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MINIMUM DISTANCE ESTIMATION AND GOODNESS-OF-FIT
TESTS IN FIRST-ORDER AUTOREGRESSION!

By Hira L. KouL
Michigan State University

This paper gives a class of minimum L,-distance estimators of the
autoregression parameter in the first-order autoregression model when the
errors have an unknown symmetric distribution. Within the class an asymp-
totically efficient estimator is exhibited. The asymptotic efficiency of this
estimator relative to the least-squares estimator is the same as that of a
certain signed rank estimator relative to the sample mean in the one sample
location model. The paper also discusses goodness-of-fit tests for testing for
symmetry and for a specified error distribution.

1. Introduction. Let {¢, i =0,+1, +2,...} be independent random vari-
ables (r.v.’s) that are identically distributed according to a distribution function
(d.f) F. Let {X,} be an observable process such that, for |p| <1, X; , is
independent of ¢; and
(1) X, =pX,_,+¢, i=0,+£1,42,....

The above process {X;} is called the first-order autoregressive (AR(1)) process.
This paper considers the minimum distance estimation of p based on the
observations {X,, X;,... X,} when F is not necessarily known. Also considered
are tests of symmetry of F and tests of the goodness-of-fit for F.

Of course the classical estimator #:= X" X; | X,/Y" X2, is a minimum
distance estimator. But this estimator is highly inefficient for non-Gaussian
errors, including contaminated Gaussian errors [Fox (1972), Denby and Martin
(1979), and Martin (1981)]. The minimum distance (m.d.) estimation methods
that lead to efficient and robust estimators in models involving independent
observations are those promoted by Wolfowitz (1957). These methods are further
studied by Beran (1977,1978), Williamson (1979), Boos (1981,1982), Parr and
Schucany (1980), Parr and DeWet (1981), Millar (1981, 1982), Koul (1980, 1985),
and Koul and DeWet (1983), among others. See also Parr (1981) for a detailed
bibliography prior to 1981.

The most common distance statistics used in the literature are the Cramér—
von Mises type statistics. Some of the reasons for this are that the corresponding
m.d. estimators are consistent, asymptotically normal, qualitatively robust
against certain contaminated errors [Millar (1981,1982) and Koul (1985)] and
locally asymptotically minimax (Millar, op. cit.). In view of these properties of
practical import it is highly desirable to seek m.d. estimators of p in (1), using a
suitable Cramér—von Mises type statistic.
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To motivate the definition of m.d. estimators of p, let us recall a result from
Koul and DeWet (K-D) (op. cit.). Consider a simple linear regression model
through the origin: Y; = ¢,8 + ¢;,, 1 < i < n, where {¢,} are ii.d. F, F a known
d.f,, {¢,} known constants. It was shown in K-D that a ¢ minimizing

@) f[ici{I(Y,sy+ tc,) —F(y)}] dH(y),

with H as in (6) below, is asymptotically an optimal estimator of 8 among a class
of estimators including the one based on an L,-distance between the ordinary
residual empirical process and F.

It is natural to consider estimation of p in the autoregression model (1) by
formally replacing c; in (2) by X;_,. Thus, if we know the error d.f. F in (1), we
may define an estimator of p as a ¢ that minimizes

(3) f{}_éX,_l{I(X,sy+ tX, ) —F(y)}] dH( ).

But in practice F is rarely known and we must now eliminate the centering F' in
(3). For that purpose we shall assume that

(4) F is symmetric around 0.

Then a way to eliminate F' in (3) is to replace it by the indicator I(—X, <y —
tX;_,) because at t = p, this indicator also estimates F(y). We are thus moti-
vated to introduce

S(y,t) =n"2 L X, ({I(X, <y + X, ) - I(-X, <y - tX, 1)},
=1
(5) y,tin £,
M(2) = [S¥(y,t)dH(y), tin 2,

where

6) H is a known nondecreasing right continuous function from £ to
A, inducing a o-finite measure on (2, #)—the Borel line.

Now define p by the relation
(7) infM(¢) = M(p).
t

The dependence of p on H will be exhibited only occasionally. The proposed class
of m.d. estimators is {p(H), H varies}. The optimality with respect to H is
discussed in Remark 3.2.

This paper studies some finite and large sample properties of the class of
estimators {p(H)}. Section 2 discusses some finite sample properties including
the computational and scale invariance aspects. In general the class of estimators
{P(H)} is not scale invariant. These estimators can be made scale invariant by
using {s~'X,, 0 < i < n} in place of {X,, 0 < i < n} in (7), where s is a suitable
scale invariant estimator of a scale parameter of F. See (2.7) below for an example
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of s. Section 2 also contains extensions of p to the AR(1) model with location
parameter as well, and to the AR(2) model.

In Section 3, a class of estimators {f,} is introduced and its asymptotic
normality is proved. The estimator p is a member of this class. Theorem 3.3
asserts an asymptotic optimality of § among the class of estimators {p,}. This
result is similar to Theorem 3.2 of K-D. In the same section, p is compared to
other estimators. The asymptotic efficiency of {#(H )} relative to 7 is the same as
that of certain signed rank estimators relative to the sample mean in the one
sample location model; see Remark 3.3. Asymptotically, {$,(H)} are like GM-
estimators of Denby and Martin (1979) corresponding to a ¢ that depends on F;
see Remark 3.7.

In Remark 3.4 an estimator of the asymptotic variance of n'/?(p(H) — p) is
provided for H(y) = y. The effect of asymmetry of F on p is evaluated in
Remark 3.5. It is noted that if F is asymmetric but Ee, = 0 then p has no
asymptotic bias but its asymptotic variance is larger than that under symmetry.
In Remark 3.8 it is noted that the influence of contaminating {¢,} on p is zero at
a symmetric F. Remark 3.9 discusses the asymptotic distribution of the scale
invariant version of {p(H)}. Finally, Section 3 briefly gives the asymptotic
distributions of the extensions of p introduced in Section 2.

Section 4 discusses tests of the hypothesis of symmetry H, and tests of
goodness of fit for a specified error distribution. In both situations the asymptotic
null distributions of the proposed tests are shown to be the same as those of their
counterparts in the one sample location model. See also Pierce (1985) for a similar
observation with regards to tests of the normality of errors. The asymptotic null
distribution of the Cramér—von Mises type tests based on the ordinary empirical
for testing for a specified error distribution does not depend on the specified error
d.f., as long as its mean is 0. Section 5 contains all the proofs.

NorATION. All limits are taken as n — oo, unless specified otherwise. By
0,(1) (O,(1)) is meant a sequence of r.v.’s that tends to zero (stays bounded) in
probability. The dependence of various entities on n is not exhibited, for the
sake of convenience. The real line is denoted by £.

2. Some finite sample properties of p and extensions. For the purpose of
computation of 5 the following representation of M is useful. Fix a ¢ in # and let
Z,=X,—-tX,_,i=1,...,n. Let c=max{Z;, —Z; 1 < i < n}. Observe that in
1.5), S(y,t)=0 for all y>c. Now use the fact that for any reals a, b,
2max(a, b) = a + b + |a — b|, and the nondecreasing nature of H to conclude
that for any real ¢

M(t) = n' L Thihy||H(Z,) - H(-2,)|
(1) L
-3{|H(z) - H(Z)|+|H(-2) - H(-2)]}],
where h; = X;_,. If
(2) |H(a) — H(b)|=|H(—a) — H(-b)|, a,bin 2,
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then, for t € £,
M(t) =n'Y in_lXj_l[]H(Xi ~tX,_,) - H(-X; + tX;_))]
¢ J

®3)
~|H(X, - ¢X,_,) - H(X; - tX,_,)]].

In the derivation of (1), H is assumed to be continuous. If H is not continuous (1)
continues to hold with probability 1 as long as F is continuous. In any case the
representation (1) or (3) make it clear that the computation of p is similar to that
of maximum likelihood estimators.

The assumption (2) is that H is symmetric around 0, which is natural when
F is symmetric. Useful examples are H(y)=y and H given by dH =
(Fy(1 — F,)} " 'dF,, F, a known symmetric d.f.

To overcome the difficulty due to the possible nonuniqueness, modify 5 as
follows. First observe that by the Cauchy-Schwarz inequality, for all £ in £,

() () > { [S(». t)glﬂ(y)dH(y>}2/ [eaH,
where g is a nonnegative function on £ such that
(5) 0< fgdH < 00.
Let
L(¢) = [S(y, t)g"*(y) dH(»)

(6) = fn—1/2ZXz-l{I(Xi <y+tX; ) - I(-X,<y- th-l)}

xg'*(y) dH(y).

Clearly L(¢) is a nondecreasing function of ¢. Therefore, by (4), M(t) is bounded
below by a nonnegative function which is nonincreasing on (— o0, b,) and
nondecreasing on [ b,, o) for some finite b,. Consequently, p may be uniquely
defined as an average of the two quantities at which M(¢) is minimized for the
first time and for the last time as ¢ moves from the left to the right.

Now consider the question of scale invariance of p. Write p(A) for p(H) when
H(y) =y, (A for the Lebesgue measure). Note that p(A) is scale invariant in
the sense that p(A) based on {bX;, 0 < i < n} is the same as the p(A) based on
{X;,0<i<n}forall bin £. In general {5(H)} are not scale invariant in this
sense. One way to make these estimators scale invariant is to base them on
{s7'X,, 0 < i < n}, where s = s(X) = s(X,, X;,... X,,) is a scale estimator such
that s(bX) = |b|s(X) for all real b. We mention one such estimator:

(7) s =med{|X, — p,X;_,|,1 <i < n},

where p, is a scale invariant estimator of p, e.g. p(A) or #. The effect of making
p(H) scale invariant on its asymptotic distribution is discussed in Remark 3.9.
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Next, consider extensions of p. First, consider the model where, for 6 in %,
le| <1,

(8) X, =0+pX,_,+¢, i=0,%+1,+£2...,
with ¢;, X;_, asin (1.1). To define m.d. estimators of (8, p), let

n
Se(y;a,t) =n 2y {I(X;<y+a+tX, )

=1

-I(-X;<y—-a-tX,_,)},

(9) Sl(y; a, t) = n_1/2 Z Xi—l{I(Xi < Yy +a+ tXt—l)

i=1

~I(-X;<y-a-tX;_))},
M(a,t) = [(SXy a,t) + SNy a,t)} dH(y),  a,t,yin R.

Now define (8, p) by the relation
(10) inEM(a, t) = M(8,p).
a,

Next, consider the stationary AR(2) process, where for p,, p, real,
(11) Xi=p1Xi—1+p2Xi—2+£i7 l=07 i]-’ i27-"7

with ¢, X;_; as in (1.1). To define m.d. estimators of (p,, p,), define for ¢, ¢,
in £,

n
Si(y; ty, ty) =n"""? ZAXi—j{I(Xi Sy+4X,  + 86X, )

(12) = ,
-I(-X,<y—-tX,_, - t,X,,)}, j=1,2.

Let
(13) M(t,,t,) = [{SH(y ti, ta) + SH(3; ti, 1)} dH(Y), i, tyin 2.

Define (p,, p,) by the relation
(14) tinfM(tl»tz) = M(p,, b2)-

15 L2
The asymptotic distributions of the estimators defined in (10) and (14) are
summarized at the end of Section 3. Extension of p to the pth order stationary
autoregressive series with location 6 is now apparent from (8)-(14).

3. Asymptotic behavior of p and §,. This section studies the asymptotic
behavior of p under fairly general assumptions on the underlying quantities.
Actually, we first study the asymptotic distribution of a class of estimators {3},
to be defined shortly, of which p is a member. Then we deduce various asymp-
totic results about p including its optimality within the class {,}.
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To define p,, let i be a measurable function from £ to % and define, for y, ¢
in %,

Si(y,t) =n"1"? Zn: X, D{I(X;<y+tX,_) - I(-X,<y-tX,_))},
(1)
My(t) = [Si(y, t) dH(3).

Now define p, by the relation
(2) if:th(t) = M, (p)-

Again, the dependence of p, on H is suppressed. For each H we have a class of
estimators {p,; h varies} which reduces to p of (1.7) upon taking h(x) « x.
In order to obtain the results, we shall need the following assumptions:

(A.1) F has a continuous density f with respect to A—the Lebesgue measure on
(%, B).

(A2) 0< [f"dH < o0, r=1,2.

(A.3) 0 < Ee? < o0; 0 < E|X,|"|h(X,)|? < o0, for r = 0,1,2.

(Ad) lim, _ o fE((X k(X f(y + sX,) — f(NIPAH(y) = 0,
lim, _ o JER(X,)| Xo| f(3 + sXo) dH(y) = ER*(X,)| X, [f dH.

(A5) [°(1 — F(y))dH(y) < oo and H satisfies (2.2).

Next, define, for ¢ in £,
3 Qu®) = [[Su(3,0) + 2E(X,h(Xo)) H(3)nV/2(t = p)]" dH( ).
We are now ready to state some results.

THEOREM 1. Let {X;, i =0, +1,...} be as in (1.1). Assume that F satisfies
(1.4) and that (A.1)-(A.5) hold. Then, for any 0 < b < oo,

(4) E  sup |M(t) — Q4(t)|=o(1).

In'/2(t—p)|<b
PrROOF. See Section 5.

REMARK 1. If E(X,A(X,)) = 0, from (3) and (4) it follows that M, cannot
be used to recover p asymptotically. In particular, if A(x) = 1, then because of
(1.4) and (A.3), M,—the ordinary Cramér-von Mises statistic based on the
residuals { X; — tX;_,} and {— X, + tX;_,} —cannot be used to estimate p in the
above fashion.

THEOREM 2. In addition to the assumptions of Theorem 1, assume that
(A.6) either xh(x) = 0 for all x or xh(x) < 0 for all x,
(A7) E{X,h(X,)} # 0.
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Then

. Wby~ 0) = ~ (2B OGA(K) f1am)

5
X [S(y,0) () dH(y) + 0,(1).

PRrROOF. See Section 5.

COROLLARY 1. Under the assumptions of Theorem 2
(6) n'/%(p, — p) = N(0, 72) r.v.,

where
ot o= (2B(XA(X) 2B BR(X, )B4 (e)
V(&) = dolx) = Vo(=x),  bo(x) = [ fdH,  xin 2.
PROOF. Set Y,; = n~Y2h(X,_)¥(e;), 1 <i < n. Then

@) - [$3:0) () dH(3) = ¥ Vo= T

where
J
T,=YY, 1<j<n
i=1

For |p| < 1, {X,} is strictly stationary ergodic and T,,; is #; measurable, where
F; = o-field {¢;, i <j}. Moreover, the symmetry of F around 0 ensures Ey(¢;) = 0,
so that the independence of ¢; and X;_, yields

EY_.=0, foralli; EY,Y,;=0, forall j>1,

® EYZ = n"'ERh%(X,)E4?(e,), forall i.

Thus (T, #; 1 <j <n} is a mean zero square integrable martingale array.
From (8), ET,, =0,

(9) sp=Var(T,,) = ER*(X,)Ey*(e,) = ER*(X,)Var(y(e,)) = v, say.
The ergodic theorem yields that

(10) n! i h%(X;_,) » ER*(X,) as.

i=1

These observations may be used to verify that sufficient conditions of Corollary
3.1 of Hall and Heyde (1980) are satisfied so that T),, = N(0, y?). The claim
about p, now follows from this and (5). O
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Now, the Cauchy-Schwarz inequality implies that
(11) (EX,h(X,)} °ERX(X,) > {EX2)} ",

with equality if, and only if A(x) « x. Let 72 denote 72 when A(x) « x. Note
that 72 denotes the asymptotic variance of p. Thus (11) says that

(12) 72 > 72 with equality if, and only if A(x) « x.
We also have
(13) EX?=¢*1 - p?} 1 62=Var(e,).
Moreover, the symmetry of F and H yields
(14) Ey%(e,) = Vary(e,) = 4K(F, H),

1 1
where

K(F, H) = [ [[F(x A y) = F(x)F()] (2){() dH(x) dH().

Consequently,

.= {4EX02}_IVar{‘l’(el)}{ffde}_z
(15)

-2
= (1 - p?)o 2K(F, H){ff 2dH} .
Summarizing the above results we have proved the following

THEOREM 3. Among all estimators {p,} of p in (1.1), where h satisfies (A.3),
(A4), (A8), and (A.7) for every F and H satisfying (A.1), (A.2), and (A.5), the
estimator that minimizes the asymptotic variance 1} is p—the p, when h(x) « x.
Moreover, n'/*(p — p) = N(O, 72) r.v., 72 as in (15).

REMARK 2. Theorem 3 above proves the asymptotic optimality of p(H)
among a class of estimators {p,(H), A as in Theorem 3} for every fixed H. As far
as finding an optimal p in the class {#(H), H varies} is concerned, observe that
H appears in the asymptotic variance of p(H) only through WV(F, H):=
K(F, H){ [f2dH)} 2. The term V(F, H) is precisely the asymptotic variance of
an M-estimator of the location parameter corresponding to the iy, function.
From the minimax theory of such estimators (Huber, 1981), one readily concludes
that the optimal H is given by the equation

fdH = —17'd(f'/f), 0<I=[(f/f) dF <,

where now it is assumed that f’ is a.e. derivative of f. A consequence of this
observation is that if H(y) =y or if dH = {F(1 — F)} 'dF then the corre-
sponding p are asymptotically efficient for logistic errors.
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REMARK 3. Comparison with #:=Y" X, X,/¥" ;X2 ,. Recall that under
(A.3), n'/%(# — p) = N(0,1 — p?) r.v. Thus the asymptotic efficiency of p vs. 7 is

e = e(p, #) = {asymptotic variance n'/%(? — p)}

(16) X {asymptotic variance (nl/z(ﬁ _ p))} -1
= o V(F, H)) ™" = o f1am) (K(F, 1))

Observe that the asymptotic efficiency e is similar to that of signed rank
estimators corresponding to the score function o F~*(u)) of the location param-
eter vs. the sample mean in the one sample location model. Thus for example if
H(y) =y, then e = 12¢%{ [f 2 dy}>—the well-celebrated expression in connection
with the Wilcoxon rank estimator—see Lehmann (1975). In this sense p(A) may
be said to be an extension of the Wilcoxon type rank estimator to the autoregres-
sion model (1.1).

REMARK 4. An estimator of 72 when H(y) = y. In the case H(y) = y, the 72
of (15) becomes

17) 2= (1- p2)o_2{(12)1/2 [#¥x) dx}—2.

Thus to estimate 72 one needs to estimate (1 — p%>)o~2? and [f*(x)dx. An
estimator of (1 — p?)6~2 is obviously (n7'X” ,X2 )" ' Thus it remains to
construct an estimator of

(18) b(f) = [t2(x)dx = [f(x) dF(x).
Define
(19) b(y, F) = [[F(y+x) - F(-y+x)] dF(x), y>0.

For any y > 0, (2y) " 'n'/2b(yn~"2, F) » b(f) as n — oo. This suggests that we
first estimate b(y, F'). An estimator of b(y, F) is

(20) b(y) =n"t [[V(y +x,80) = V(= + %, po)] V(dx, Bo),
where
(21) V(y,t)=n"2Y [(X,<y+tX,_)), y,tin &,

i=1
and p, is an estimator of p, not necessarily p. Observe that b is the empirical d.f.
of {|X,— X;—py(X,_, —X;_))|, 1 <i,j<n} Let s, , be an ath quantile of
this empirical d.f. Define

n -1
(22) 7%= (n_l )y X,?_l) {121/2(280‘,n)_lnl/zf)(n'l/zsa,n)]}
i=1

-2
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It is believed that if f is uniformly continuous and bounded, 0 < Ee? < co and
n'/%(py — p) = O,(1) then #* is consistent for 7> See Koul (1984) or Sievers
(1984) for the proof of a similar result in the linear regression model.

REMARK 5. Effects of asymmetry on p. Suppose that F is asymmetric but
has mean zero so that EX, = 0. Consequently, ES(y, p) =0 and one can still
define p by (1.5) and (1.7). Such a p will not have any asymptotic bias. In fact,
under suitably modified assumptions that compensate for the lack of symmetry
one can prove that

WA~ o) = ~(BXE [ at) [S(3, 0)a() dH() + o0,

where

g(y)=f(y) +{(-y), yin<
Similarly to the arguments of Corollary 1, one can then deduce that

n?(p — p) = N(0, »?) r.v.
where now
_9 n
y2 = {EX()zfgde} lim \’a.r(n_l/2 Z Xi—lG(si) ’
n—co =1
and
G(x) = Go(x) — Go(—x),

Go(x) = [* &(y)dH(y), xina.

Direct calculations show that

2= (BX3 [gan) EX3{VarG(s) + (L+ )1 - )7 [EG(2)]')
(23)

= (/gde)_2{(EXg)_1VarG(el) +(1+ p)zo_z[EG(el)]z}.

Now suppose that H is symmetric around 0. Then Gy(x) = Y(x) — $o(—x) +
Yo(0), G(x) = Y(x) — Y(—x) = 2¢(x), for all x; ¢ as in (6).
Consequently, from (13) and (15),

-2 2
p? = (/g?dH) {72(4ff2dH) +4(1 + p)zo_z[Ex[z(el)]z}.
Therefore, from (15), and the inequality g% dH < 4/f 2 dH, one gets
(1+ p)2a e [Ey(e)]”
1-p2 7 4K(F,H)’

Thus, as long as Ey(¢,) # 0, so that a > 0, one has
2
14
(24) »2> 1% forallp and sup — = oo!
o<1 T

>1+

qle
NN
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Asymmetry of F and absolute continuity of H is enough to ensure Ey(g,) # 0.
Thus even though p has no asymptotic bias its asymptotic variance can be
heavily influenced by the asymmetry of F even when Ee; = 0 and H is symmet-
ric around 0.

REMARK 6. During the preparation of this paper the author received a
preprint of the paper by Wang (1986) proposing a m.d. estimator p,, of p in (1.1)
as a minimizer ¢ of

W(e) = f[n_lﬂ i X, J(X;<y+ tXi—1)]2 dH(y).

Wang does not require symmetry of F but assumes Ee = 0 and that H is
bounded. The asymptotic variance o2 of n'/%(p, — p) turns out to be

o=12+ [(1 + p)2E2\[/O(el)x{off2dH>_2], 2 asin (15).

Thus, for symmetric F and H,
%2 =1+ [(1+p)(1 = p) " {[Evo(e)*Var giole)}].

which is arbitrarily large for p close to 1.

REMARK 7. Connection with GM-estimators. If in (2.5) of Denby and Martin
(op. cit.) one takes g = A, y(x) = [* _ f dH, then one has [n/%(5,, — )| = 0,(1),
where $GM is the GM-estimator. Now it is known that if ¢(x) of 4§GM is x then
¢om = P But choosing {(x) =x would violate our assumption (A.2). Thus
{p(H)} has no connection with the least-squares estimator 7# under the condi-
tions of this paper.

REMARK 8. Influence curve of p,. Let
m(t7 F’ y) = E{Sh(y’ t)}
= Eh(X,)[F(y + (t— p)X,) + F(-y + (t— p)X,) — 1],

w(t, F) = [m*(t, F, y) dH(y).

Define T(F') by the relation
infu(t, F) = p(T(F), F).

If F is symmetric around 0 then T(F)=p. Let L be a df. and define
F,=F+s(L-F),0<s<1, T, as a minimizer of pu(¢, F,) wrxt. ¢t. If F is
symmetric then T, =T(F)=p. If L(y)=06(y)=Iy=>2) and if T,=
(8/3s)T,|,_o = O exists, then T} is called the influence curve of T(F) at F.
Proceeding as in Huber (1981), one can derive, under some regularity conditions,
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that

ERh(X,) [¥o(2) = ¥o(—2)]
2EX,h(X,) Jidb, ’
Under (A.2), ¢, is bounded. Thus the influence of z is bounded on T(F) and

hence on p,, at symmetric F. In particular if A(x) = x and Ee, =0, so that
EX, = 0, then p is not influenced by the contamination of errors.

IC(2, T, F) = V()= [ faH.

REMARK 9. Asymptotics of scale invariant version of p(H). Let s = s(X) =
s(Xp, ... X,) be an estimator such that s is positive and

(25) s(bX) = |b|s(X), forall bin Z.

In addition, assume that there is a positive constant vy, possibly depending on F,
such that

(26) n'?(s — y) = 0,(1).

Let p*(H) denote the scale invariant version of 5(H) proposed near (1.7). Then,
under some additional conditions on F and H, one can prove that

n/?(p*(H) — p) = N(0,7%) r.v,,

where 72 is obtained from the 72 of (15) after H(-) there is replaced by H(- /7).
See Corollary 5.1 below for the proof of (26) for the estimator s of (2.7).

REMARK 10. Asymptotic distributions of extensions of p. Recall the defini-
tion of (6, p) from (2.8)—(2.10). Under suitable assumptions one can show that the
asymptotic distribution of n'/%(@ — 0, p — p) is bivariate normal with the
asymptotic mean 0 and the asymptotic covariance matrix

n
1 n!' Y EX, ,

(27) 21 = n il='ll X Vloc('po)’
n' Y EX;, n'} EX?,
i=1 i=1

Next, recall the definition of (g,, p,) from (2.12)-(2.14) in the stationary AR(2)
model (2.11). Again, one can deduce under suitably modified assumptions that,
for a symmetric F, n'/%(p, — p,, Py — p2) = Ny(0, =,) r.v.’s, where

EX? EX,X,
EX,X, EX?

In the above, Vio(¥,) = Var(yo(e))/(/¥, dF)* = K(F, H)/([f * dH)*

-1

(28) 2y = X Vige(¥0)-

4. Tests of goddness of fit. Consider the model (1.1) with F as d.f. of {e;}.
Consider the problem of testing

H,: F(y)=1- F(-y), forall y.
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A natural class of tests of H, is given by M,(p;). The asymptotic null distri-
bution of these statistics is derived from the following

THEOREM 1. Under the assumptions of Theorem 2.2

ISi(y,0) dyo(y)
Jfd,

Proor. Follows from (3.4), (3.5), and (3.6). O

) 3,600) = [{8(3.0) - ()] dH) + 0,00, (o).

Now write S(y) for S;(y, p). We shall throughout assume that H is symmetric
around 0. For any process Y, define

(2) Y3 =2/ Y*dH.
0

Then by the symmetry of H and F, the leading term on the right-hand side of (1)
is ||Z,,||4 where, for all y real,

(3) 2 =S(») - &) [ dve), &) = 1) [“rava) -
Observe that

(4) S(y)=n"12 f: h(X,_)[I(e;<y) + I(e; < —y) — 1], forallreal y.

i=1
Let
(5) a(x,y) =I(x<y)+I(x < —-y) — 1, x, y real.
Then, under H,, Ea(e;, ¥) = 0, all i, all y. Moreover, for x, y > 0, ES(x) =0,
ES(x)S(y) = ER*(X,)Ea(e;, x)a(e,, ¥)
(6) — b2min(1 - F(x),1 - F(3)) (b= ER¥(X,)),
=: 2bC(x, y), say.
Then, by Fubini’s theorem
K,(%, ) = Cov(Z,(x), Z(»)) = E(Z,(x)Z,())

- ES(x)S(y) - #(») [ “ES(x)S(t) dwy(?)

. () [“ES(3)S(6) dbolt) + 8(x)a()E{ [5(2) dy(0)]
7 0 0
= 25(C(x, ) = g(3) [ Clx,€) dholt) = £(x) [ “C3, £) dbol0))

+2bg(x)g(y) fo ” fo “C(s, t) dyo(s) dwg(t)

= K(x,y), say.



MINIMUM DISTANCE AUTOREGRESSION 1207

Now, let W be a Wiener process on [0,1], W(0) =0, EW = 0, Cov(W(s),
W(t)) = min(s, t). Define

2(x) = {W(2/(1 - F(x))) - g(x) [ W(2V2(1 = F(1))) dgol1) |57,

x > 0.

Note that Cov(Z(x), Z(y)) = K(x, y), x, y = 0.
Now use Theorem VI1.2.1, Parthasarthy (1967), as in Millar (1981), to conclude
that

12,05 = 2 [ 22(3) dH(y) = 2 [ "2*(y) dH(y) = |ZIl};, under Hy.
Consequently, by (1),

(8) Mh(ﬁh) = ”Z”%I, under H,.
But

{[eW(2/2(1 = F)) dy, )’

IZII%, = 2b f0°°W2(21/2(1 — F))dH -

(9) o fd,
= bB(W, F), say.
Consequently, if we estimate b by
(10) b=n"' Y (X))
i=1
and consider
(11) Mh(ﬁh) = Mh(ﬁh)/i),
then by (3.10) and the above discussion we have
(12) M,(py) = B(W, F).

Thus, the first consequence of (12) is that the asymptotic level of M ~test is the
same for every h. The second observation is that the limiting r.v. B(W, F') is the
same r.v. that arises when testing for symmetry in the one sample location model.
Its distribution is accessible as in Martynov (1975, 1976) and Boos (1982).

Next, consider the problem of testing

(138) H:F=F,  F,aknownd.{.
A test of H is to reject H when T is large, where
(14) = [[V(5, bo) — n'/2Fy( )" dFy( y).

From the proof of (i) in Section 5 [see (5.8)—(5.18)] and Remark 5.1 one deduces
the following

PRrROPOSITION. Suppose that (1.1) and H hold. Assume that the error d.f. F,
has bounded and continuous density f,, EX? < o, EX, = 0, and that p,, is such
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that |n'?(py — p)| = O,1). Then T = [IB2(t) dt, where B is the continuous
Brownian bridge on [0,1].

Consequently, the test of H based on 7' is asymptotically distribution free. A
similar conclusion may be drawn about the test of H based on the
Anderson-Darling statistic.

Pierce (1985) indicates without proof that the asymptotic null distribution of
any test of the normality of errors in (1.1) is the same as that of its counterpart in
the one sample location scale model. This observation is consistent with the
results obtained here.

5. Proofs of Theorems 3.1 and 3.2. We shall first give a proof of Theorem
3.1. The basic proof of this theorem is similar to that of Theorem 5.1 of K-D
(op. cit.), but because of the dependence of {X;}, some calculations are intricate.
We shall thus be brief, indicating only the differences.

For any functions g and k from ZX % to %, |g|% = [g%(y,t)dH(y),
& — ksl%-l = f[g(y’ t) — k(, s)]2dH(y), for s,¢ in .

Proor or THEOREM 3.1. With {p, X,, ¢;, F} asin (1.1) and A as in Theorem
3.1, define

(1) J(y,t) = fh(x)F(y +n V2x)dG(x) (G df.of X,),
(@) W t)=n 2L (Al <5+ 07 26X,) = I3, 1)),

y, tin .

Since £ is held fixed, we shall now write S, @, M for the S, @,, M, of (3.1)-(3.3).
Observe that

(3) theleft-hand side of (3.4) = Esup |M(tn" 2+ p) — Q(n™ V%t + p)|.

lt|l<b

From (3.1) and (1),

M(n'% + p) = f[W(y, t) + W(=y,t) + n'/*{J(y, ¢) + J(~y, 8)}
_n—1/2Zh(Xi_l) 2dH(y)

(4) =f[{W(y, t) — W(y,0)} + (W(-y,t) - W(-y,0)}

+{S(y,p) + 2taf(y))
+{n1/2[J(y, t) —J(y,0)] — taf(y)}

+{n2[J(~y, t) — J(~2,0)] — taf(-y)}]" dH(y),
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where a = ( fxh(x) dG(x)) and where we have used the fact that for all y,
S(y,p) = W(,0) + W(-y,0) — n 2L h(X,_,) + n/?[J(,0) + J(-,0)],
i

which in turn follows from the definitions. Also note that

(5) Q(n 2t + p) = [[S(,p) + 2atf(¥)]* dH( ).

Using the quadratic expansion and the Cauchy-Schwarz inequality on the cross
product terms one gets an inequality involving L,(H) norms of the differences
W(-,t) — W(-,0) and J(:,¢) — J(-,0) — taf, just like the inequality (5.6) in
K-D. Thus to prove (3.4) it suffices to prove

(i) Esup|W, — Wyl3; = o(1),
t

(i) sgp'nl/z[J, —dy] — atf I‘; =o0(1) (a = /xh(x) dG(x)),

and
(iii) Esn;plSp + 2atf |4 = 0(1),

where the sup over T is over |¢| < b. But (iii) readily follows from (A.2) and (A.5).

PROOF OF (ii). Define A*(x) := h(x)I(xh(x) > 0), A" =h — h*. Let J*, a*
stand for the J and a of (1) and (4) when % is replaced by A* so that
J=J"+J7, a=a’+ a". By the inequality (b + ¢)? < 2b% + 2¢? for all reals
b, ¢, (i) will follow if we prove it for J*. To begin with note that the
Cauchy-Schwarz inequality and Fubini’s theorem together with the fact that
(h*)? < h?, imply that for fixed ¢,

|n12[ % = dt] - attf [},

o ° [ [R5 + tn7V2%) = F(5)] = txf(3))’ dG(x) dH(y)

-1/2

<dae@n )7 [0 [E(XA(X) (5 + sXo) = H()])" dH(y) ds

|- 1/2
0, by (A2)-(AS5).

Now observe that J* (J7) is a nondecreasing (nonincreasing) function of ¢ This
fact together with the compactness of [ —b, b] and (6) yields (ii) in a standard
fashion. This completes the proof of (ii). We now turn to the

ProOF OF (i). Write W= for W when % in W is replaced by A *. Define
(7) p(y,t;x)=F(y+m ’x) - F(y), y,x,tin 2.



1210 H. L. KOUL

Observe that for all y, ¢
Wi(ya t) - Wi(y,()) = n_l/zzhi(Xt—l){I(si 4 + tn—l/2Xt—1)

—I(e; < y) — p(3, 6 X;_,)}
(8) +n 2 (R (X, )p(y, 6 X)) = (5, 0)

+J *(y,0)}
=Ri(y,t) + R5(y,¢t), say,
where
RE(y,t) =n "’ h*(X,,)

(9)
X {I(Ei sy+ m_l/in—l) -I(g;=y) —p(y, 4 Xi—l)}‘

Note that R} is the sum of conditionally centered r.v.’s so that the covariance of
any two summands is zero. Consequently, by Fubini’s theorem for every
fixed ¢,

ERjh < [E(h*(X)}|F(y + m™/2X,) ~ F()|dH(»)

(10) < [ [ER(X)IXolF(y + sXo) dH(y) ds

-0, by(A4).
Next, consider R%,. Rewrite
RF(y,t) = n” L {h* (X, )[F(y + m™ X, ) - F(y)]

—Ehi(Xi—l)[F(y + tn_l/in—l) - F(y)]}
= n V2L R (X, ) F(y + m7 2K, ) = F(y) = 072X, ()]
(11) —n V2L ERE(X, ) [F(y + m7 X, y)
~F(y) - tn" X, 1 ()]
+on L [RE(X,_ )X, — ERE(X, )X, ] 1(9)

= Al(y) t) - A2(y’ t) + A3(y3 t)’ say.
Fubini’s theorem and (A.1)-(A.3) imply that
Esup Ay} < 46%(2b/Vn) !

ltl<b
(12 X [ (B[R )X+ 5K0) = ()] dH(3) ds

-0, by (A4).
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Note that Ay(y, t) = EA(y, t). Therefore, (12) and Fubini’s theorem imply that

(13) E sup |A2t|%~1 < E sup |A1t|%1 - 0.
ltI<b |t|<b

Next, because {X;} is stationary and ergodic and because of (A.2) and (A.3),
Var[n 2L h*(X, )X, ) = O(1),

see, e.g., Hall and Heyde (1980). Therefore

(19 Esupldyh < bn | [3Var{n 2 LA*(X, )X, ) ~ 0.
1tj<b i
From (11)-(14) it readily follows that
(15) Esup|R3|} — 0.
1t|<b
From (8), (10), and (15) it follows that for each fixed ¢ in [ - b, b],
(16) E\W,* - Wyt|% - 0.
To complete the proof of (i) observe that
(17) W, — Wolf < 2{|W" — W55 + (W, — Wolk).

Now, let —b=¢,<¢ < -+ <t.=b be a partition of [—b, b] such that
max, _,_ (¢, — t;_;) > 0 as r - oo. Observe that W,"(W,") is a difference of two
nondecreasing (nonincreasing) functions of ¢. Therefore,

sup |W,* — W'} < 4{ max |W,* — Wy*|} + max
ltl<b O<jsr 7 o<j<r
so that (16) and (6) imply

limsup E sup |W,* — W%}

n—oo 1t|<b

(18) < max (¢ - t,;._1)2|f|§,(E|Xohi(xo)})2 X 16
<jsr

w2 =92 )

-0 asr— oo.
This together with (17) entails (i) and hence Theorem 3.1. O

REMARK 1. It should be emphasized that the symmetry of F is not required
for the proof of (i) and (ii). The symmetry of F is used only in proving (iii). In
fact one can also prove an analogue of Theorem 3.1 when F is not symmetric.
But calculations get involved. There will be an extra term in Q. In fact, the
approximating @ will be

Qu(n"% +p) = [[S(5,0) - ES(y,p) + tag(y) + ES(y, p)]* dH( ),

g(y) =1f(y) +f(-y).
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We shall now sketch a proof of the asymptotic normality of s of (2.7).
Accordingly, let

Fi(y) =n'YLI(|X, - poX;_1l<y), F*(y)=F(y) - F(-y),

and
T.(y) =n"2(F(y) - F*(y)), y>0.
Assume that F* has the unique median y. Observe that for any real u,

T(y + un~'?) = Wi(v,, ) — Wi(—vz, ¢
19) (v ) = Wi(¥,, £) = Wi(=va, )

+n1/2[Jl(Yn’ f) - Jl(_Yn’ f) - F*(Yn)]’
where £ = n!/2(p, — p), v, = ¥ + un"'/2, and W,, J, are the W and J of (1) and
(2) above with A& = 1. Using arguments like those used for the proof of (i)
[see (8)-(18) above] one can show that if f is bounded and continuous and
0 < EX? < oo, then for any real u, 0 < b < oo,

(20) Esup |Wy(y + un"'%,t) — Wy(y,0)| > 0,
lti=b
and
sup [n'/2[Jy(y + un~V2, ¢) — F(y + un™'?)| — tEX,f(v)| > 0.
lti=b
From (19) and (20), if |#| = O,(1) then
(21) T.(y +un™%) = S,(v) + EEX{ f(v) — f(=7)} + 0,(1),

where
S(v) = n 2L {I(lel £ v) — F*(v)}.

Moreover, continuity of f yields that, for any real u,

(22) n2[F*(y) = F*(y + un™2)] = —u(f(y) + f(=7)).

Observe that S,(v) is the standardized sum of i.i.d. Bernoulli (3) r.v.’s. Conse-
quently, S,(y) = N(0, }). Now use the standard argument of converting the
events based on the sample median to the events based on the corresponding
empiricals and the above discussion to conclude the following

COROLLARY. Suppose that (1.1) holds; the error d.f. F has bounded and
continuous density f; F* has unique positive median y; n'/?|p, — p| = O,(1) and
that 0 < EX? < 0. Then

[n'2(s — v)|= 0,(1).

In addition, if either (i) EX,=0 or (ii) F is symmetric around 0, then
n'/?(s — y) = N(O, v?) r.v., where

2= {f(v) +f(=v)} " incase (i)
= {2f(y)} % incase (ii).



MINIMUM DISTANCE AUTOREGRESSION 1213

REFERENCES

BERAN, R. J. (1977). Minimum Hellinger distance estimates for parametric models. Ann. Statist. 5
445-463.

BERAN, R. J. (1978). An efficient and robust adaptive estimator of location. Ann. Statist. 6 292-313.

Boos, D. (1981). Minimum distance estimators for location and goodness of fit. J. Amer. Statist.
Assoc. 76 663-670.

Boos, D. (1982). A test for asymmetry associated with the Hodges-Lehmann estimator. /. Amer.
Statist. Assoc. 77 647-651.

CHENG, K. F. and SERFLING, R. J. (1981). On estimation of a class of efficiency-related parameters.
Scand. Actuar. J. 83-92.

DENBY L. and MARTIN, R. D. (1979). Robust estimation of the first-order autoregressive parameter.
J. Amer. Statist. Assoc. 74 140-146.

Fox, A. J. (1972). Outliers in time series. J. Roy. Statist. Soc. Ser. B 34 350-363.

HaALL, P. and HEYDE, C. C. (1980). Martingale Limit Theory and Its Applications. Academic, New
York.

HUBER, P. J. (1981). Robust Statistics. Wiley, New York.

KouL, H. L. (1980). Some weighted empirical inferential procedures for a simple regression model.
Collog. Math. Soc. Janos Bolyai, Nonpar. Statist. Inf. 32 537-565.

Kouy, H. L. (1984). Weighted Empiricals and Linear Regression Models. A monograph. MSU RM
Series 439.

Kout, H. L. (1985). Minimum distance estimation in multiple linear regression. Sankhya Ser. A 47
57-74.

KouL, H. L. and DEWET, T. (1983). Minimum distance estimation in a linear regression model.
Ann. Statist. 11 921-932.

LEHMANN, E. L. (1975). Nonparametrics: Statistical Methods Based on Ranks. Holden-Day, San
Francisco.

MARTIN, R. D. (1981). Robust methods for time series. In Applied Time Series Analysis 1I (D. F.
Findley, ed.) 683-759. Academic, New York.

MAaRrTYNOV, G. V. (1975). Computation of distribution functions of quadratic forms of normally
distributed r.v.’s. Theory Probab. Appl. 20 782-793.

MARTYNOV, G. V. (1976). Computation of limit distributions of statistics for normality tests of type
w?. Theory Probab. Appl. 21 1-13.

MiLLAR, P. W. (1981). Robust estimation via minimum distance methods. Z. Wahrsch. verw.
Gebiete 55 73-89.

MILLAR, P. W. (1982). Optimal estimation of a general regression function. Ann. Statist. 10 717-740.

PARR, W. C. (1981). Minimum distance estimation: A bibliography. Comm. Statist. A—Theory
Methods 10 1205-1224.

PARR, W. C. and DEWET, T. (1981). On minimum Cramér-von Mises norm parameter estimation.
Comm. Statist. A—Theory Methods 10 1149-1166.

PARR, W. C. and ScHUcaNY, W. R. (1980). Minimum distance and robust estimation. /. Amer.
Statist. Assoc. 75 616-624.

PARTHASARATHY, K. R. (1967). Probability Measures on Metric Spaces. Academic, New York.

PIERCE, D. A. (1985). Testing normality in autoregressive models. Biometrika 72 293-297.

SIEVERS, G. L. (1982). A consistent estimate of a nonparametric scale parameter. Inst. Statist.
Mimeo series 1501, Univ. of North Carolina, Chapel Hill.

WANG, C. W. H. (1986). A minimum distance estimator for first-order autoregressive processes. Ann.
Statist. 14 1180-1193.

WILLIAMSON, M. (1979). Weighted empirical type estimation of the linear regression parameter.
Ph.D. thesis, Michigan State Univ.

WOLFOWITZ, J. (1957). Minimum distance method. Ann. Math. Statist. 28 75-88.

DEPARTMENT OF STATISTICS
MicHIGAN STATE UNIVERSITY
EaAsT LANSING, MICHIGAN 48824



