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A MINIMUM DISTANCE ESTIMATOR FOR FIRST-ORDER
AUTOREGRESSIVE PROCESSES

By CHAMONT W. H. WaNG!

University of Montana

In this paper we construct a class of minimum distance Cramér—von
Mises-type estimators for the parameter in the first-order stationary autore-
gressive time series. The estimator is proved to be asymptotically normal
under appropriate assumptions. The proofs involve some results of indepen-
dent interest.

1. Introduction. Consider the first-order stationary autoregressive model
(1.1) X,=BX,_,+ U, IBl<1, —o0 <k< oo,

where {U,} are independent and identically distributed random shocks with
E(U)=0 and 0 <02 = Var(U) < w. This model has been widely used in
applications for forecasting and control [see Box and Jenkins (1976)]. The
constant B in (1.1) is the unknown parameter which we would like to estimate.
Based on the observations {X,, X;,..., X,,}, the commonly used least-squares
estimate of B is given by

n n
(1-2) BIS = Z Xk—le Z Xk2—1'
k=1 k=1

It can be proved [see, e.g., Akritas and Johnson (1980)] that, within a wide class
of density functions f of U, the best attainable asymptotic variance for the
estimates of 8 under model (1.1) is

(1.3) (1= B2 2(I(f)) ",

where I( f ) is the Fisher information of f. Note that the asymptotic variance of
the least-squares estimate is 1 — 8% [Theorem 4.3, Anderson (1959)] which
equals (1.3) for Gaussian disturbances but not for more general situations [see,
e.g., Hajek and Sidak (1967), pages 16 and 17].

Akritas and Johnson proposed an alternative test statistic to compete with the
normal theory least squares tests under the contiguity framework. Lai and
Siegmund (1983) showed that the asymptotic normality of ,@[S is not especially
good when n = 50, even for small |8| and normal shocks, and it deteriorates quite
noticeably for 8 near 1. Lai and Siegmund proposed an estimator under a
sequential sampling scheme to improve the fixed sample size least-squares estima-
tor.

In this paper we consider a minimum distance Cramer-von Mises-type estima-
tor of B8 under model (1.1). This approach has been successful in the usual
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regression model. See, for example, Williamson (1982) and Millar (1982). Millar
considered a general regression model and proved that his estimator of the
regression function is asymptotically normal, efficient, and qualitatively robust
against certain contaminated errors. Veitch (1983) considered an estimator ]
which minimizes the distance (in a certain Hilbert space) between the empirical
distribution ¥ and the true distribution F? of a general stationary time series
{X,, X,,..., X,,}. The estimator is proved to be asymptotically normal and
qualitatively robust. Veitch’s result includes all Gaussian ARMA models with a
finite number of parameters.

Instead of assuming the knowledge of the error distribution F, we propose a
nonparametric estimator for the first-order autoregressive processes. The motiva-
tion of this estimator is as follows. Consider the randomly weighted empirical
process

(1.4) S(t,A)=Y X, I(X,<t+AX, )
k=1

where I( A) is the indicator function of set A. Note that, by the completeness of
L2-spaces, (1.1) can be rewritten as [see, e.g., Fuller (1976), page 29]

k-1 )
BU, .
=0

Jj=

(1-5) X, = ZBjkaj=BkX0+
=0

Jj=

Hence X, , and U, are independent, E(X,) = 0, for all £, and ES(t, 8) = 0.
Furthermore, by denoting

(1.6) F(t)=P(U, < t), G(t)=P(X,<t)

for all k£, we have
(1.7) ES(t,A) =n/xF(t+ (A — B)x) dG(x).

We now claim
(1.8) ES(t,A)>0 ifA>p and ES(t,B) <0 ifA<§p.
To prove this, consider the case A > B first. Note that
x > 0 implies F(¢ + (A — B)x) > F(¢) and
xF(t+ (A — B)x) > xF(t),
x < 0 implies F(¢ + (A — B)x) < F(¢) and
xF(t+ (A — B)x) > xF(t).

This completes the proof of the first half of (1.8). The second part is done by the
same argument. Similarly, we can prove that S(¢, A) is nondecreasing in A for
any fixed t. Hence, if we define

(1.9) Qa) = f:s?(t, A) dH(t),

where H is a finite measure on (R, %), then similar to a rank test for testing H,:
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B = B, [Hajek and Sidak (1967), page 103], H, is rejected for large values of
Q(B,). Therefore it is reasonable to define an estimator 8 for 8 by the relation

(1.10) Q(R) = infQ(a).

In Section 2 we obtain the asymptotic quadratic approximation of @(A) and
then use this result to prove the asymptotic normality of 3. We also discuss a
method to find H to minimize Var(f).

Another nonparametric minimum distance estimator was proposed by Koul
(1985). First note that by using an extra assumption that the error distribution F
is symmetric around 0, F(¢) can be estimated either by n " 'XI[ X, < t + BX,_,]
orby n7'LI[-X, < t— BX,_,]. Koul then considered an estimator of B as a A
which minimizes

(1-11) f[ZXk—l{I(Xk <t+ AXk-—l) - I(_Xk <t- AXk—l)}]2dH(t)7

where H can be a o-finite measure. For the asymptotic behavior of this estimator,
see Koul (1985).

2. Main results. The following Proposition 1 concerns the asymptotic
quadraticity of @(A). The result will be used to study the asymptotic distribu-
tion of B.

ProrosITION 1. If I(f) < oo, H is a finite measure and E|U|® < oo, then

(2.1) E{ sup n7YQ(A) — Ql(A)I} -0 asn -, o,
VlA—Bl<a

where a is a fixed number and

(2:2) Qu(8) = [(S(t, B) + n(& = B)o2f(2))" dH(2),

(2.3) o = Var(X) = o%/(1 — B2).

PRrROOF. See Section 3.

REMARKS ON THE ASSUMPTIONS. I(f) < oo implies

(2.4) f(x) >0 asx > +o0
[Hajek and Sidak (1967), page 20]. This in turn implies
(2.5) f is bounded,

since f is continuous, and
(2.6) F satisfies a Lipschitz condition
[Royden (1968), page 108] and

(2.7) n(z) = sup(f(y) — f(y — 2))” is continuous at 0,
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where (2.7) holds by using (2.4) for large y and by using the fact that f is
continuous and hence uniformly continuous on compact sets. (2.4)-(2.7) are
crucial in the proof of (2.1). Indeed, we can replace I(f) < oo by the weaker
assumptions (2.4) and (2.5) for the rest of the proof. We state these as assump-
tions:

(A1) f(x) >0 asx - +oo,
(A.2) f is continuous.

Note that @,(A), as defined in (2.2), is a quadratic function and has its unique
minimum at A, where A is defined by

m (8= B) = (~1/on2 12t [3(2, R)1(e) aH(2)
( 1/03n 1/2jf2dH) prpd L JI(U, < £)f(2) dH(2).

Thus we conclude:

PROPOSITION 2. Under the assumptions of Proposition 1,

(B~ ) = (~1/oin' [ 7a
(2.9) "
x ,Elxk“‘flw’“ < t)f(¢) dH(¢) + 0,(1).

PrOOF. See Section 3.

THEOREM 1. Assume that (A1) and (A.2) hold, that E |U|% < 0, and that
H is a finite measure. Then Vn ( B-B)is asymptoacally normal with mean 0
and asymptotic variance o *([f*dH)7*{(1 - B? YE(U?) + 281 + B)E*(U)},
where U = [I(U < t)f(t) dH(t).

Theorem 1 is a by-product of the following more general Lemma 1 and
Theorem 2.

LEmMaA 1. For the model (1.1), let

(2-10) Tn = Z Xk—IUka
k=1

where U, = {(U,), while { is a measurable function such that E(U?) < . Then
(2.11) limn 'E(T;2) = o}{ E(U?) + 2(EU)*8/(1 - B)}.

PrOOF. See Section 3.
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APPLICATIONS OF LEMMA 1. (a) If U = I(U < t)f(t) dH(t), then, by (2.9),

Var(fn B) = o [1a| (E(0) + 2B0)B/1 - )} + o)

—2(ff dH) {(1 = B2)E(T?) + 2B(1 + B)EXT)} + 0(1),

since (1 — ,B yo2 = o2, This gives the asymptotic variance of B in Theorem 1.

(b) Let U = [[I(U < t) — I(—U < t)] f(¢) dH(t). This yields (3.15) of Koul
(1985).

(© If U= [[IU=<t)—I(-U<®t]f(t)+f(—t)]dH(t), then Lemma 1
yields »2 of Remark 5, Section 3 of Koul (1985).

(d) If U= U, then E({U)=0, E(U?) =02 and r2=0202=0'/(1 — B?)
[see Anderson (1959), Theorem 4.1].

(e If U=1, then E(W/nX)?=n"'E(T?) - o1 + 28/(1 — B)) =
o%(1 — B)? [see, e.g., Theorem 6.3.3 of Fuller (1976)].

(f) If U = I[U < t], then E(U?) = EU) = F(t), and

n"1ES2(t, B) - oB(1 — B) 'F(¢)(1 — B + 2BF(t)).

Note [F(t)(1 — B+ 2BF(t))dt= o for any —1 < B <1, since F(t) > 1 as
t > oo. Hence we confine ourselves to finite measure H. See the proof of
Lemma 3.1.

The following Theorem 2 will be used to establish the asymptotic normality of
,B as well as that of some other commonly used estimators for 8. Note also
that the conclusion of Theorem 2 holds for all stationary ARMA ( p, ¢) processes
and for any X, , where X, , is a measurable function of X, , such that
E(X?_,) < . For the sake of simplicity, we present the result and proof for the
AR (1) model only.

THEOREM 2. Let T, = ©X, ,U,, as defined in (2.10), and let
(2.12) 12 =n"'ETZ, 2= lim 72.

Then under model (1.1), T,/ Vnt, converges in distribution to the standard
normal law.

REMARKS. (a) If Uk JI(U, < t)f(¢) dH(¢), then Theorem 2 yields the
asymptotic normality of B and A, see (2.8) and (2.9).

(b) For any ¢, let U, = I(U, < t). Then T, = S(t, B) in (1.4).

(c) If U = U, then Theorem 2 yields the asymptotic normality of the least-
squares estimator [see Theorem 4.1, Anderson (1959)]. Note also in the least-
squares case, {7} is a martingale, while in our case it is unfortunately not.

(d) By a discussion analogous to that of (e), (b), and (c¢) in the applications of
Lemma 1, we conclude the asymptotic normality of sample average [see, e.g.,
Theorem 6.3.3 of Fuller (1976)] and of Koul’s estimators for symmetric and
nonsymmetric F' [see (3.5) and (3.1) of Koul (1985)].
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To prove Theorem 2, we utilize the following convenient central limit theorem
for stationary processes. Note that, in the following Lemma 2, T is an ergodic
one-to-one measure-preserving transformation on the o-field, %, generated by
Y,, —00 <k < oo.

LeEMMA 2 [Heyde (1974)]. Let {Y,} denote a stationary and ergodic sequence
with EY, = 0, EY? < o0, andput S, = X2_\Y,. Suppose that A , is a sub-o-field
of F and MyC T (M), and put M, =T *My) and y, = E(Y|M,) -
E(Y|A_), —o0 <j< oo If X* y,=Z € L? EZ2—0Z>0 andn“ESz—urZ
as n — oo, then S,/o,/n converges in dzstnbutzon to the standard normal law.

Proor oF THEOREM 2. Denote
(2.13) Yk =i Xk—lﬁk'
Then, by (1.5), Y, is a measurable function of {U,_,: j=0,1,2,...}. Hence by
the same arguments employed in Proposition 6.6, 6.31, and Corollary 6.33 of

Breiman (1968), both {X,} and {Y,} are stationary and ergodic. The fact that
{ X} is ergodic is also covered by Theorem 3 of Hannan (1970), page 204. Now let

(2.14) M, = 0{U,,U,_,U,_,,...}
and

(2.15) Yo = E(Yy|Mo) — E(Y,| A ).
Note that

(2.16) ¥=Y,—Y,=0 forall k < —1.
If £ =0, then

(2.17) Yo=Y, — X_,E(U).

For the case £ > 1, we have
E(Y,|#,) = E(U)(B* U, + B*U_, + B**'U_, + -+,
E(Y,#_,) = E(U)(B*U_, + B**'U_y+ ---),

and

(2.18) v, = E(U)B* U, forall k> 1.

Hence

(2-19) Z = Eyk=X—1(Uo_Eﬁ) + UOE(ﬁ)/(l_B)'

Note that the random variables X _ (U, — EU') and U, are uncorrelated. There-
fore

EZ? = o}Var(U) + (EU)"0?/(1 - B)*
= o2{E(U?) + 2(EU)’B/(1 - B)} =

Theorem 2 now follows by Lemmas 1 and 2. O
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Note that Theorem 1 follows by Proposition 2, Lemma 1, and Theorem 2.
Note that the asymptotic variance of 8 depends on H. It is natural to pursue the
optimality of H. For this, we first define the following functionals:

(2.20) J(h) = {(1 - B2)A(h) + 2B(1 + B)B(h)}/D(h),
where A is in L?(R) and

(2.21) A(R) = //F(t A s)f(¢)f(s)h(¢)R(s) dtds,
(2.22) Bk - fth)z,
(2.23) D(h) = ( [1 2h)2.

THEOREM 3. Assume f is bounded. Then J(h) is continuous at h # 0 a.s. in
L%-norm. Furthermore, there exists a nonzero h in L?>(R) to minimize J(h).

ProoF. Since f is bounded, Holder’s inequality implies that D'/? is a
bounded functional on L?(R). Hence D(h) is continuous in & [Royden (1968)]. A
similar argument applies for B(4). Next note that for any given h, € L%(R), we
have

A(R) = A(ho)| < [ [H=)F()IA(5) ~ ho( )] A(x) | dxdy

+ [ [ F o ) [[7(x) = ho(x)| dx dy
< by(I1A) + Rl = holl = 0

as h —> h, in L%norm. Hence J(h) is continuous at A where h + 0 as. in
L%-norm. Next note that J(ah) = J(h), for all a # 0 and for all ||A|| # 0. But
(IlA]] = 1} is a compact set in L%* R). Hence the continuity of </ implies the
existence of A which minimizes <J. This completes the proof of Theorem 3. O

Note that L2(R) is a separable Hilbert space. By Theorem 3, we can now
apply Theorem 40.1 of Gelfand and Fomin (1968) to minimize J( 2). Note that, in
view of the proof of the quoted theorem, it is not necessary for J(h) to be
continuous everywhere. The details of this approach are rather involved and will
be reported elsewhere.

Finally, we would like to point out that another method to attain the lower
bound in (1.3) for the large-sample estimation can possibly be done by using a
general adaptive procedure [see, e.g., Fabian and Hannan (1982)]. The disad-
vantage of this method is that it may require an extremely large sample to
construct a nonparametric estimator for 8. This is fine for the earth-sciences data
[see, e.g., Tukey (1978)], but it causes big problems for business or social-sciences
data. Because this kind of data is usually subject to heavy outside influences, it is
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then difficult to find a good model for an extremely long series. This is one of the
reasons that the more direct approaches like minimum distance method are

highly desired.

3. Proofs of Proposition 1, Proposition 2, and Lemma 1. We split the
proof of Proposition 1 into the following lemmas. This approach is close to the
one used by Koul and DeWet (1983) for the usual regression model.

LEmMma 3.1. If f is bounded and H is finite, then

(3.1) limsupE sup n‘I/{S(t,B) + n(A - ,B)of(f(t)}2dH(t) < 0.
n W|A-Bl<a

ProoF. By using the fact that H is a finite measure and the inequality
(a + b)? < 2(a? + b?), the left-hand side of (3.1) is less than or equal to

limsup2n‘1Ef52(t,,B) dH(t) + limsup sup 2n(A - ,B‘)zoffffde.
n n  JRA-Bl<a

The proof of the lemma is then completed by the assumptions and application (f)
of Lemma 1, Section 2, which also rules out the consideration of H to be the
Lebesgue measure over the whole real line. O

LEMMA 3.2. Assume (A1), (A.2), E(U*) < o, and H is finite. Then

(3.2) sup jn—l{sf(t, A) — n(A - B)o2f(¢))’ dH(¢) = o(1),
wlA-Bl<a

where

(3.3) S(t,A) = ES(t,A) — ES(¢,B) = nfo(t + (& = B)x) dG(x).

Proor. By the Schwarz inequality, we have, for all ¢,
nY8(¢, 8) = n(A - B)o}f(2)}"

(3.4) < n(A- .3)2_/ F(t+ ((AA—_B;a)ci — F(t)

- f(t)) x*dG(x)

=0(1),

since n(A — B)? < a, F is Lipschitz, f is bounded, and E(X*) < . (3.4) also
implies that lhs (3.4) = 0(1). In detail, note that for any ¢ > 0, there exists b > 0
such that

Ihs (3.4) < ¢ + a?[° (7t + £(x)) ~ £(1)) %" dG(x),

where |£,(x)| < |Ax — Bx| < n”'/%?ab — 0 as n —> . Note & does not depend on
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n. Therefore,

lhs (3.4) < & + a?E(X*) sup b]{f(t +¢,(x)) - 1(2))°

x€[—b,
=e+0(1)
by (2.7), which is true under (A.1) and (A.2). We further have
supn/?(A — B)o2f(t) = O(1) = supn~/%5(t, A).
t t

Hence the dominated convergence theorem implies

(3.5) fn_1{§(t, A) — n(A - B)o2f(¢))* dH(t) = o(1).

This in turn implies (3.2) by using the monotonicity of S(¢, A) in A [see, e.g., the
proof of Theorem 5.1 of Koul and DeWet (1983)]. O

LeEMMA 3.3. Assume (A1), (A2), E\U|® < oo, and H is finite. Then

(3.6) sup  [nB(S(,8) - S(¢, B) - S(¢,A))" dH(¢) = o(1).
WlA—Bl<a
Proor. In view of the previous proof, it suffices to verify
(3.7) nT'E{S(t,A) — S(t, ) — S(¢,A))” = 0o(1).
Note that, by Lemma 3.2,
(3.8) lhs (3.7) = n 'E{S(¢,A) — S(¢, B)}* — n(A — B)?s4f%(¢t) + o(1).
Denote
(3.9) Dk=Xk—1(I[Uk_ (A_B)Xk—ISt] -I[UkSt])‘

By (1.5) and |B| < 1, D, is a measurable function of {U: —oo <j < k}. Hence
{D,} is a stationary process and the first term of rhs (3.8) reduces to

(3.10) ED?+2n Y(n—-1)ED,D, + (n— 2)ED,D, + --- +ED,D,}.
Since F is Lipschitz, the first term of (3.10) reduces to

(3.11) ED? < O(1)|A — BIE| X3 = o(1).
For the second term of (3.10), note first
ED,D,

=EX, X, {I[U, - (A-B)X, < t] - I[U, < t] - (A~ B)X,f(¢)}
x {I[U, - (A - B)X,_, <t] - I[U, < ¢t]}
(8.12) + (A - B)(H)EX(X,
XA{I[Uy— (A= B)X_y < t] —I[U, < t] - (A - B)X,_.f(2)}
+ (A= B 1P () E(X3X}-))
= B, + B, + B,
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say. We claim

(3.13) nB, + nB, = o(1).
To prove the above claim, in view of the proof of Lemma 3.2, it suffices to verify
(3.14) nB, + nB, = 0(1).

To this end, note F is Lipschitz and hence

(3.15) E(X, I[t<Uy<t+ (A~ B)X, ] I[(A - B)X, = 0]|#,_,)

< X7 1A - Bl0(1),
where %, _, is the o-algebra generated by {X,,U,,...,U,_,}, and
E(UI[t<U <t+ (8= B)X]I[(A- B)X, 2 0]|%,)

< 0(1)(A - B)X,I[(A - B)X, = 0].

By (3.15), EX* < o0, and the boundedness of f, we then have nB, = O(1). Using
this, we further have

n|B| <n-0(1)(A - B)EX, X},

(3.16)

(3.17)
x{I[U, - (A - B)X, < t] - I[U, <t]} +0Q).
l{;et I, , = I[U, — (A — B)X, < t] — I[U, < t], then the rhs (3.17) is bounded
y
n-0(1)(A - B)E(X 1, ,)
+n- 0(1)(A = B)E{X, L, ,( B*1X, + B*20,)") + 0(1)
< 0(1),

where the inequality holds by (3.15), (3.16), and E|X%| < oo. This completes the
proof of (3.14) and therefore (3.13) holds. The proof of the lemma is then
completed by using (3.10)-(3.13) and by the facts that E(XZX? )) =
B 2E(X*) + o%(1 — B2?*) and that

n‘lnil(n—k)ﬁ"=o(1) + B/(1 —B) forall |B] <1. a
k=1

ProorF oF PRroOPOSITION 1. To simplify the notation, we denote
[8%(t, A) dH(t) = ||8,]|%, for any measurable function g. Then, by Minkowski’s
inequality,

Q(A) - @,(8) = IS5 — IS, + n(a - BT I,
< {18 = S = Sull + 18— n(& = B)oif )
{8 = Sy = Sill + ]S = n(& = B)o}f |,
+2|S; + n(A - B)o}f ]},
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where the conditions for Minkowski’s inequality are assured by the above lemmas
which further imply (2.1). This completes the proof of Proposition 1. O

PROOF OF PROPOSITION 2. In view of (2.8), it suffices to prove
(3.18) Vn(B - A) - 0 in probability.

Note the measurability of 8 can be achieved by giving a definite rule of selection
for B. But the procedure is long and uninteresting and will be omitted without
further discussion. The following proof of (3.18) is close to the one in Williamson
(1982). Note first by (2.2) and (2.8) we have

Q.(A) = [ISell% + n%fl f13{(A — B)* — 2(A - B)(A - B)},
Q.(B) — @A) = n%) fIH(B - B),
and
(3.19) nofll fI1%(B — 8)* = n=(@,(B) — @:(A)).

By Proposition 1 and Chebyshev’s inequality, for any fixed a there exists ¢ > 0
such that

(3.20) P{ sup QM) — @A) < e> 1.
VElA-Bl<a
This motivates us to consider the set

(321) A a)= {,/rT|A ~Bi<a, _inf Q&)< _inf Q(A)}.

A-B|>a
It is reasonable to guess, for any small £ > 0,
(3.22) P{A,(a)} >1—¢ forsome a and for sufficiently large n.

This guess will be proved formally in Lemma 3.4 below. In view of (3.22), (3.20),
and (3.19), to prove (3.18) it suffices to prove

(3.23) sup  n7YQ(A) — @,(A)|<e
VAl -Bl<a

implies n~ 1{Ql(,é) — QI(A)} < 2¢ on. A,(a). Indeed, by the assumption of (3.23),
we have, on A,(a),

(3.24) n'1|Q([¥) - QI(B)I <e¢ and n'1|Q(A) - QI(A)| <eg;
hence
n7'Q(B) — n7'Qu(A) < (n7'Q(B) + &} — n7'Qy(A)
<{n'QA)+¢ —nQ(A) <e+e=2¢

on A,(a), where the first and last inequalities hold by (3.24) and the second
inequality holds by (1.10). This completes the proof of (3.23) and Proposition 2. O

The next lemma will make up the gap in the above proof. See (3.22).
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LEMMA 3.4. Under the assumptions of Proposition 1, we have
(3.25) P{A,(a)} >1—¢ forsome a and for sufficiently large n,
where A,(a) is defined in (3.21).

ProOF. Define
(3.26) L(A) = js(t,A)mT)dH(t).

We will use the asymptotic linearity of L(A) as leverage to prove the lemma. By
the asymptotic linearity of L(A) we mean

(3.27) sup n” 2
JRlA—Bi<a

in probability. Indeed,

Ihs (3.27) < sup n'l/szS(t, A) - S(¢, B) — (¢, M) |[fF(2) dH(¢)

L(8) = L(B) = (&= Bno} [1¥2at| ~ 0

+supn 7 (2, 8) - (& - B)na}£(2)|/F(2) dH(t)
-0
in probability by (3.6), (3.2), and the Schwarz inequality. Next, by the fact that
n"'L¥(B) < n”'Q(B) [fdH = 0,(1),

we extend (3.27) to

(329) S0 |n L&)~ {0 AL(B) + (8- p)niad [ ) | 0.

WlA-Bl<a

Note also, by the Remark (a) of Theorem 2 and Lemma 3.1, we have
For all & > 0 there exist d > 0 and n, > 0, such that for all n > n,,
€ €
(329)  P(VrlA-pi<d)=1- and P{n‘lQ(B)fde < d} 21—
Obviously,
(330)  nV2|L(B)| <vd on theset {n-lQ(B)/de<d}.

Hence, on the set {n~'Q(B)[fdH < d}, by choosing a > 2Vd { [f *?dH} ' we
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have
ﬁlAn1i2|=a{n_l/2L(B) + (A - B)n'? ff 3/2dH}2
(3.31) \2
. -2 3/2
2{‘” ZIL(B)| +aff¥ al|

> (—Vd +2/@} = d>n"'Q(B) [fdH.

Consequently, by (3.30), (3.29), and (3.28) we conclude

€
3.32 P{n'l dH < d and dH < min L% A } >1-—
(3.32) QB) [f QB) [faH < _min_ 1%(a) 5
for large n. Finally, note
inf A dH > inf  L%(A
(3.33) ﬁIA—BI>aQ( )‘[f |A=B|>a (&)
> inf L*(A)= min L?*(4),
JRIA-Bl=a Ji|A—Bl=a

where the last equality holds because L(A) is nondecreasing in A. (3.33), (3.32),
and (3.29) together yield (3.25). O

Proor oF LEMMA 1. Note that
(3.34) nTE(T?) = o2E(U?) + 2n ' Y E(X,_,X,_,U,)E(D).

j<k
For all j > 0 let
(3.35) h(j) = E(X,X,0,).
Then, by induction
(3.36) h(j) = 3E(T)p .

Since {X;_; X k_IUj: 1 <j < k < n} are identically distributed, the second term
of the rhs (3.34) equals

2E(U)n~(n - DhQA) + (n — 2)h(2) + -+ +h(n - 1))

=2EXU)ogn™' X (n—j)B’ = 2E*(U)ozB/(1 - B) + o(1).

J=1

This completes the proof of the lemma. O
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