Theorem 2.1.

The polynomials 7, ; are defined to be those polynomials which are such that,
for each y € R, the quantity x = x(y) = y + £3_,n"//?n, (y) satisfies ®(x) +
L2_n72m (x)p(x) = ®(y) + O(n~*?) as n - oo. The coefficients of =,; are
of course simple functions of the coefficients of =,; in fact, 7, = —m,,. The
random-coefficient polynomials II,, and II,, are defined analogously. For-
tunately we do not yet require explicit expressions for any of these polynomials.

By way of notation, define V;; = n™'E"_ (Y, — Y,)(¥,, — Y)) and let V = (V)
be the usual estimate of V,. As n — o0, V = V; in probability. Given a
nonnegative integer-valued vector a = (ay,..., a,)7, and a smooth function f of
d variables, let

Def(x) = (9/0x,)™ -+ (3/9x4)™ f(x).

Our proof of Theorem 2.1 contains six steps. Let C,,C,,... denote positive
constants not depending on n, and % the class of all samples %. Write R for the
probability measure on R generated by n'/%g(Z|Y), conditional on %.
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STEP (i). Here we expand the conditional distribution of n'/%g(Z|Y), and
prove:

PROPOSITION 5.1.  Under the conditions of Theorem 2.1, there exist €V C €

with P(4") = o(n™"), and constants C, >0 and ¢, € (0,1), such that the
random variable

2
An(x) = f(—oo,x]d R-0- Z n_j/2H1j¢

J=1
satisfies
(5.1) sup sup |A,(x)|<CnntE,
e gh — o0 <x<oo
and such that
(5.2) sup | ;(x)| < Cy(1 + |x|¥1)
Ye g

for —0 <x <owandj=1,2.

PrROOF. We begin by defining several classes %, of samples %.

The random coefficients of polynomials I1;, and II,, are continuous functions
of moments of % of order 4 or less. Under the condition E(|[Y||®) < oo, each such
sample moment M satisfies P(|]M — EM| > n) = o(n™') for each n > 0. There-
fore, we may choose C, > 0 and %,, C ¥ such that P(%,;) = o(n"') and the
absolute value of each coefficient of II,; and II,, is dominated by C, whenever
% e ¥,,. By choosing ¢V € ¥,, we may ensure that (5.2) holds. For any p > 0,

n d p/2
E(J|Z - Y||”1%) =n"! ; { ; (v, - 17,-)2}
n d

<@2d)’n ' Y L (Y2 +|TP),

r=1j =1
and so

d
P{E(uz -Y|71%) > (2d)" g(ElYUV’ + |EYP) + (2d)"“}
d

+n ) |lYP - |EY)P| > 2dn}

J=1

¥ (IY,P - E|Y,?)

r=1

sP{ 21

Jj=

d
< Z n_(8+9)/PE{

B+e)/p d
} + E ElY,_ EY}|8+9
J=1 Jj=1

n
¥ (IY,,” — E|Y,P)
r=1

= O(n-@®+/2p),

provided 1 < p < (8 + ¢)/2. Therefore, we may choose &, € (0,3) and C; > 0
such that the set %,, = {E(||Z — Y||**2%|%) < C;} has P(%,,) = o(n™").
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Note that V = (V;;) = V, = (v;;) in probability as n — oo, and that V, is
positive definite. Suppose all eigenvalues of V; lie within [2a,1/2a], where
a > 0. Choose a > 0 so small that any symmetric d X d matrix (u;;) satisfying
lu;; — v;;l < b forall i and j has all its eigenvalues within [a,1/a]. Let %,; be
the class of all samples % such that |V;; —v,| < b for all i and j. If ¥€ €,
then C; Y|it|| < |[V~"2t|| < C,|it| for all t € R, where C, depends only on V, and
b. The inequality

M=

V= ol < In7 XYY, — E(YLY) ) + 1YY, - E(Y)

J
1

+1E(Y)IY; — E(Y)

may be used to prove that P(%3) = o(n™Y).
Let

7k = {V"/2(Zr -Y) it VVAZ, - Y)I <2

" 0 otherwise, )
and Z{ = Z* — E(Z*|%). Define @ and Q' to be the probability measures on R?
generated by n~/22"_(Z, — Y) and n™'/2L"_, Z], respectively, both conditional
on%.Let V= (V,-j») be the variance matrix and {x!} the cumulant sequence of
ZI, again conditional on #. Observe that Vi 1= ;) in probability as
n — oo. Choose ¢ > 0 so small that any symmetric d X d matrix (u,;) satisfying
|u;; — 8,;] < c for all i and j has all its eigenvalues within [,2]. Let €,, be
the class of samples # such that |VJ~ -8, <c for all i and j, and define
W = V- V2%Z - Y). The identity

Vi =38, — E{(W),(W),I(|W| > n'/?) @}
—E{(W)I(W| > n'/2)|@ }E{(W) I(|W| > n'/*)| ¥},

together with Markov’s inequality, may be used to prove that P(%,; N %7” )=
o(n~1Y). For example, for any n > 0,

P[4, E{(W)(W),I(IWI| > n'/*)@}| > n]
< P[CZE(IZ - YIPI(C,|IZ - XI| > /)| @} > n]
< C2n (¢ ') E(12 - XIP) = O(n 7).

Define €,5 = %,, N €, N €,3 N %,,. Then P(4,;) = o(n™"). Throughout the
remainder of Step (i) we shall consider only samples # € €.

Let A C RY random but measurable in the o field generated by #. Define
At = V-V24A — n'/2E(Z*|%) and, in notation of [6, pages 53-54],

d+2

H=Q" - ) n_r/zﬂ(_Qo,v*: {XI})
r=0

Write {x,} for the cumulant sequence of Z, conditional on %. The argument
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preceding (20.15) of [6, page 209] yields

‘ /. d[Q - Ly {xu})]

(5.3) _ ./Afd[QT - 22: n"/ZP,(—‘I’o,V“ {XI})J

r=0

< Cn 'E(IWI(IW|| > n'/2)| @} < Csn='CE(C; 'n2) ¢,

the last inequality following since # € %,, N %,;. Using (9.12) and (14.74) of
[6, pages 72 and 133], we obtain

Lfd[QT - 22: n_r/2R(—@o’VfZ {XI}) - HH

r=0

(5.4) d+2

<G Y nPE(|Z¥|¥) < Con e,

r=3
again since # € €,, N %,,. Combining (5.3) and (5.4), we obtain on %,

/‘;dl:Q - zi:n—rﬂPT(—(I)o’vi {x,,})l - j‘;de

Let K be a probability measure on R¢ with support confined to B(0,1) and
satisfying |(D*K )(t)| < Cyexp(—|it||*/2), all |a| < d + 5 and t € R% (The hat
denotes Fourier-Stieltjes transform.) Set K4 E)= K(§ 'E) for 0 <8 < 1.
Arguing as in [6, page 210] we obtain

(5.5) < Cpnln,

dH

<Cy s [I(DPH)(O)(DK,)(0) dt
At

0<ax<B,|B|<d+5

d+2
+fI(A,8)(x) gon_'/zP,(—-qbo,vf: {x’[,}) ax,

(5.6)

where I (A, 8) (x) = 1if eitherx€ Aand A N B (x,8)+ Y,orxcAand A N B
(x,8) # @;and I (A,38) (x) = 0 otherwise. The constants C here and following
do not depend on §. Following the argument of [6, pages 210 211], with a little
modification, we derive for a certain random variable A,

(5.7) sup [ |(DPeH)()(DK,) (D) dt < Cyyn o,
{IItl<A,}

0<a<B,|Bl<d+5

(58)  sup [ (DPH)()(DUK,)(E) dt <k + Cynt
O<ax<B,|Bl<d+57{ltI>A,}

where

k= sup [ (DPTQN)(O)(DR,)(t) dt
{litl> c.}

0<a<B,|B|<d+5

(x,0) *
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and
¢, = n'2/{16E(|W|*%)}.

Let y,(t) = n~'X”_ exp(i(t,Y,)) denote the (empiric) characteristic function
of %, and Y(t) = E{y,(t)} the characteristic function of Y. We shall need:

LEmMMA 5.1. There exist constants C,, € (0,1), C,; and C,, such that
whenever n > d +5 me([l,n-d-5],0<8<1and ¥< %,;,

k< Cnd [[Cf + {Culpa(n2t) = y(n ™ 24)]) " Jexp(— €7 2)88] /) dt.

PrOOF. Set g(t) = E{exp(n~%i(t,Z]))|%}. Then Q(t) = ¢"(t), from which
it may be deduced that |(DQ")(t)| < (2n)™|q(t)|* ™. (Note that |Z]| < 2n'/2.)
Therefore, if n > d + 5,

(5.9) k< C2n)"" [ lg(e)" 4 exp(—1|5t]?) dt.

{lItl>c,}
If e C,; then |t||> ¢, implies that 16C,E(|[W|3 %)V ~'/2t|| > n'/2, and
hence that |[V~'/2t|| > C,sn'/% Now,

(5.10) 19O 1E{exp(n it VIR + P(WI > /@)

< Y (n"VEV-28) + Cen” .
Results (5.9) and (5.10) together give
k< Ot [ {Wu(n 2] + Cion )

{Iln™ 241> Cy5}

n—d-5

(5.11)
X exp(—C; /2||8t||/?) dt.

Choose 7, € [§,1) and 7, > 0 such that sup,. ¥ ()| < max(n,,1 — 1,4?)

for all £ > 0. Let ny = n5(§) € [sup;y> YW, 1). If [, (u)| > 73 then Cgn~' <
Cien '3 'Y, (0)], and

(W)l + Cen™}" " < exp(Cuo/ma) W (w42,
Choose 71, so small that 73 (1 +1n,) <1. If |y,u) — Y)| < 0¥ )
then |y, (w)| <mn; (1 +m,) for ||| >¢ If [y, (u) - Y()| > n,l¥(u)| then
Wa)|* "% < {1 + 1y YY) — Y[} Finally, if [y, (w)| < n; then
{IY, ()] + Cign1}""975 < exp(C,e/13)0%2 ¢~ °. Combining these results we con-
clude that for any |ju|| > ¢,

{N’n(u)l + Clﬁn_ !

}n_d_s =< eXP(Cle/"I3) [{"13(1 + 774)}n_d_5

+{(1+ 1 )aw) — v} "]
Lemma 5.1 follows from this inequality and (5.11), on taking ¢ = C,;, 1, =

max{3,sup > Y|}, n, = §if ny = 4,

ne = 4| {max(n,, 1~ n,£2)} "' = 1]
if ng3 # 3, and Cj, = max{i(1 + n,),1 — in,£2}. O
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Choose 8 = n* where A > 0 will be selected shortly. Since

E{jy,(u) - ¥ ()"} < Crp(m)n="/
uniformly in u, then by Markov’s inequality, the set

C= {@: /I‘Pn(n—l/u)\t) — y(n- V2R

xexp(—C; V|t)|'/2) dt < n““"“’”}

satisfies P(%,) = O(n®+D+7p-m/2) = o(n~1), provided m is chosen suffi-
ciently large. Henceforth, we shall work only with samples # € €, = €,s N %,
In that case, Lemma 5.1 implies

Kk < Cignd®TD*5Cn + C.CRn~2 < Cgn ™2,

and so by (5.6), (5.7) and (5.8),

dH

(5.12) [,

< C2On_l_€2 + g,
where ¢ = Y972

£, =n"""2 /I(X)|Pr(_¢o,v“ {Xt})| dx

and I(x) = I(Af,2n72).
An argument using (9.12) and (14.74) of [6, pages 72 and 133] gives £, < Cy¢,,
where

$ = fI(x)(l + |13 )exp{ - $xT V1~ 1x} dx.
Let a = n'/?V'/2E(Z¥|%), and note that for # € &,,,

B(x) = V/2B(V~/2x,2n*) C B(x,Cypn?).

Thus, .
§ = (det V-V2) [I(V-12x)(1 + [V~ 1/2x]|°r)

xexp{ — }xTV-12Vi-ly-1/2x} dx

< C23fI(A + a, C22n"‘)exp(-024||x||2) dx

< C23/;3A)nexp( —Cy,lIx + a||2) dx,

where 1 = Cyn ™. An elementary argument shows that

exp(—|x + yII?) < exp(—Ix||*) + Cysllyllexp(~IIx + y|1%/2)
for all x, y € R% If #€ %,,, then ||a|| < Coen™%?, using Markov’s inequality.
Combining these estimates we conclude that

(< Conf  exp(=Cylix|?) dx + Cpyn 2,
(0A)"
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and so by (5.12),

J o

We now restrict attention to sets A € {A(¢): —o0 <t < o0}, where

A(t) = {(xe R n'%(Y + n7'2x|Y) < ¢}.

(5.13)

< Cygn™ 78 + C23/(3A)nexp(—C24||x||2) dx.

LEMMA 5.2. Take X =1 + &, and n = Cyyn ™. There exists %,; C 6,,, with
P(%,5) = o(n™"), such that

sup  sup / exp( — Coy|Ix||?) dx < Copgn 172,
{dA(DO)"

Ye g —00<t<oo

ProOOF. Suppose g(u|v) and its first four derivatives with respect to u are
continuous in (u,v) € B(p, p;) X B(p, p;). In view of property (2.4), not all
terms g;(p|p) can vanish. Let p, € (0, p,/2] be such that for some i, g;,(u|v)
is bounded away from zero in B(w, py) X B(p, p;). Let %, be the class
of all samples # for which |[Y — p|| < py/2. The set €, = €,; N €,o satis-
fies P(%,5) = o(n™'), and has the property that for some Cy > 0 and some

i, € {1,...,d},
sup sup {lgi(?l?)ly |gij(?|?)|,gijk(?|?)|} < Cy
Ye G0,k

and infy ¢ ¢ | gi(_(?|?)| > 1/Cy. We assume throughout the argument below that
Y E - ’

For any vector x = (x,,...,x,)" € R% define the random-coefficient cubic
polynomial

d d
xg(YIY) + in7 2 ) Y xixjgij(?l?)

1 i=1j=1

d d d o
gnt )IDIEDY xixjxkgijk(YlY)'

i=1j=1k=1

M=

Pa(x) =

i

+

Then n'/%g(Y + n~2x|Y) = p(x) + A (x), where

sup  |A,(x)| < Cyon~?(log n)*.
x€ B(0,log n)

Therefore, remembering that n = Cp,n™* and A = 1 + &,,
{0A(¢t)}" c {x, € R”: for some x, € RY, |x, — X,| <7 and
n'%g(Y + n71/2x,|Y) = ¢}
c {A\(¢)} U B(0,logn)",

where A(t) = {x: |x|| <2logn and p,(x) €[t — Cyn "%, ¢t + Cyn 17 %]}.
The lemma follows easily from this result and the statement:
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“Let X have the N(,I) distribution on R% let B, b > 0, and let

d d d
r(x) = Zcx + n 12 Z Zcuxlx 7 Y Y Y e,

i=1,/=1 i=1j=1k=1
be a cubic polynomlal whose symmetric coefficients c;, ¢,; and c, ;, satisfy
sup (leds leijl, le;jxl) < b, and for some i, |c;| > 1/b.
i J,
There exists C > 0, depending only on 8, b and d, such that
sup  P{|X|| < blognand r,(X) € [t —n# t+ nfl} < C(B,b,d)n"*
—00<t<oo
forall n > 1.”

Our proof of this statement is by induction over d. The statement is obviously
true if d = 1. Suppose it is true for d — 1, some d > 2. Without loss of
generality, |c, is the smallest |c|. Let X* = (X,,..., X, )7, x* =
(x45..-,x4_,)T and

d-1
ri(x*|xg) = X (¢ +2n Vieux, + 307 loy0nd)x,

072 F X (et 807 2 g )xx,

d-1d-1d-1
~12
+n7V2 Y ) Zcijkxixjxk
i=1 j=1 k=1
d-1d-1 ~1d-1d-1

= Zc*x +n 12y Zcux,xj+n Z E Y e CErX XXy,

i=1 j=1 =1 j=1 k=1
say. For all n > no(b), we have |cf|, |c| and |cf,| < 2b for all i, j, £, and
|c¥| > 1/2b for some i, no matter what the value of |x,| < blogn. Conse-
quently,
sup P{|X|| < blognand r(X) € [t—nF t+nF])
—o0<t<oo
< sup sup  P{|X*|| < blogn and
—w0<t<ow |x4y|<blogn ,
r¥X*xy) € [t—n"F t+nF]}

< C(B,2b,d—1)n"",

This proves the statement, and so completes the proof of Lemma 5.2. O

Combining (5.5), (5.13) and Lemma 5.2, we conclude that if % € €,
sup |P{n'%g(Z|Y) < /%)

—o0<t<oo
2
- 2P (=@ v {x,}){A(8)}] < Cyuyn' 7
r=0
The remainder of the proof, which only involves unravelling terms in the

(5.14)
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polynomial expansion (5.14) to obtain the terms in (5.1), may be conducted by
modifying arguments used to establish Lemma 2.1 and Theorem 2(b) of [5, pages
443-444 and 445-446)]. The cubic polynomial technique used to prove our
Lemma 5.2 may be employed to overcome minor technical difficulties. The set
%V is a suitably chosen subset of %,¢. O

STEP (ii). Here we develop an approximation to £,. Define

2
(5.15) t, ,= inf{t: o(t) + ), n*j/2HU»(t)q5(t) FCn ' > af,
j=1
where C, and ¢, are as in Proposition 5.1 and the + and — signs are taken,
respectively. The left-hand side of the inequality within braces in (5.15) con-
verges to 1 ¥ C,n~'"% as ¢t —» . Therefore, the set in (5.15) is guaranteed
nonempty, and ¢, , well-defined, if we confine attention to a € T =
[8C,n ' 7,1 — 3C,n~ 18],

Notice that ¢(logn) and 1 — ®(log n) are both O(n~*) for all A > 0. This
observation and inequality (5.2) lead us to conclude that for some C,, > 0,
sup, crlt, .| <logn provided # € %" and n > Cs,.

By Proposition 5.1, if #€ " and P{n'/%g(Z|Y) < t|%) > «, then

P(n'%g(Z|Y) < )%} + Cin' 78 — A (¢) > a.
Therefore, t, _ < t,, and likewise, ¢, , > t,, whence for ¥ € %",

(5.16) ty <ty <t, ..

a,

StEP (iii). Here we invert the expansion defining ¢, ,. We begin by discuss-
ing the deterministic polynomials 7, ; and m, ;, which are related to one another
as follows. Let

(5.17) =x(y)=y+ ; n =%, (y).

Then

2
O(x) + X 7 (x)6(x) = ®(y) + 8,(y),

Jj=1
where |8,(y)| < Cyn~3/? uniformly in |y| < log n. Thus,
2
(5.18) (x) + ¥ n 7 m (x)8(x) = B(y) — Coon~ /2
j=1
uniformly in |y| < log n. Let z = z(a) be the solution of ®(z) = a, and write
t = #(a) for the solution of

(5.19) o(t) + ‘E n%m (t)e(t) = a.

Jj=1

Let 7 be the set of values of ¢ such that the left-hand side of (5.19) lies within
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T, =[C;n~'"9,1 — C;n"'"9]. If n is sufficiently large, then the left-hand side is
a strictly increasing function of ¢ for t €7, and so if a € T, then t(«) is
uniquely defined. Assume a € T (C 7)), and take y=z(a+ Cn~' % +
Cy3n~?/%) in (5.17) and (5.18). Let ¢’ = t(a + C,n~' ). For sufficiently large n,
each of x(y), y and ¢’ is in J for all a € T. By (5.17) and (5.18),

2
O(x) + ) n 2 (x)¢(x) > (a + Cin~ 178 + Cysn™%/%) — Cyyn=3/2
j=1

=o(¢) + i o) (8).

Consequently, x > #’; that is,

2 2
y+ X n m(y) > inf{t: (t) + X n 7 m ()e(t) — Cin~ 178 > a}.
Jj=1 J=1

Translated to the random polynomials IT, ; and II,;, this argument suggests
the following. There exist positive constants C;, and C,; such that, with
Yy =2(a+ Cin~17% + Cyyn=%?), we have

2
(5.20) yot L L (y) > ¢,
Jj=1

whenever a € T and n > Cj;. Techniques used early in the proof of Proposition
5.1 show that this translation is correct, provided we make the restriction
Y e &P for a suitable €2 c €L with P(4®) = o(n~"). The proof becomes
quite straightforward when it is noted that the constant Ci; cited earlier may be
taken to be a continuous function of the first four population moments. To
obtain the constant C,, we should ensure that the sample moments are suffi-
ciently close to the population moments with probability 1 — o(n~')—see the
second sentence of the proof of Proposition 5.1.

Of course, inequality (5.20) has a counterpart providing a lower bound to b
Let y_=2(a — Cin~'~% — Cy,n"%?). Then

2
(5.21) yo+ Ln Pl (y ) <t, _,
j=1

provided a € T, n > C;; and ¥ € €.

STEP (iv). Here we combine Steps (i)-(iii). Note from(5.16), (5.20) and (5.21)
that

2 2
yo+ Ln Tl (y )<t <y, + ¥ n L, (y,),
J=1 Jj=1
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provided @ € T, n > C,; and % € %®. Therefore,

P{nl/"’g(?lu) <y_+ 22: n‘f/2H2j(y_)} — P(‘éﬁ‘b)

Jj=1

(5.22) < P(n'%g(Y|p) < t,}

2
< P{nlﬂg(?W) <y, + Z n_J72H2j(y+)} + P((é,f")),

Jj=1

provided a € T and n > Cs;. If we prove that with z = 2(«),

(5.23) P{nl/zg(?lp‘) <z+ Z n‘j/2H2j(z)} =a+n Y(2)¢(z) +o(n?)

J=1

uniformly in a € T, then it is immediate from (5.22) that expansion (2.6) holds
uniformly in @ € T. We shall establish (5.23) in Step (vi). In the meantime, Step
(v) extends (2.6) from « € T to a € (0,1).

STEP (v). Let o, =3C;n" ' % and ay=1—-3C,n"' % Then T = [a,, ay].
Since ¢, is nondecreasing in «, and since (2.6) holds for a € T, then

sup P(n'%(Yp) <t,} < P{n'%(Y|p) < ¢, }

O<a<aq
=a, +n VW {z(a))} +0o(n7t) = o(n7?).

The case a, < @ < 1 may be treated similarly.

STEP (vi). Here we prove (5.23). That result is of the type established as
Theorem 3 of [12], and may be proved in the same way. As in [12], the argument
rests heavily on ideas from [5]. The only real difference here is that in (5.23), the
expansion is to hold over slightly more than just bounded 2. However, the terms
n~//2 multiplying the polynomials, and the fact that |z(«)| is not larger than
const.(log n)!/2 for a € T), ensure that this extra generality is easily achieved.
For example, the polynomial I1,, depends on % only through the first four
sample moments. If M is any one of these moments and if 0 < p < ¢/2(8 + &),
then for any ¢ > 0,

(5.24) P(M — EM| > cn") < (¢ 'n?)* " “YE|\M — E(M)]2*¢/% = o(n™1).
I

Let €, ,, be the set of samples % for which the difference between any
coefficient I' of II,, and its limit y = p lim I' satisfies |I' — y| < n"". In view of
(6.24), P(%, o) = o(n™"), and also for n > 2,

sup sup  n7!IIy(2) — my(2)] < Coen™'n~P(log n)™* = o(n ™),
Ye b, 1o 2(a): €T
since II,, is of degree 5.
For these reasons we shall give only an identification of expansion (5.23).
Following [5, 12] we work with Taylor expansions to order n~! in probability.
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(“To order n™//2” means that terms of order n /2 are included but smaller

terms are excluded.) We shall use the summation notation and define A, = Y, —
My A =n ! ;l 1 A

Accordlng to Lemma 1of[12], myy(2) = —m(2) = a, + (a3/6)(z — 1), where
sl and ay = LLLa, , + 3L, ®;4®;,- The sample versions of [,
and a; ..., used to construct IT, are

sy

n bp
L . i, =8y i,,(?l?) and A; i, =n"' Y I (Ari, - Kz,)

r=1J=1

respectively. To order n= /2,

L. =1 _,+1%

Lo, LB by J
and

A. = . ~~z,,+ VVH.;.,I)—(I l(lj)Az

RN i

(in summation notation), where «a, ... SG) = ;, and
n
vvi, e, =n"! Z (Art, e Arz,, TR z,,)'
r=1
Therefore, to order n~'/2, and since each a, = 0,
My (2) = my(2) + %(lﬂ"%ﬁk + liijzj)
+5(2° = D{LLla 48, + LLLW, — 311 La, A

+ 6L 1P 005, , + BLLID a0 B

+31 1L ( 0 W +aJmVVlk)}

By deﬁmtlon each a; = 0. To order 1, ITyy(z) = my(2). Therefore, to order n !,
7g(YIp) — £2_ 0"/, (2) equals

U*=U-n"2[{(1Pa, R, + 1, W,;) + 5(22 - 1)
X (3L ey + LLLW, = BLLLea B + BLLP a8

+3LL 103, 8, + 3L L (W, + 0, W) Y],

where

AAAR,} - Z n~""*m, (2).

r=1
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Let k, and k¥ denote the ith cumulants of U and U *, respectively. With
approximations holding to order n~!, we have k} =k, k¥ = K3,

k¥ =k, — [{1P0,0,E(R,A,) + 1,L,E(W,4,)}

»
+1(22 - 1) {3111, , E(B,,8,) + L1l E(W,;4,)
(5.25) ~3L0 L0 E(B,A,) + 61171, L a0, E(8,4,)
+3LLIPN a0, E(A,4,)
+ 301 Ll E(@aWind o + ;WA ) 1]

Jm=q

kf =k, —2n[{100,1,0,0,E(8,8,8,4,)

) "P1"Py Py 1 P2 P3

+1..11 1 E(VVZ szgl’s)}

l)°P1 P2 P3 LYy 4

+3(2% = D{3LL4m1, 1, Lo E(B 8,8, 4, )

P1’P2"P3

+liljlkl 1,1 E(‘/ViijplZPZKP:;)

DP1"P2" Py

_3llljlkl l l‘aijE(ZkK K Zp;;)

P1"P2 D P17 P2

+6L,1470,,.1, 1, 1, a0, E(A,8,8, A )

D1 P2 P

(5.26) +3L020, 1, 1, a0, E(B,A, K, A, )

km®p,"py"p;

+6L 1Ll 1, 1, i E(W8, 8, 8, )]

Py P2 P3 Jm =Py
+6[{1¥,0,,E(B,B,) + 1,L,E(W,A,))
+1(2% - {3111, B(B,8,) + LLLLE(W,8,)
—3liljlklpa,jE(5kZp) + 6lil}”)lkmlqaikaij(ZPZ[])
+3LLIPN a0, E(A A )
+ 3L L Ll E( Wi o + a;,Wirh ) 1]

Notice that E(W, .. ; A)) = nla i

(A ARXRN) = -1
n E(ALAjAkAl) = aijak, + aikaﬂ + ailajk + O(n ),
2 AAAN) =
n E(VV:, i,,A/AkAl) = QG O T QG O T 0 O

h

—Q; ... i,,ajkl + O(n_l).

Therefore, the right-hand sides of (5.25) and (5.26) may be written as «, —
n~'8,(z) and k, — n"'8,(z) + O(n~?), respectively, where &, and 8, are even,
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quadratic polynomials. Consequently
P(U* <x) = P(U <x) - n {48,(2)(8/0x) + %8,(2)(3/3x)"}¢(x)
(5.27) +o(n™')
=PU<x)+ (x/4n){282(z) + 18,(2)(x2 - 3)}¢(x) +o(n™1)

uniformly in — o0 < x < 0 and z = z(a) with a € T,. The definition of 7, and
7y, ensures that P{U < z(a)} = a + o(n~"). Finally, U* has the same expan-
sion, to order n~ 1, as n'/%g(Y|p) — X2_,n""/I1, (2). Therefore, (5.23) follows on
taking x = z in (5.27), and noting that

(5.28) Y(z) = 12{28,(2) + §8,(2)(2% - 3)}. O
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