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In this paper the authors have made a convincing case for the need to modify
Hampel’s definition of influence curve before using it in time series analysis. The
basic intuition is simply stated. Time series have “memory,” so a definition using
the concept of the influence of observations one-at-a-time must be inadequate. It
is helpful to have this intuition reinforced by the analysis provided by the
authors.

We like the model form yY = (1 — z})x; + z}w; as a generalization of the
usual contamination model, as it appears to us to be a more realistic model for
outliers. Concerning the technical aspects of the paper we have several questions,
however. In their general replacement model (2.1) the authors require the
contaminated process to be stationary and ergodic. Is it not furthermore neces-
sary to require joint stationarity of the (x, w, z) process when the components
are dependent?

While in some settings it is possible to consider estimates of the form
T, = T(F,) (see Huber (1981) and Kiinsch (1984)), the authors require a more
sophisticated definition which defines T" as a limit of sequences of functionals T,
(see Hampel (1971)). They seem to require very weak conditions on the T,’s, but
we wonder if the stronger one of equicontinuity may be needed. Without this
condition, how can we be sure that for some fixed n, T(X,,..., X,; F) is not
very far from T(p) = 0, even for large n? We also wonder if more attention
needs to be paid to the domain of definition of 7. Suppose, for example, we take
the domain to be the space of stationary and ergodic processes. Then we note
that the IC is derived from the ICH, which is defined for some measures that are
not stationary and ergodic.

Finally, we note that the IC defined by the authors is process dependent but
not data dependent because the IC is essentially obtained by “expecting” the
data out of the ICH (cf. Hampel (1974) and Kiinsch (1984)). Thus this IC is
appropriate for studying questions of “gross error sensitivity”’ but not questions
of a pointwise nature. Gross error sensitivity is probably not a sufficient basis for
evaluating robustness, so we feel additional criteria will need to be introduced to
complete treatment of robustness in time series.

We now wish to raise concerns of a practical nature. We write quite frankly
wondering how important psi functions and influence curves will prove to be in
time series modelling. As the authors note, experienced time series analysts are
quite familiar with outliers, and perhaps it should not go without saying that
these analysts have some pretty good ideas on what to do about them. The time
indexing and the memory that make the theoretical treatment of outliers difficult
provide some resources to guide the practical handling of outliers. Moreover, in
practice, we have recourse to much richer models than those contemplated in the
paper under discussion.

As examples, we refer to pages 67-70 of Jenkins (1979) and to Miller (1986). In
the first reference, a change in policy creates an “isolated” outlying observation
followed by a gradual return to equilibrium. This effect is evident in the residuals
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and is modelled by intervention analysis. (See Box and Tiao (1975).) In the
second reference, a bivariate time series model of two fertility measures is
constructed. The data analysis reveals the years of World War II as a “patch” of
outlying observations. Intervention terms are added to the model to handle them,
and the parameter estimates show that their amplitude is not constant. The main
point is that outliers often have “assignable causes,” and if so they can be
incorporated into the model, rather than downweighted. A secondary point is
that outliers that do not have assignable causes may deserve to have full weight,
as their downweighting may result in the underestimation of the variance of
future observation. Jenkins (1979), in fact, handles a second outlier in his series
by doing nothing to it because he can find no cause for it.

We are very concerned about our ability to recognize data that have been
generated from the models presented by the authors. We know, for example, that
an AO model with a core AR(1) and contaminating white noise is, theoretically,
an ARMAC(1, 1) process. Yet there is evidence that

(a) this situation is very difficult, if not impossible, to identify from the usual
data analyses involving correlation functions or spectra; and

(b) even when we try to fit an ARMA(1, 1) model to the data using nonlinear
least squares, the parameter estimates have very unattractive properties. (See
Miller (1980).)

The authors have shown that once a contamination model is properly iden-
tified, their estimation techniques are attractive. Do they have any suggestions
for model identification? If not, do they have any notion of the effect of model
misspecification on their estimation techniques? While confrontation of these
questions may not be appropriate in a paper on influence curves for time series,
we feel we need answers to them before the authors’ work can be applied.

In closing we wish to express the spirit in which we hope research on robust
methods in time series will be done. Time series are usually analyzed in an
environment in which collateral information in available, whether it be knowl-
edge of economic or social upheavals, of policy changes, or of malfunctioning
equipment that monitors a stream or a machine. Moreover, time series analysts
are trained to recognize patterns in correlation functions, spectra, and sequence
plots that suggest fundamental modifications of simple, basic models, such as
ARMA models. If robust techniques can help us do these things better, then they
will be welcome additions to theory and practice. If robust techniques can only
promise estimates of parameters of “core processes” without due regard for other
events that impact the series of interest, and without suggestions for model
identification, then we fear they will be of limited practical use.
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1. General remarks. I would like to begin by saying that I enjoyed this
paper very much. As with their previous works, both individual and joint,
Martin and Yohai have achieved in this paper a nice combination of analytical
rigor and practical significance driven by clearly presented intuition. I congratu-
late the authors on this contribution.

Despite their central role in many areas of robust statistics, the traditional
influence curves proposed by Hampel have played a somewhat limited role in the
study of robustness properties of statistical signal processing procedures for
applications such as communications and control, primarily because of the
restriction of their applicability to static models. Other approaches, such as
minimax robustness, have proven to be much more useful in this context (see, for
example, the recent surveys by Kassam and Poor (1985) and Poor (1986)).
However, by allowing for the treatment of dynamic models, the notion of
influence functionals as proposed by Martin and Yohai eliminates this principal
disadvantage. The introduction of a heuristic tool of this type is thus a major
advance from the viewpoint of robust statistical signal processing, and I can
foresee a wide range of applications of Martin and Yohai’s ideas in this area.

2. System identification. System identification is among the many appli-
cations that can be examined in the context of the Martin—Yohai influence
functional. For example, consider the simple problem of identifying a first-order
time-invariant linear system from measurements of inputs and noisy outputs.
This problem corresponds to the model

s,=0s,_,+u, i€Z,
(1) _ .
q,=s;+n, 1EZ,
in which we assume that {u,},c, and {n} ., are independent iid. A4°(0,1)

sequences and |f| <1. The nominal observation process {x;},cz consists
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