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This is technically an impressive article that is full of innovative ideas on
resampling methods. Although the unbalanced nature of the regression model
was first recognized by Hinkley (1977), it is this paper that brings to light various
pitfalls in the estimation of the variance of regression estimates by different
resampling schemes. Motivated by a representation for the least-squares estima-
tor, first given by Subrahmanyam (1972), although not as rigorous as in this
paper, Wu provides robust estimates of the variance. It also shows the failure of
the bootstrap method.

The failure of the bootstrap method is not new. Many examples exist in the
literature, even when the observations are not as unbalanced as in the regression
case (see, for example, Singh (1981)). Another example is when the vectors
(X,,Y,) are independently distributed with mean vector zero, Var(X;) = o,;,
Cov(X,,Y,) = 0,5, and Var(Y;) = a,04, a;’s known, i = 1,..., n. An estimate of
0y, is given by

Gy = n(n — 1)_1(2‘1;‘)_12(16 - ?)2’
with a bootstrap estimate
88 = n(n—1)""(Za,) '2(Y* - ¥*)

The bootstrap estimate of Var(éd,,) is not consistent, unless a; — 1.

It is thus clear that neither the bootstrap method nor the jackknife method
can be applied indiscriminately. Care needs to be taken. For example, in the
jackknife case the delete-one method does not yield a consistent estimate
of the variance of the sample median. In the regression case, until this paper,
the problem had remained unresolved. But for “inference purposes” both
the nonparametric bootstrap method as well as jackknife method require the
assumption that the error terms are independently and identically distributed
with means 0 and constant variance. In addition, both require that at least
w; = xX(XTX) x; > 0 as n > o0, a condition due to Srivastava (1971).

In Section 7, Wu provides a method for handling the unbalanced nature of the
residuals for bootstrapping. However, it appears somewhat manipulative. Obvi-
ously, if the model is

f i +mt?‘, i=1...,n

13

(equation (7.1) of Wu), then the bootstrap estimator should be defined by
4 = (XTD~'X) 'XTD-y*, * = (Y. Y5,

n

where

D= diag[(l —w) 'r2,.., (1 - wn)_lr,f].
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In the case 6 = 8,
Or pew = (XTD71X) 7N,

The o. ., estimate of the variance should have less bias than most estimators
suggested in the paper.

In the jackknife situation, Wu provides two sensible estimates of the variance,
namely 9, , and ¢, ,, both employing an arbitrary scaling method, one exter-
nally and the other internally. However, @, , does not perform well in his
simulation studies. Probably the cause could be located had he considered
pseudovalues, an idea he discarded in Section 5(a). Consider the pseudovalues
P=0+Cy(0-46,),i=1,...,C, where

c=(’,%), r>k  C=("2F)

and 0A(i) is the estimate § based on r observations. Recognizing the unbalanced
nature, define the new jackknife estimate of 6 by

P= 2wyb, Zw; =1

and
1 S\ T
Yy, r = c.G, Ew(”(P P)( P)
C, A A\ A AT
= azw(i)(aa) - 0)( o~ 0) )
where

_ n—=Fk
C2_(r—k+1)’

and the w;’s are as in the paper. That is,

| (@) (')

w(l)= T ) i=1,...,C,
=1|‘X(i) @)
where X” = (x,,...,x,) and X.iy is obtained by choosing any r vectors from
Xyy...5 %, Thus Xy is an r X k matrix. For example, when r = n — 1, that is,

the delete-one case, then for § = B,
P, = ﬁ"‘ (n— k)(,é_ .é(i))a

where

B=(X"X)"XTY, B,= (X(,)X(,,) X5



RESAMPLING INFERENCE IN REGRESSION 1333

and X, and Y, are obtained after deleting the ith observation. Letting

wi =1- xiT(XTX)_lxi,

we get
|X$)X(,-) =|X"X - xixiT|
= X"X|(1 - w,)
and
n
Y XXy =1X"X|(n — k).
i=1
Hence,

since  — ,B(l) = (XTX) x,r,/(1 — w;), where r; is the lth residual defined in the
paper and Zx;r; = 0, V) = (XTX)7'2(1 - w) Lalr2(XTX) L

Thus, this method yields the same v, , as in Wu and addltlonally it provides
an estimate of the bias by C,Zw,(f — 0},)) The estimator &, , does not fit in this
scheme.

In Sections 2 and 5, Wu mentions the strongness of the conditions used in
Miller (1974). However, it should be mentioned that all the results with the
exception of the asymptotlc normality of f(B ), require only the condition that
w; = xT(X TX)~'x, - 0, a condition first given by Srivastava (1968, 1971, 1972)
in a series of papers. In these papers it is also shown that if n " X"X) - = >0
and n~/2X — 0, then w, - 0. The asymptotic normality of (X7X)~/%(8 — B)
requires only that w, — 0.

Turning to the simulation results reported in Tables 1-4, it would have been
nice to know for which values of B,, B8, and B,, the results in Table 1 are
reported. While the variance estimates v,, v,), ;s and vy, involve only the
residuals, the estimates v,;, v* and v} require that estimates be made of these
parameters. The bootstrapping should have been done with more bootstrap
samples rather than just 480. Efron (1986) recommends 1000, based on the
coefficient of variation of the percentile. In Efron’s notation

a(l - a)1/2

Bl/2G‘ l(a)g’( 1( ))

where G 3 (@) is the Monte Carlo approximation to G ~ («) based on B bootstrap

cv[G;(a)] = +O0(B™1),
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samples. For G normal, CV[G1000 (0.95)] = 0.040. However, the bootstrap esti-
mate éb will not have a normal empirical distribution function and so a larger
sample would have been desirable. Comparable to 1000 bootstrap samples is the
number of jackknife subsets of 6, namely 924. Indeed as Wu himself points out, it
would be worthwhile to compare results for a broad range of sizes of jackknife
subsets. _

From the simulation results presented in the paper, it seems the delete-one
jackknife is the winner in overall performance, although considerably more
simulation needs to be done before pronouncing it a clear winner. Also, in the
unequal variance case a pure Monte Carlo simulation should have been per-
formed in order to establish a standard of comparison for the results of Tables 3
and 4. These tables show that VLIN perform as well as Fieller’s and better than
the rest of the methods. However, in the unequal variance case, Fieller’s method
is not applicable. Although, it has been shown by Chan and Srivastava (1985)
that Fieller’s method is robust against certain departure from normality, and
gives better results than the bootstrap method, it is not known how good the
interval is in the unequal variance case. In the same paper it is also shown (equal
variance case) that the VLIN method gives results comparable to Fieller’s in the
normal as well as in some nonnormal situations. A similar result was obtained in
the case of sample variances in Srivastava and Chan (1985).

Finally, it would not be inappropriate to mention that most efforts have been
devoted toward obtaining robust estimators of the variance of an estimate that
should not be used under the circumstances described in the paper. Many
regression diagnostic techniques should be able to detect any heteroscedasticity
in the data. The estimates should accordingly be adjusted and the estimation of
the variance of this adjusted estimate should have occupied more space. Never-
theless, I enjoyed reading the paper. The paper is thought-provoking and should
lead to great activity in this area.

Acknowledgment. I wish to thank K. J. Keen for some discussion and a
few suggestions on the computational aspect of the paper.
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Professor Wu has made a substantial contribution to a difficult area: the
study of resampling methods in regression. The idea of weighted jackknife and
bootstrap estimates of variance is an intriguing and potentially useful one.
However, I feel that this paper falls short of providing any definitive answers
because it overemphasizes unbiasedness and fails to address some important
statistical issues. I will elaborate on these points as they relate to estimates of
variance in regression, then I will conclude with a few remarks about confidence
procedures. Despite the mostly critical comments that follow, I want to make it
clear that I wholeheartedly endorse one of the major thrusts of the paper,
namely Professor Wu’s recommendation that “important features of a problem
should be taken into account in the choice of resampling methods.” This is good
advice—it is just not clear yet how to do this in many problems.

Before computing an estimate of variance in a regression, there are two
important questions that we should ask: (1) is our model adequate for the data
and (2) do we want an estimate of the conditional or unconditional variance? Let
us consider the first point. Given that we are going to use a linear model, the two
main types of model inadequacy are misspecification of the mean of the response
and nonhomogeneity of errors. Professor Wu assumes throughout that the mean
part of the model is correctly specified. In fact, it is when the mean is mis-
specified that the unweighted procedures can still give a reliable estimate of
variance. This is what I believe Efron and Gong meant in their claim about the
robustness of the unweighted bootstrap. We will return to this point later, but
for now we will assume that the mean is specified correctly, with possible
heterogeneity of error variance.

Regarding the second point, Professor Wu uses the conditional variance, that
is, the variance conditional on the observed X'’s, as his gold standard. An
alternative gold standard is the unconditional variance, averaging over the
marginal distribution of the X ’s. Which is the “correct” variance is an arguable
point when the X ’s are not fixed by design, although ancillarity arguments can
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