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SPHERICAL REGRESSION!

By TED CHANG

Simon Fraser University and University of Kansas

Suppose u, ..., u, are fixed points on the sphere, v,,..., v, are random
points such that the distribution of v, depends only upon v/Au, for some
unknown rotation A. This paper provides asymptotic tests and confidence
regions for A and for the axis of rotation of A. Results are given in arbitrary
dimension.

Let S” be the unit radius sphere in p-dimensional Euclidean space and let
SO( p) be the p X p orthogonal matrices (that is matrices A such that AA* = T)
of determinant 1. We consider in this paper “spherical regression” problems on
the following model: u,,..., u, are fixed points in S? (written as column vectors),
vy,-.., U, are random points in S? such that v,,..., v, are independent and such
that the density of v,, with respect to uniform measure on S?, is of the form
&(vfAu,) for some unknown A in SO(p). We want to develop statistical proce-
dures for estimating and testing the unknown parameter A.

The case of the circle ( p = 2) is essentially well known because A is counter-
clockwise rotation by an unknown angle 6. If 6, is the angle from u, to v,, then
6,,...,0, are independent and identically distributed with a density of the form
8(0, — 0).

The case of the sphere (p = 3) is of considerable practical importance. The
following two problems are abstractions of problems proposed to the author by
workers in other fields; the first from geology and the second from petroleum
exploration. It was the simultaneous and fortuitous presentation of these prob-
lems that lead to the present study.

PROBLEM 1. A rigid body, confined to the surface of the earth, has moved in
an unknown manner. For certain points (u,) on S3, estimates of past position at a
fixed point in time (v;) are available. What was its previous position?

In this problem the body’s past position relative to its present position is
determined uniquely by an element A of SO(3). The v, are estimates of Au, and
the problem is to determine A.

PrOBLEM 2. The directions (v;) of certain signals have been measured in an
unknown coordinate system. The directions («;) of the same signals in a known
coordinate system can be calculated. What is the unknown coordinate system?
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In this problem if the rows of A are the components of the coordinate axis of
the unknown coordinate system with respect to the known one, the v; are
measurements of Au, with error and the problem is to determine A.

Variations on Problem 1 are of especial interest in the study of plate tectonics.
Geophysicists have been fitting rotations to the motion of tectonic plates for 20
years. Only some of the data they use can be modeled in the form of problem 1.
The approach has been to define an error sum squares SSE(A) which depends
upon the choice of a candidate rotation A, to iteratively minimize SSE(A), thus
arriving at an estimate A of the unknown rotation A, and to assume an
approximating distribution for

SSE(A) — SSE(A)
SSE(A)

Examples of this procedure can be found in Le Pichon (1968, 1973), Chase
(1972) and Engebretson, Cox and Gordon (1984). No attempt is made to prove the
correctness of the assumed asymptotic distribution. The author has found that
for the choice of error sum squares studied in this paper, the asymptotic
distribution is not 2nx%*@3) as one might assume. Nevertheless, if the error
distribution is concentrated, as those in plate tectonics seem to be, the true
asymptotic distribution is in fact extremely close to 2nx?%(3). The author hopes
that this paper can be a start towards a more rigorous and mathematical
understanding of these problems.

If ¢, = E(vfAu,) > 0, it is reasonable to estimate A by the matrix A which
minimizes

Z|o, — Au|? = 2n - 2Z(vau,).

Letting U, and V, be the p X n matrices whose columns are u, and v,
respectlvely, the solutlon for A was found by MacKenzie (1957) and Stephens
(1979). It is readily computable from a modified singular value decomposition

UV!=0,A0}
where Ol, 0, € SO(p) and A is diagonal with entries A,,..., A, satisfying
Ay = Ay, = - 2|, | If the rank of U, is p, the determinant of U V, is nonzero

with probablhty 1 and in that case, A is uniquely given by 0,0!. We will call A
the “least squares estimate of A.” In this paper we will ﬁnd the asymptotic
distribution of A under the assumption that (1 /n)UU! converges as n — oo to a
positive definite symmetric matrix £ (Theorem 1). We propose that asymptotic
confidence regions for A be based upon Theorem 1.

Letting O(p) denote the p X p orthogonal matrices, we define, following
Stephens (1979), for a subset S of O( p) the vector correlation r(S) by

1
r(S) = sup — ) vAu,.
Aesn

Stephens studied the distribution of r(SO(p)) and r(O(p)) when the u, and v,
are independently and uniformly distributed on the sphere S?. Using Theorem 1,
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we will find for closed subgroups G’ € G of O( p), the asymptotic distribution of
r(G’) and of r(G) — r(G’) when A € G’ (Theorem 2).

With G = SO(p) and G’ = {I}, we propose to use Theorem 2 to test whether
A is some specified A, or not. The resulting test is based upon the test statistic
r(SO(p)) — r(A,) (where, abusing the notation, we write r(A,) for r({A,})).

When p = 3, the matrix A will represent rotation of an angle § about an axis
¢ In both of the problems cited above it is of interest to test if ¢ is some
predetermined £,. If we let G’ be the group (isomorphic to SO(2)) of rotations
around £,, we are testing the hypotheses A € G’. We propose to base an
asymptotic test on Theorem 2 and on the test statistic r(SO(3)) — r(G’).

Gould (1969) considered another inequivalent type of spherical regression
model. For the sphere S the Gould model is that the v, are independently
Fisher distributed with model vector u, = (cos ¢;, sin ¢,cos 0,, sin ¢;sin §,)* with ¢,
and 6, known linear functions of the unknown parameters. Gould also considers a
similar model on the circle S2.

In Section 1, we state and prove Theorems 1 and 2 in arbitrary dimensions. In
Section 2, we describe asymptotic hypotheses tests with special attention to three
dimensions. Section 3 contains a numerical example and Section 4 discusses
display of confidence regions for A.

If the underlying distribution is Fisher, d(x)exp(kv*Au), the procedures in this
paper are just maximum likelihood estimation and likelihood ratio testing. For
other distributions, the author believes that use of least squares estimates A are
justified by the relative ease of computing A.

In this paper, the u, play the role of the predictor variables in linear
regression: They are assumed fixed and v; is assumed to have a rotationally
symmetric distribution centered at Au,. If they are instead random but with a
distribution independent of A, the results are still valid for inference conditional
on the u,. When the distribution of u and the conditional distribution of v are
both Fisher, aspects of this problem were studied by Rivest (1984).

1. Statements and proofs of the main theorems. We will think of
Euclidean p? space R”’ as the collection of p X p matrices with the usual inner
product (A, B) = tr(AB"). Let O(p) C R?" be those matrices A such that
AA' = 1. Then O(p) is closed (in the usual metric space sense), has dimension
3+(p(p — 1)) and consists of two connected components. One of these is SO( p),
the matrices in O(p) of determinant +1, and the other consists of the elements
of SO( p) followed by any reflection.

The tangent space at the identity I of O(p) (and hence of SO(p)) is the
collection of skew-symmetric p X p matrices; that is the matrices H such that
H + H' = 0. We denote the collection of such H by L(SO(p)).

The exponential map ¢: L(SO(p)) — SO( p) is defined by

: 3
¢(H)=I+H+2—!+¥+

If G is a closed subgroup of O( p) with the metric space topology, we let L(G)
denote the tangent space at I of G. L(G) is by definition a vector subspace
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of L(SO(p)). It can be shown (see Theorem 15 and its proof, Spivak (1979),
page 530) that L(G) is the set of H in L(SO( p)) such that exp tH is in G for all
real £. The dimension of G is the dimension of L(G). If G = SO(p) or O(p),
dimG = 3(p(p — 1))

Let A,(G) be the “least squares estimate of A in G,” namely the element of G
which maximizes

A )

as A varies over G. Thus An(O( p)) is the statistic defined by MacKenzie (1957)
and An(SO( p)) is Stephens’s (1979) modification of MacKenzie’s statistic.

If v € SP has density of the form g(v‘u) for some u € S?, we define constants
o, €1, and c, by

E(v) = cyu,
E[(o —cou)(v - cou)t] = cyuu’ + ¢, 1.

That E(v) is a multiple of u is obvious by symmetry. That E[(v — cou)(v —
colt)'] can be written in the form c,uu’+ ¢,I is obvious when u is the “north
pole” and follows for general u by rotating S”.

THEOREM 1. Let G be a closed subgroup of O(p). Suppose each v, has a
density g(vl!Aqu;) where A, is in G. Suppose furthermore c, > 0 and that
1/nY,u,ut converges to a positive definite symmetric matrix 3. Then

(a) An(G) is consistent for A,,.

(b) Write ALA (G) = ¢(H,) for H, € L(G). Then H, is asymptotically multi-
variate normal with mean 0 and density (with respect to a Lebesgue measure on
L(@G)) proportional to

ex il tr( HZZ)
P 202n "

Thus —nck/ctr(H?Z) is asymptotically x*(dim G).

Most of the proof of Theorem 1 is a mimic of the proofs in the asymptotic
theory of the mle with the log likelihood function replaced by tr(A(U,V,!)/n) and
with nonidentically distributed variates. We will therefore omit many details.

Let U, =[u; -+ u,], V,=[v; -+* v,],and X, = 1/nU, V..

LEMMA 1. X, - c,2 A} (strong convergence).

PrROOF. Let W, = u,v! — couulAl. W, is a p X p matrix with expected value

0. By Kolmogorov’s criterion for t};e strong law of large numbers (see Billingsley
(1979), page 250), 1/nZ" W, converges to 0 with probability 1. The lemma
follows. O
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LEMMA 2. An(G) is strongly consistent for A,.

PrOOF. A, (G) maximizes tr(AX,) as A varies over G. By Lemma 1, X, —
¢, = Al with probability 1. Since 2 is positive definite and ¢, > 0,

tr( Ac,2AY) = citr( ALAT)

is maximized uniquely when AjA = I or A = A,. The lemma follows from the
following observation:

Suppose f is a continuous function on & X % with & compact and suppose
furthermore that for a specific y, € %, f(x, ),) has a unique maximum at
x = x,. Suppose y, — ¥, and each x,, is a choice of a maximum for f(x, y,). Then
X, > X, O

Since An(G) - A,, for large enough n we can write Af,fin(G) = ¢(H,) where
H, € L(G) is chosen to have smallest magnitude. By replacing v; with Agv;, we
can assume A, = I. Pick a specific B € L(G) and define a real valued function on
L(G)

d
gX(H) =—| tr(¢(H+tB)X,).
dt|,_,
We have gZ(H,) = 0. We expand g2 in a Taylor series around 0:
d
g2(0) = —| (s(tB)X,) = tr(BX,).
t=0
If H e L(G),
d
BY(O)H=—| — +t
(gn) (0) (is s=0dt t=0tr(¢(SH B)Xn)
HB + BH
- tr(——Xn).
2
Thus
HB + BH
gB(H) = tr( BX,) + tr( . X) +R.
Defining for a matrix H, the ordinary Euclidean metric
| H||? = tr(HH*),

it can be easily shown that |R| < || H||?||B||e"#". Since g2(H,) = 0, and since
tr(H=B) = tr(B'2'H") = tr(BZH),
the following lemma is obtained:

LEmMA 3. For B € L(G),
—tr(BVn X,) = ctr(Vn H,=B) + R,,,
where
IR,| < VRl HIBI(I|H,lle"™" + | X, — cZl)-
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Let L(G)* be the dual space to L(G). Define a, € L(G)* by a,(B) =
—tr(BvVn X,). Each a,, is a random variable with values in L(G)*.

LEMMA 4. «a, has a limiting multivariate normal distribution with covari-
ance quadratic form c¢,Q(B,, B,) = —c,tr(B,ZB,) for B,, B, € L(G).

Proor. To say that the random vector « in L(G)* has covariance quadratic
form c,@ means that if B,, B, are nonrandom vectors in L(G) the covariance of
the real valued random variables a(B;) and a(B,) is ¢,Q(B,, B,).

The characteristic function of «,, is

F(B) = E[exp(V=1a,(B))], BeL(G).
Substituting X, = 1/a¥,u,v! and noting that
0 = tr[ Bu;u!] = u!Bu,,
since B is antisymmetric and u,u! is symmetric,

n
F,(B) = 1—11E exp— = (v; — cou,)'Buy, |.
i-

Since E(v, — cyu;) = 0 and

E’[(Bul)'(vl — cou;)(v, — cou,)’Bu,]

u!BYc,uut + c,I)Bu,

—c,(u!Bu;)” - c)(u!BBu,)
—cyotr( Buu!B),

| B
— 1|
The remainder o(||B||?/n) is bounded uniformly in i by min[|B|3/
6n%2,||B||?/n] (see Billingsley (1979), equation (26.5)), and hence as n — oo
F,(B) - exp(c,tr(BZB)) O
Now let p: L(G) - L(G)* be
o(H)B = Q(H, B) = —tr(HSB).

Since Z is positive definite p(H)H > 0 and p is nonsingular. Lemmas 3 and 4
imply that

we have

n

c
F(B)=TI|1+ ftr(Bu,-ufB) + o0

=1

a, = p(—cO\/EHn) + 0,(1),

and hence p(—c,/ \/c—2 WnH,) has a limiting multivariate normal distribution
with covariance quadratic form Q.

Now @ defines an identification of L(G) with L(G)* and this identification is
p. It follows that H, has an asymptotic multivariate normal distribution with a
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density proportional to

1 -
exp[— EQ(TZ—Z—O\/EH,”

cg

2¢,

—cy

=

n tx( HnEHn)}.

«an)]

= exp[

[Let X* be a random vector with values in a dual space ¥'* and let the
quadratic form @ on ¥~ be the covariance of X *. Let X be a random vector
in 7~ defined by Q(X, B) = X *(B) for all B € ¥". If we pick a basis e,,..., e,
of ¥ and write X =Y x.e;, let V be the matrix cov(x,, x;). Then Q(X, X) =
[x, -+ x,]V " [x; - -+ x,]"] This proves Theorem 1.

THEOREM 2. (a) If A, € G, then r(G) has a limiting normal distribution
with mean c, and variance (¢, + ¢y)/n.
(b) If Ay € H C G, then 2ncy/cy(r(G) — r(H)) has a limiting x*(dimG —
dim H) distribution.
(¢c)If Ay K C HC G, then
dimG — dim H r(H) — r(K)
dimH - dim K r(G) — r(H)

is asymptotically F(dim H — dim K,dim G — dim H).

PROOF OF (a). With the notation of Theorem 1,

UV}
r(G) = tr| Ag(H,) == .
As before, we can assume A, = I. Then
t

n
n

} - co) +0,(1)

uvt uu!
=‘/7_ltr|: nn_cO nn:I
n n

Vr(r(G) - ¢p) = \/ﬁ(tr[(l+ H)) RA

+ Vnegtr[ H,2] + 0,(1)

1 n
= ﬁ igl(vi - Coui)tui + Op(l).
The summands are identically distributed with mean 0 and variance
E[u'(v — cou)(v — cou)tu] = u(c,uut + cyI)u
=c¢ +c,.0
PROOF OF (b). Let Q(B,, B,) = —Tr(B,=B,). We define H,(G) by A (G) =

A(H,(G)) and similarly H,(H) and H,(K), and again we set A, = 1. If
B € L(H) c L(G) then using Lemma 3 with both H,(G) and H,(H), we see
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that Q(Vn (H(G) — H(H)), B) is o,(I| Bl). Thus if B, is the projection under @
of Vn H (G) to the perpendicular complement of L(H) in L(G),

Vn(H,(G) — H(H)) = B, + 0,(1).
Thus, using Lemma 3,

2n(r(G) - r(H))

2n(r(G) — r(I)) — 2n(r(H) — r(I))

co@(Vn H,(G),Vn H,(G))

—cQ(VnH,(H),\nH,(H)) + 0,(1)
= coQ(B,, B,) + 0,(1).

Thus 2nc,/cy(r(G) — r(H)) is asymptotically x*(dimG — dim H).O

PROOF OF (c). From part (b) we see that up to terms o,(1), Vn H,(H) is the
projection under @ of Vn H (G) to L(H) and that ya(H (H) — H(K)) is its
projection to the orthogonal complement of L(K) in L(H). Part (c) follows. O

THEOREM 3. Let ALA(G) = ¢(H(G)) for H(G) € L(G). Then
Vn (r(G) — ¢,) and Vn H (G) are asymptotically independent.
Proor. Using the proof of Theorem 2(a),
(R(G) = ) = Vi (1(X,) — cy) + 0,(1).
From Lemma 3, for B € L(G),
a,(B) = —tr(BVnX,) = ctr(Vn H,(G)ZB) + o,(1).
Let
F,(t, B) = E[expy/ =1 (a,(B) + t/n (tx(X,) — ¢,))]

be the joint characteristic function of «, and ‘/ﬁ (tr(X,,) — ¢,). Using a proof
similar to Lemma 4,

F,(t, B) - exp(cytr(BEB) — t¥(c, + ¢,))
and the theorem follows. O
If the density g is unknown, to use Theorems 1 and 2, we need consistent
estimates of ¢, and c,. Using Theorem 2(a), we can estimate ¢, consistently by
&, =r(G) ifA,cG.

The following proposition provides a consistent estimator é, of c¢,. Using
Problem 29.4 and Theorem 29.2 of Billingsley (1979) it follows that Theorems 1,
2(b) and 2(c) are still valid if &, is replaced by ¢, and c, is replaced by é&,.
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ProrosiTION 1. If A, € G and
¢ 1-— ‘A (G
Cy = p— b—1 Z( (G)u, )
then &, — ¢, in probability.

LEMMA 5. 1= cZ+ ¢, + pc,.

PRrOOF.
Evo' = E[(v — coAu)(v - cOAu)t] + c2Auu‘A’
= (2 + c;)AuuA’ + c,I.

Taking the trace of both sides, we get the lemma. O

PROOF OF THE PROPOSITION. Setting as usual A, = I, we get A= fin(G) =
I + 0,(1). Therefore

1 A 1
o Z(oiAu)" = DX (o) + 0,(1).

The right-hand side converges in distribution to ¢2 + ¢, + ¢,. Using the lemma,
the proposition follows. O

We now consider models of the form d(x)g(kv‘Au) where the concentration
parameter k is unknown. If ¢y(k) = E(v’Au) is monotonic we can estimate «
from the sample statistic 7(G) by solving

co(k) = r(GQ).

Theorem 2(a) can then be used for inferences on «.

REMARK. One might wonder about the necessity of the requirement that G
be closed. Since the closure G of a subgroup G is still a subgroup, and since
r(G) = r(G), Theorem 2 remains valid if dim G is always replaced by dim G.

Theorem 1, however, cannot be generalized to nonclosed subgroups. If G is not
closed, the dimension of G will always be strictly less than the dimension of G.
Since An(G), if it exists, will also be A,(G), we expect An(G) to exist with
probability 0.

An example of this pathology is the infamous “real line embedded in the
torus” which occurs in SO(4). If r is a fixed irrational number and

cosf —sinf 0 0
G = sinf  cosf 0 0 0 a real
0 0 cosrf —sin r6 ||number (’

0 0 sinrf cosré
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then
cosf, —sinb, 0 0
el sinf, cos#, 0 0
0 0 cosf, —siné,
0 0 sinf, cos#b,

The author believes that the generic pathological nature of the nonclosed
subgroups indicates that they have no practical statistical interest.

REMARK. If ¢, = 0, A, might very well be inconsistent.

For example, if each v, is uniformly distributed on S” then for each A € O(p),
vy,..., 0, and Aoy, .. Av are equally likely. If A (G) is the least squares fit for
v, . , then AA (G) w1ll be the least squares fit for Av,,..., Av,. It follows
that the dlstrlbutlon of A (G) will be the unique left invariant Haar measure for
each n and hence A .(G) is inconsistent.

For this example, Stephens (1979) has studied the limiting distributions of
r(SO(p) and r(O(p)) and we observe that Theorem 2 is also false.

If ¢, <0andif (-I) € G, then A, (G) » —IA,, and Theorems 1 and 2 could
be modified to handle this case. However, if ¢, < 0, it is intrinsically unreason-
able to study the A which maximizes Yv!Au,. A more reasonable approach would
be to maximize Yv!A(—u;) and if this were done Theorems 1, 2, and 3 could still
be applied with minor changes.

2. Hypothesis tests. Suppose H is a closed subgroup of O(p). If ¢, and c,
are known, we can use Theorem 2(b) to asymptotically test if the true orthogonal
matrix A isin H.

ExXAMPLE. Suppose we wish to test H,: A = A,. Then using Theorem 2(b)
with H = {I} and each u; replaced by A,u;, we have 2nc,/c,(r(O(p)) — r(A,))
is asymptotically x*(p(p — 1)/2) if H, is true.

ExaMPLE. Suppose p = 3 and we wish to test if A is a rotation about a
specified unit vector £,. Let H be the subgroup of all rotations around £,. If ¢, is
the correct axis, we have 2nc,/c,(r(O( p)) — r(H)) is asymptotically x2(2).

To calculate r(H) we note that if A(#) is right-hand rule rotation of # radians
around £, then

A(0) =1+ sin6L + (1 — cosf)L?,

where
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and £, = (¢, ty, £3)". Thus
H L5 ota(8)
r(H) = 05620 n =" “
=ay+a,+ (aZ+ a%)l/2
where a, = 1/n¥;0;L"u,. The fitted angle d is specified by sinf = a,/(a? +
a?)/?and cos = —a,/(a? + a3)/2

b

The critical region for both tests takes the form that the test statistic is too
big, indicating, as in linear regression, that the improvement in the fit is better
than can be attributed to overfitting of the model.

All these tests are still asymptotically true if ¢, and ¢, are replaced by ¢, and
¢, where

& =r(0(p)),

b - ——[1- Ly (edorm)e|
=—1-= u

Co p - 1 n - v, p 2

For the convenience of the reader we note the following values of ¢, ¢, and ¢,
for the Fisher distribution d(x)e** where d(x) = «/sinhk and p = 3:

¢, = cothx — —,
K

2 coth «
¢, = — — ——— — csch’,
K
1 1
¢y = —|cothx — —
K K

3. A numerical example. Geophysicists believe that the Gulf of Aden
formed as Arabia began to separate from Africa about 20 million years ago. Table
1 gives the latitudes and longitudes of fracture zone intersections with 3’S and
3’N magnetic anomalies, digitizing from Figure 8 of Cochran (1981). Geophysical
theory indicates the Arabian and Somalian plates have been moving so that the
points u; and v; (for each i) were once coincident. The problem is to fit the
relative motion of the Arabian plate from the Somalian plate, thinking of the
Somalian plate as fixed in its present location.

The choice of the Somalian plate as fixed and the u, points as those on the
South intersections is arbitrary. If, however, the roles of the two plates were
reversed, the analysis would change as one would expect: For example, the fitted
rotation A would be replaced by A’.

When the points u, and v, are converted to Euclidean coordinates, the matrix
UV'!/nis

UVt 0.3509 0.4547 0.1425
"= = 104454 05942 0.1867
n 0.1302 0.1738 0.0547
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TABLE 1
u; (Somalia) v; (Arabia)
Latitude Longitude Latitude Longitude
13.05 57.56 14.28 58.12
13.34 57.07 14.54 57.67
13.89 56.50 15.00 57.16
14.19 55.97 15.33 56.51
14.10 55.92 15.25 56.48
14.21 55.38 15.37 55.93
12.68 50.95 13.59 51.51
11.97 47.56 12.78 48.11
12.06 47.35 12.86 47.89
11.63 45.80 12.44 46.39
11.73 45.36 12.58 45.87

n = 11 points

and A(SO(3))
R 0.9997 —0.0175 0.0157
A(SO(3)) =| 0.0180  0.9993 —0.0341 |.
—0.0151 0.0343 0.9993
A represents a rotation of 2.38° around an axis through 25.31°N latitude and
24.29°E longitude.
Since the true rotation A is known to be in SO(3) and since SO(3) is a
connected component of O(3), Lemma 2 implies that

pr[A,(SO(3)) = A,(0(8))] > 1 asn — .
Since det(U,V,!/n) is positive, A(SO(3)) = A(O(3)) in this case.
For this data set
¢, = r(A(SO(3))) = 1 — 0.5812 X 107,
2, = 0.5812 X 1076,
and
&, + &, = 0.3867 X 10”12,

McKenzie et al. (1970) found, by fitting the 500 fathom contours on each side
of the Gulf, that the pole of rotation of the Arabian plate relative to the
Somalian plate is located at 26.5°N and 21.5°E. If H is the subgroup of rotations
around that axis, A(H) is a rotation of 2.20° and r(H) =1 — 0.6579 X 1076,
Then
2nc,

(1) - [(SO(3)) — r(H)] = 2.902.

Comparing this to a x2(2) distribution, we see no contradiction between the data
of Table 1 and the McKenzie axis.

McKenzie also fits a rotation angle of 7.6°. If, following Cochran (1981), we
take 20 million years as the age of the rift and, following La Brecque et al. (1977),
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5.37 million years before present as the time that the points u, and v, were
coincident, this prorates to an angle of 2.04° over the 5.37 million years. If A, isa
rotation of 2.04° around the axis 26.5°N and 21.5°E,

r(A,) =1—0.1691 x 10°°

and hence
(2)

which needs to be compared to a x%(3) distribution to test A = A,,.

This spectacularly high level of x? should not cause any excitement. If the
angle of rotation in A, had been between 2.14 and 2.25° the null hypotheses
would have been accepted at an approximate 0.05 significance level. The impreci-
sions in the dating used above make 2.04° in fact indistinguishable from angles in
that range.

With r(G) =1 — 05812 X 107° and &, + &, = 0.3867 X 10~ '? we get, using
Theorem 2(a), that with 95% confidence, 1 — ¢, = (0.5812 + 0.3675) X 10~ %. As-
suming a Fisher error distribution, c,(x) =1 — 1/k + 0o(1/k) and hence 1.1 X
10% < k < 4.7 X 10° with an estimate & = (0.5812 X 10~ 5)~! = 1.72 x 108.

A computer simulation was run using IMSL generator GGUBS with 10000
runs, the given 11 points u,, and a true rotation of 2.04° around 26.5°N, 21.5°E.
Three runs were made with a Fisher error distribution and & = 1.0 X 10,
1.72 X 10%, and 5.0 X 10%. In each run, the test statistic (1) exceeded 2.902
approximately 30% of the time. This compares with a x%(2) distribution p-value
of 23%. The test statistic (2) exceeded 42.02 0.01% of the time.

For this problem, the author has found that the programming of the formulas
in this paper in single precision led to no significant figures in the computed
values of x2. If instead the mathematically equivalent formulas

"0 ,(50(3)) - r(Ag)] = 42,02,

1 A
l_r(G)= %Zlvz—AutP:l—éO’

r(G) - r(H) = (1 -r(H)) - (1- r(G))

3
@ ¢y~ g Tlos~ Au* = 3-Tlo = Au

o A A A \2
¢, t+¢= 4_’;2|”i - Auz|4 -(1- &)
12

are used, the author has found that single and double precision programming
yield results agreeing in at least four significant figures. One can conclude that, at
least for this data set, the formulas (3) above work satisfactorily in single
precision.

In this example, the u; suffer from a spherical regression analogue of multicol-
linearity: They are very close to lying on a small arc of a great circle. This can be
detected using the matrix $ = 1 /n¥,uul. It is easily proven that the rank of s
is the dimension of the smallest Vector subspace of R? containing all the u,. In
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the instant case the eigenvalues of $ are 0.99332, 0.00663, and 0.00005. From
Theorem 1, we see that multicollinearity causes large variances in A and hence
small changes in the data will cause unexpectedly large changes in A. Further-
more, when the estimated A is close to the identity, rotations which are in fact
quite close in SO(3) might have seemingly disparate axes of rotation.

The analysis assumes that the u; are known without error or at the very least
that the conditional distribution of v, given u, is symmetric around Au,. A
preferable model would be: u, has a distribution of the form g(u!¢;); v, has a
distribution of the form g(v’A¢,); u, and v, are independent with &,,...,&,, A
unknown. In this situation, the author has been able to prove an analogue of
Theorem 2 with a much more complicated asymptotic distribution. Alternatively
for G = SO(3), and H = {I} or SO(2), the author has found more complicated
test statistics with asymptotic x2(3) or x%(2) distributions, respectively. When
the latter procedures are applied to the data of this example, with its very
concentrated error distributions, the values of the x? statistics agree with those
reported above to four significant figures. The author will report on these results
at a later date.

In this analysis the points (u;, v,) are believed to have been simultaneously
coincident approximately 5.27 million years ago. In fact, geologists have dated a
sequence of anomalies going back in excess of 100 million years. The general
practice has been to choose a time interval (which may be shorter than the span
of the data), assume a constant axis and speed of rotation over the chosen
interval, and to fit them to all intersections from the chosen interval by the
process described in the introduction.

If we define SSE(A) = X|v, — Auil = 2n — 2nr(A) we see that the distribu-
tion of

SSE(A) — SSE(A(S0(3)))
SSE(A(S0(3)))12n

is not asymptotically x23) as one might assume. It is rather asymptotically
co/(co(1 — ¢4))x%(3). Nevertheless, for extremely concentrated error distribu-
tions, such as those of the above example, c,/(ci(1 — ¢,)) is, to very close
approximation, equal to 1.

4. Confidence regions for the orthogonal matrix A. Although Theorem
2(b) can be used to produce confidence regions for the unknown orthogonal
matrix A, the author believes that Theorem 1 is better suited for this purpose.

If G is a closed subgroup of O(p) and it is known a priori that A € G, let
x2_, be the appropriate critical point of the x? distribution with dim G degrees
of freedom. Let

¢- {¢(H)|H € L(G) and —tr(H?S) < %Xf_a}.
0

Since ¢(—H) = ¢(H )%, it is easy to see that the required confidence region is
A (G)%.
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_ Alternatively, we might wish to express our confidence region in one form of
A,(G) followed by a small perturbation. In this case, since $(AHA") = Ap(H )A?,
the confidence region is ‘A, (G) where

cox?_,
¢ = {¢(H)|H € L(G) and —tr( H?3') < 2X12 }
neg
and 3’ = A (G)=A (G).
The following alternative definition of the exponential map ¢ might be
helpful. If H is skew-symmetric, an orthogonal matrix O can be found so that

0 -4 o -4
¢ - ; 0 k
O'HO = block diagonal [ 8, 0 ] [ 9, 0 ]

Here k = [ p/2] and an additional diagonal entry of 0 needs to be added if p is
odd. Then ¢(H) = ¢(O0'HOO") = O¢p(0'HO)O!' = OAO* where

cosf, —sin 01] [cos 6, —sin Hk]

A = block diagonal [sin 6, cosb, sinf, cosd,

and an additional diagonal entry of 1 needs to be added if p is odd.

Asymptotic confidence regions of minimum volume will be achieved if the u,
can be chosen so that X = (1/p)I. This can be done by using a uniform random
point generator on S? or, if n = pr for some r, by replicating r times any
orthogonal basis of Euclidean p space. In that case given two matrices A and B
of G define a distance function on G by:

d(A,B) =02+ --- +62 ifdet A'B =1and A’B has eigenvalues
ew
(together with +1 if p is odd)
where 2 = [p/2]and —7 < 0§, < =,

d(A, B) = ifdet A'‘B= —1.

—ig W0, ,—if
Le W ., e e 0

It follows from Theorem 1 and the above alternate description of ¢ that
(2ncl/pey)d(A,, A, (Q)) is asymptotically x*(dimG).
When p = 3 and G = SO(3), the general element of L(SO(3)) is of the form

O - t3 t2
(4) H=|t o -t

and it can be shown that ¢(H) is right-hand rule rotation of /¢t + t2 + t2
radians around the axis (¢2 + ¢Z + t2)"V2[¢, t, t,]%

If we identify L(SO(3)) with R? by identifying an H in the form (4) above
with [¢,, ¢,, t;]', we get the following equivalent description ¢: R3 — SO(3) of
the exponential map: If x € R3, let § = |x| and ¢ = x/|x|; then y(x) is right-hand
rule rotation of # radians around the axis £. In terms of , the regions € and ¢’
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above become

C
= {¢(x)|x‘(1— )x < ;c—x}

A A c
- (@1 - Azd)x < Zoxd ),

0
where A = A (SO(3)). As before, our confidence regions become A% or ¢A.

ExaMPLE. We continue with the example of the previous section. We have
&, = 0.5812 X 1076, &, = 1.0000, and estimating = by

1 0.3568 0.4532 0.1325
$==Yuul=04532 05924 0.1733
i 0.1325 0.1733 0.0508

S

we have

AZA'=10.4470 05961 0.1872 |.

0.1401 0.1872 0.0589
Using x2 = 7.81, the 95% critical point of a x2(3) distribution, we have that %’
consists of all y([x, x, x;]°) satisfying
0.345x2 + 0.596x2 + 0.0589x2 + 0.894x,x, + 0.280x x4
+0.374% %, < 0.413 X 10

and the 95% confidence region for A is any rotation of the form A (rotation of
2.38° around 25.31°N, 24.29°E) followed by any rotation in ¢’. For example we
could follow A by a rotation around 0°N latitude, 90°E longitude ([0, 1,0]") of at
most ((0.413 X 107%)/0.596)'/* = 0.832 X 10~2 = 0.048°.

The eigenvectors of I — ASA* are

[0.5857,0.7733,0.2428],  [0.8099, —0.5465, —0.2131]",

0.3451 0.4470 0.1401}

and
[0.0322, —0.3214,0.9464]°

with corresponding eigenvalues 0.00668, 0.99337, and 0.99995. Thus the largest
rotation in %’ is ((0.413 X 107%)/0.668 X 102)/2 = 0.451° around an axis
14.05°N, 52.86°E ( [0.5857,0.7733, 0.2428]").

Every rotation in ¥’A satisfies the inequalities

23.60°N < axis latitude < 27.40°N,
17.52°E < axis longitude < 29.05°E,
2.00° < rotation angle < 2.78°.
Hence, these three inequalities are asymptotic at least 95% simultaneous con-
fidence intervals.

The confidence region ¥’A was reexpressed in the form: axis € &, f(axis) <
rotation angle < g(axis) where . is a subset of S3, and f and g are real valued
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functions on .»7. Points on the graph of f and g (the lower and upper surfaces,
respectively) were calculated and contour maps of the upper and lower surfaces
drawn using the SURFACE 1I package developed by the Kansas Geological Survey.
These maps appear in Figure 1. Thus, for example, all rotations around the axis
24°E, 26°N with a rotation angle between 2.3 and 2.4° lie in the confidence

region.
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