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A little reflection, bearing in mind the conditioning argument, makes these
statements seem almost tautological. In each case conditioning is on the sample,
and the approximations are good up to terms of smaller order than n~ 12 1t is
not true that the conditional distribution of (6* — 0)/6 is a good approximation
to the distribution of (6 — 0) /6. In this case the Edgeworth expansions of
coverage probability for one-sided confidence intervals differ by terms of order

~1/2, The same conclusion may be reached intuitively, noting that the statistic
(0 — 0)/0 is not pivotal if o is unknown. Work in Singh (1981), for example,
concerns the approximation in (1) although I know of some authors who have
tried to use it to promote an approximation of the distribution of ( 60— 0)/6 by
that of (§* — 6)/6.

I should make one final remark to tie these comments to those made by
Professor Wu prior to his formula (2.10). Since the conditioning in (1) and (2) is
on the sample, then § and 6 are effectively constant, and so the conditional
distribution of (§* — §)/6 is just a location and scale change of that of §*.
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Professor Wu is to be congratulated for making a significant advance in
jackknife methodology. The general use of information measures to determine
weights in subsampling schemes is surely correct, and the implementation here
for regression is most interesting.

The one somewhat negative conclusion of the paper concerns the compara-
tively poor performance of the bootstrap. It is to this that I shall address my
remarks, because the bootstrap approach has, quite innocently, been misapplied.
Good results can be obtained with bootstrap methods, as I hope to explain with
the help of relatively simple examples.

The first point has to do with conditional probability, which in the regression
context arises from conditioning on the experimental vector x of explanatory
variables. The key issue can be seen most easily in the simple linear regression
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model
y;=180+.81xi+€i, i=1,...,n

Whatever the distribution of errors ¢;, it is standard practice to analyze the data
conditional on x = (x,,..., x,). For example, suppose that errors are assumed
homogeneous and independent with variance o2. Then the variance of the OLS
slope estimate b, is taken to be

(1) Var(b,|x) = 02/ Y (x, — )"

If the variances of the ¢; are 62, i = 1,..., n, then we take the variance of the
OLS slope to be

(2) Var(b,[x) = Lo(x; - £)/{ L(x, - 7))

These two formulae are used even when the x’s are obtained by random
selection (independent of f,, B,0?), as is justified by the conditionality principle
(Kalbfleisch (197 5)).

Formula (1) is directly estimated by the “homogeneous—errors bootstrap,
where random residuals are added to fitted values to obtain simulated responses
at the experimental x-values. But the more general bootstrap, where pairs (x, y)
are randomly sampled, does not estimate conditional quantities such as (1) and
(2). Let me be more specific. Suppose that G and G represent, respectively, the
joint empirical and true distributions of (x, y), and that bootstrap and real data,
respectively, consist of n randomly sampled pairs (x, y*) from G and G. Then
the bootstrap estimate of variance for OLS slope b, is

Var(b,; G) = Var(b; G),

in clear contrast to what we want, Var(b,; G|x* = x). The contrast disappears in
the limit as n = o (Freedman (1981)), but does not disappear in the data. An
example will be given in a moment.

But can we hold x* = x? Clearly not, if we sample from G, because we would
then always get the same responses y (unless there is replication in the data).
But it is not necessary to hold x* = x in order to estimate Var(d,; G|x* = x).
For example, (1) depends on x only through A = ¥(x; — ¥). A simple approach
would be to partition the bootstrap samples according to interval values of
A* = Y(x¥ — x*)?% and to then estimate Var(b,; G|x* = x) from those samples
with A* in the interval that includes A itself. Of course A is the most relevant
partition statistic only if the errors are homogeneous, and it is not obvious what
to do in general. But before we get to that complication, let me show that the
simple partition method works.

A single sample of n = 19 responses y = x + ¢ was generated, the &’s being
N(0, 1) numbers generated by IMSL subroutine GGNML, and the x-values being
1(1)5, 13, 20(1)25, 33, 40(1)45. The OLS fitted equation was 0.17 + 0.994x, and the
usual standard error calculation for b, = 0.994 gave the result 0.0144. Then
N = 1000 bootstrap samples of size 19 were generated by random sampling of
(x,y)’s. The bootstrap standard error for b, was 0.0167. Values of A* ranged
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Fic. 1. Conditional bootstrap variance reciprocals, for OLS slope estimate in simple linear
regression of y on x, graphed against ancillary statistic A* = L(x* — *)2. Each point obtained
from 100 bootstrap samples.

from 2500 to 6000, and the data value of A was 4524. The bootstrap samples
were partitioned into ten groups each of 100 samples on the basis of intervals for
A*, and standard errors for b, were calculated separately for each group. The
results are plotted as variance inverses in Figure 1, the abscissa being the average
A* value for each interval; the solid line on the figure represents the “theoreti-
cal” result

Var(b,; G|x* = x) = §2/A*.

Smooth interpolation of the standard error for b, at A* = A gives the result
0.014—almost exactly the right answer.

Now what of the general case? One appropriate strategy is to use an empirical
analog of (2) for A, rather than (1). The result may be unstable if the o? are
replaced by individual squared residuals. Another strategy is to use the same A
as before, and this will often work well because of its high correlation with the
“best” partition statistic.

There is not space here to discuss this in adequate detail, but when we are
estimating confidence probabilities for B8, it is possible to use quite sophisticated
techniques to achieve the appropriate conditioning without an explicit partition
of the bootstrap samples. Further discussion and detailed examples can be found
in Hinkley (1986) and Hinkley and Schechtman (1985).

It seems very likely that the lack of conditioning has an appreciable effect on
Professor Wu’s example in Section 10. Perhaps more serious, however, is the
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failure to work with a pivot in defining the bootstrap confidence interval
procedure.

To understand the relevance of pivots, consider the simple problem of setting
confidence limits for a mean p using a sample average X. One approach is to
begin by estimating percentiles of ¥ — p, which is to say estimating the quanti-
ties d( p, F') that satisfy

Pr(x —p<d(p,F)) =p,

where F is the true distribution of x’s. When the standard bootstrap is used, we
estimate d(p, F) by d(p, F). Then an equitailed 1 — « confidence interval for p
is (x —dQ1 - 2a, F),x - d(3a, F)). This usually does not work, because
d(p, F) # d(p, F). But if we replace ¥ — p by a pivot, then the corresponding
percentiles are, in principle, known—because by definition the distribution of
a pivot does not depend on unknowns. In the parametric case, possible pivots
are (i) log,x — logeu for scale families such as gamma distributions and (ii)
Vn(x — n)/s with s? the sample variance for location-scale fam111es such as
normal distributions.

The general concept and identification of (approximate) pivots is a little more
complicated in the nonparametric case (Chapman (1985); Chapman and Hinkley
(1986)). In certain rather restricted cases, Efron’s percentile method bypasses the
need for pivots. One simple but useful general approach is to always studentize

estimate — parameter,

for example using some type of jackknife standard error for the estimate. That
is, if T estimates 6, and if SE is the estimated standard error of T, then we
would bootstrap Z = (T — 0)/SE to obtain percentile estimates d 4(p) for Z,
leading to confidence limits (T' — SE - dz(l - 3a), T—SE - d,( 3a)).

By way of illustration, again for the case of the mean, let me quote some
numerical results from Chapman (1985). Data samples of size n = 30 were
generated from the x2 distribution. For each data sample, the bootstrap was
applied to x — p, log,x — log p and (X — p)/s, and corresponding 90% con-
fidence intervals were then calculated for u. Efron’s percentile method was also
applied. In principle, the true p should fall outside the interval in 10% of the
cases—5% of the time on the left and 5% of the time on the right of the interval.
Table 1 shows the actual left, right and total error rates for 3000 data sets.

It is qulte easy to see that the quantity 6 — 6 in Professor Wu’s example of
Section 10 is far from being a pivot. For example, the normal-theory variation of
0 is quadratic in 8. It would be interesting to see the improvement in bootstrap
performance if 6 — 0 were standardized using a nonparametric delta-method
estimate of standard error (Efron (1981)), and if conditional confidence for the
actual x were estimated.

In conclusion, I hope that my comments will indicate that bootstrap methods
can be rendered more effective by the use of those general principles that make
standard methods work when the latter are appropriate. This is not necessarily
easy advice to follow, and a good deal of further theoretical research is needed.
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TABLE 1

Estimated error rates for bootstrap confidence limits on mean, from
analysis of 3000 data sets of size n = 30; bootstrap applied with
B = 499. [Source: Chapman (1985).]

Error rates %

Method Left Right Total
Bootstrap ¥ — 11 3 14
(X —p)/s 6 5 11
%/ 6 6 12
Efron’s percentile method 9 5 14
Exact 5 5 10
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The resampling procedures discussed by Professor Wu provide an important
solution to several problems of current interest to population geneticists. Mea-
suring natural selection in wild populations of plants and animals has long been
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