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FINITE SAMPLE PROPERTIES AND ASYMPTOTIC
EFFICIENCY OF MONTE CARLO TESTS

By KARL-HEINZ JOCKEL

Bremen Institute for Prevention Research and Social Medicine

Since their introduction by Dwass (1957) and Barnard (1963), Monte
Carlo tests have attracted considerable attention. The aim of this paper is to
give a unified approach that covers the case of an arbitrary null distribution
in order to study the statistical properties of Monte Carlo tests under the null
hypothesis and under the alternative. For finite samples we obtain bounds for
the power of the Monte Carlo test wrt the original test that allow determina-
tion of the required simulation effort. Furthermore the concept of asymptotic
(resp. local asymptotic) relative Pitman efficiency (ARPE, resp. LARPE) is
adapted to Monte Carlo tests for the study of their asymptotic behaviour.
The normal limit case is investigated in more detail, leading to explicit
formulas for ARPE and LARPE.

1. Introduction. In many hypothesis testing problems, where the null dis-
tribution of the desired test statistic is either unknown or too complicated to
evaluate, Monte Carlo techniques are now widely used. Since simulated critical
values are subject to sampling error, the use of Monte Carlo tables, such as the
famous Lilliefors tables [Lilliefors (1967), (1969)], leads to tests that will not have
the exact level of significance. The excess, which is unknown to the consumer of
such tables, may be considerable, especially for Monte Carlo studies of only some
hundred replicates. Furthermore for certain applications, for example permuta-
tion tests and intuitive test statistics for the analysis of spatial patterns, a
tabulation of Monte Carlo critical values is not feasible. These considerations give
rise to the so-called Monte Carlo tests [independently proposed by Dwass (1957)
and Barnard (1963)]: For each application of the desired test a simulation
experiment of moderate size is carried out, delivering realizations of the test
statistic under the null hypothesis. The Monte Carlo test then decides by
comparing the simulated values with the observed value of the test statistic.

For a continuous null distribution it has been shown by Hope (1968) and
Birnbaum (1974) that an appropriate version of the Monte Carlo test procedure is
of exact size a. Dwass (1957) obtained the corresponding result for the case of the
Pitman two sample permutation test (which has a discrete null distribution
conditional on the order statistics) by letting the sample size of the permutation
test tend to infinity. Besides the papers mentioned above, there are others on this
subject by Foutz [(1980), (1981)], Jockel (1981), and Marriott (1979). But there
remain open problems: '

1. The case of an arbitrary null distribution has not previously been treated.
2. Power considerations are based on rather strict assumptions.
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3. A general asymptotic efficiency concept does not exist.
4. The simulation sample size is still open to question.

In Section 2 we give a unified approach for arbitrary null distribution of the
test statistic. In Sections 3 and 4 we discuss the performance of the Monte Carlo
test with respect to power and asymptotic efficiency. The results may be used as
recommendations for the simulated sample size.

It should be noticed that Monte Carlo tests have already become a part of
applied statistics; for examples see Besag and Diggle (1977), Green (1977),
Hollander (1971), Ripley (1977), and Tsutokawa and Yang (1974).

2. Definition of the Monte Carlo test procedure, performance under the
null hypothesis. Let {P;: § € O} be a family of probability measures on some
sample space (x, v) (normally a Euclidean space with the Borel sets). We want to
test

O, versus ®, = 0 — 0,

having observed x € x. Consider an appropriate test statistic T with values in
the reals. The following assumption often will be fulfilled:

There exists §* € 0, such that
(2.1) P(T<t)<P.(T<t)<P(T<t)
for all (6,,6,) € 6, X ©,.

Furthermore we adopt
(2.2) F,.(t) = P,.(T < t) is a continuous distribution function.
Then

¢‘a(x) = 1(700,"F9.(a)](T(x))’
where

“'Fy.(a) = sup{¢: Fyu(£) < a}

is of size « and according to (2.1) unbiased. Although in many practical situations
neither F,.(T(x)) nor ~'Fy.(a) are manageable, it is often possible to simulate
random elements x,..., x,, distributed according to P,.. If the testing level a is
an integer multiplier & of 1/(m + 1) the Monte Carlo test (of simulation size m),
¢, rejects O, if the observed value of the test statistic £ = T(x) is less than or
equal to the kth order statistic ¢,.,, of the simulated values ¢, = T(x;).

For convenience ¢,, will be called the MC test (wrt T) or the MC test
corresponding to ¢,. It should be observed that ¢,, is a randomized test depend-
ing on an independent simulation experiment. Because of (2.2), ¢,, may be
equivalently rewritten as

m

1 if 21, g(t) <k-1,

=1

bn(t) = m
0 if Y1, 4(t)>k—1.

=1
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Denote
FRl(¢) = inf{x: Fju(x) > £}

and let for a € (0; 1), b(a, m, £) be the density of a beta distribution on the unit
interval with parameters p = (m + 1)a and ¢ = (m + 1)(1 — a); then by some
calculus we have the following identities:

o= [ kg( ) Ee (D] [1 = Fyu ()] dFy(2)

=" [ bla,m, &) dsdFy(t) = ['Fy(Fi(£)b(a m, £) dt.

— o0V Fyx(t)

Similar results have been obtained (under more restrictive conditions on the
testing problem) by Hope (1968) and Birnbaum (1974). Obviously

1 1 _
[ Fo B (©))b(e, m, €) dE = ['Fo( "' Fye(€))b(at, m, £) dt.
For a fixed alternative parameter, §, € ©,, say,

Bo(a) = Fy(T'Fyu(a))

is the power of the tests ¢, for {6*} versus {6,}, considered as a function of a.
The corresponding quantity for the MC test may thus be calculated as

Ey9, = /0 "By (£)b(a, m, &) dt

and furthermore we have
Eg(g>m < Epng,=a< Eo,¢m for all (6,, 6,) € 6, x 6,.

If the alternative parameter is fixed as we shall assume in the sequel, the
subscript 6, will be suppressed. Although in our context the {function

o fo‘ﬁ(g)b(a, m, £)d¢ = B,(a)

makes sense only for values a € {1/(m + 1),..., m/(m + 1)}, it is convenient to
extend the range and regard f,,(a) as the power of the MC test as a function of
the level a € (0;1).

The remainder of this section is devoted to the case of an arbitrary null
distribution Fj., apparently an open problem. So for the rest of this section we
drop (2.2). In this case the appropriate test ¢, of size a is

1 if T(x) < 'Fu(a),
(2.3) $o(x) = {v(@) if T(x) = "'Fyu(a),
0 if T(x) > 'Fpu(a),
where the randomizing constant y(a) is chosen such that E,;.¢, = a. Let us
consider the “test statistic”
T(t,U) = Fpu(t) — U- Pp(T = t),
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where U denotes an independent uniformly (on(0; 1)) distributed random vari-
able. T is not a test statistic in the strict sense, but may be regarded as some
randomized kind of test statistic and the test ¢, based on T is completely
equivalent to (2.3), viz.

E,$, = Ey¢, foralld e o,

as may easily be seen. 3
Consequently the distribution of 7' under #* is uniform on the unit interval.
Unfortunately the calculation of the corresponding MC test

m
1 lf E 1(700,7.‘(t,u)](T(ti’ ui)) < k -1

=1

(2.4) n(t) = m i
0 if E 1(700,T~'(t,u)](T(ti’ ui)) >k—-1
i=1

still involves the unknown quantities Fj.(¢), Fy«(¢;). (The u and u,’s, respec-
tively, are realizations of independent uniformly distributed random variables.)
This problem is solved by

PrROPOSITION 2.1. The MC test corresponding to ¢, may be written as
(k/(m+1) =a)

1 if

0 if Z (~oo,t)(ti) >k,
i=1

Y otherwise,

sn[\’Js

(2.5) Y =

where

y= (k— ) P t))(( Zlm(t)) + 1)1-

i=1

This test is of exact size a. The power of {,, may be calculated as
1

(2.6) Bul@) = [ B(£)b(a, m, ) dt,

where B(a) denotes the power of ¢,. '

PROOF. One first observes that the tests ¢,, and ¢,, ((2.4) and (2.5), respec-
tively) are equivalent: Given ¢, ¢,, ¢,, ..., t,, both tests reject the hypothesis with
the same probability as may be easily verified. Since ¢,, is the MC test wrt T
(possessing a continuous null distribution), an appeal to the results obtained for
the continuous case completes the proof. O

3. Power considerations for MC tests. This section is devoted to the
study of the power B, () of the MC test under a fixed alternative parameter 6,
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(if not stated otherwise). We make use of the terminology of the preceding section
and additionally assume lim,_ ,8(a«) =0 and lim_,_ ,8(«) = 1. An essential
assumption for B(-) is its concavity. This assumption is satisfied if the ¢,’s are
most powerful size-a tests based on T, a condition that will often be met. For a
more detailed discussion on this point we refer to Jockel (1982). The next
proposition shows that the concavity property carries over to the corresponding
MC test.

PROPOSITION 3.1.  If B(a) is a concave function of a then so is B,(«).

PRrOOF. Since the densities b(a, m, £) constitute a one-parameter exponential
family in a, they are by a result of Karlin (1968, page 18) strictly totally positive
of order . Since

[ola,m g)dg =1,  [‘tb(a,m, ¢)dt = a,
0 0
we may apply Proposition 3 in Karlin (1968, page 23) and conclude that the
mapping
a [B(¢)b(a, m, ¢) dé

is concave. O
REMARK. It may be shown that B,(-) is strictly concave unless 8(-) is linear.

From a practical point of view the question arises whether an increased
simulation sample size m yields an increased power. This question has already
been treated by Hope (1968) for a special case, but the general case has remained
unsolved. We give

THEOREM 3.2. If B(-) is concave, then the power of the corresponding MC
test B,(a) is a monotone increasing function of simulated sample size for all a.
Furthermore B,(a)?1 B(a) uniformly in a € [0,1] as m — oo.

Proor. Denoting
3 T'((m+ Da)T((m+ 1)1 — )
m T(m+ 1)

we have by (2.6)

1£%1-¢)' "B, -
B

m+1

Bnis
Brer(@) = Bole) = [ b(a, m, £)B(¢) dt,

the integrand being
>0 iff ¢ € (2,(a), 25(a)),
=0 iff £ =z,(a)orz,a),
<0 iff¢ & [2)(a), 2)(a)],
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with some suitable functions z (), determined such that
(2,(a))*(1 = 2i(a)) " =B,,1/B,, i =1,2and 0 < z,(a) < 2,(a) < 1.
Considering
B(25(a)) — B(2y(a))

zy(a) — z)(a)

L(¢) = :B(zl(a)) + (§ - zl(a))

with
L(§) <B(¢) for &€ [z(a),2(a)],
L(¢) = B(¢) for ¢¢ [zl(a)’ 22(0‘)],

we obtain

/Olﬁ(s)(b(a, m+1,£) — b(a,m, §)) dé

> fOlLa(g)(b(a, m+1,¢) - b(a, m,¢))dt =0,

which had to be shown. The uniformity is, as in the following corollary, a simple
consequence of Dini’s theorem. O

REMARK. If B(-) is continuous at a, then by L2-convergence of b(a, m, -) to
a we have B, (a) = B(a) as m — oo. This has already been shown by Birnbaum
(1974) and Hope (1968) under more restrictive conditions.

COROLLARY 3.3. Let ©® = ©,U 0, be a topological space. Consider for the
testing problem ©, versus ©, the level-a tests ¢, and assume that the power
Bs () = [o¢, dF, is a concave function in o, and that for fixed a € (0;1)

0, ~ By () is continuous.

Then
fﬁa,(g)b(a, m,£)dé > By(a) asm — oo

uniformly on every compact subset of 0.

From the results obtained so far it should be clear that, with respect to power,
an increase in simulation sample size is always desirable. Since, however, the
increase of simulation effort considerably increases computer costs, there remain
two important questions:

(3.1) How much power is lost by using MC tests; more precisely
what may we learn about the minimal value of 8,(a)/B(a)?-

(3.2) How many simulations are needed so that the ratio 8,,(a)/8(a)
exceeds a given constant?

The first problem has already been tackled by Dwass (1957) in the special case of
the Pitman two sample permutation test. His result is obtained under more
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restrictive conditions and only in the limit as the number of observations of the
permutation test tends to infinity.

THEOREM 3.4. Let a € (0;1) be fixed, let v € [B(a),1] and B(¢) be the
pouwer of the test defined by

§

o if § < a

(3.3) ¢, = 1-¢ f—a
¢, + Yy if §>a.

l—a 1l -«

If for all £ € [0;1]

(3.4) B(¢) < B(¢)

holds, then we have

Bl 1= (ar/B@)
B(a) =  2a(l1 —a)

where Z,, , has a beta distribution with parameters p = a(m + 1) and q =
(1 — a)(m + 1). Furthermore we note that

(3.5) E|Z, .- al,

m, a

2 m
E|Z,, .~ o= ——(a(1 =) "")""

(3.6) T(m + 1)

“T((m + Da)T((m + D(1 - a))

and ( for integer values of a(m + 1))

a(m + 1) 12
(3.7) m<|—| E|Z,,-al<d, <1,
2a(1 — a) '
where
1 1
m =P\ Pom+ 1) +1 12a(m + 1)
1
_ ‘ -1,
21-a)(m+ 1)
(3.8)
4 1 1
m = exP( 12(m+1) 12a(m+1)+1
1

-1 asm — oo.

120 -a)(m+1) + 1

REMARK. Note that 8(0) = 0, B(a) = B(«), and B(1) = y hold and that 8 is
linear on [0, a] and [«, 1]. Consequently (3.4) is satisfied if 8 is concave.
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Proor. By (3.4) and (2.6) we have
B(a) = B(a) = E(B(a) - B(Zm,a))

< E(B(a) - B(Z,,.))
B(a) — 2af(a) — Ba) — ay
E{ 2a(1 — a) | ol + 2a(1 — a) (Zn,a = a)},

which implies (3.5) in view of EZ,, , = a. Furthermore, (3.6) is easily proven by
partial integration. Finally we have, by Stirling’s formula,

I(m+1)=(m+1)!/(m+1)

(3.9)

< \/—27(771, + 1)m+1/2e—(m+1)e1/(12(m+1»
and
(3.10) | Llm+1)e) = (alm + 1)1/ (a(m + 1))

> \/2_,”((”1 + l)a)<m+1)a—1/2e—<m+1)a el/A2Am+1+1)
Since, obviously,
1 1 1
12(m+1) 12(m+Da+1 12(m+1)(1-a)+1

holds, (3.6), (3.9), and (3.10) together yield the right-hand side of (3.7). Another
application of Stirling’s formula gives us the other part of this inequality. O

<0

Note that (3.5) with y = B(a) and (3.6) yield

| Bule) _ElZ,.-al (@ =)™ )"
B(a) ~ 2a " (m+1)aB((m+ 1)a,(m+ 1)(1 — a))
and that
EIZm’a—a| 1 ,a 1
(3.11) 1- =t = ;fo fub(a, m, £) d¢ du.

The quantity given by (3.11) will be called e,l,f,  the Dwass efficiency (for
simulation sample size m), which gives us a lower bound for 8,(«)/B(a) under
the conditions mentioned above. From the asymptotic approximation (3.7) to-
gether with (3.8) we are able to tabulate the Dwass efficiency for different values
of a and m, presented in Table 1. They are in good accordance with values
reported by Dwass (1957).

The asymptotic approximation may be used for a quick determination of the
simulation sample size m to achieve Dwass efficiency of at least e?, viz.

1 1-a 1
27 a (1-eP)?

Practical consequences of these considerations and some more applied aspects are
discussed in Jockel (1984).
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TABLE 1

Tabulation of Dwass efficiency e,’,f’ « based on the approximation (3.7). For
the digits displayed the upper and lower bounds coincide.

o 0.01 0.02 0.025 0.05 0.10
m= 19 0.64 0.743
m= 39 0.64 0.736 0.815
m= 59 0.782 0.848
m= 99 0.63 0.732 0.829 0.881
m = 199 0.73 0.807 0.827 0.878 0.916
m = 299 0.777 0.841 0.900 0.931
m = 399 0.806 0.862 0.876 0.913 0.940
m = 499 0.825 0.876 0.922 0.947
m = 599 0.840 0.887 0.899 0.929 0.951
m = 699 0.852 0.895 0.934 0.955
m = 799 0.861 0.902 0.912 0.939 0.958
m = 899 0.869 0.907 0.942 0.960
m = 999 0.876 0.912 0.921 0.945 0.962

4. Pitman efficiency of MC tests. The last section has confirmed that the
power properties of MC tests can be satisfactory. In situations where the use of
MC tests is indicated, power calculations for the original tests are not normally
available. In these cases a widely used and accepted concept for the comparison
of tests is that of asymptotic relative Pitman efficiency (ARPE). The aim of this
section is to study the ARPE of MC tests.

Throughout this section we shall assume that we wish to test

6 =6, versus§ € © — {6,},

where the parameter space © is a subset of the reals, such that the connected
component of §,, C(6,) # {6,}. Furthermore let (¢2) be a sequence of consistent,
unbiased level — a tests, which are assumed to be asymptotically normal, viz.

(4.1) Ey¢r —» ®(@ (a) +8n), &>0asn— oo,

where @ denotes the Gaussian distribution function and 8, is any sequence of the
form

(4.2) 6,=6,+n/Vn +0(1/Yn), n>0.

The parameter § is called the slope.

The concept of ARPE of MC tests may be developed in a more general
framework, ® being an arbitrary topological space and (¢%) possessing different
limiting distributions. For a more detailed discussion on this point the reader is
referred to Jockel (1982). Here, however, we will restrict ourselves to the most
important case (4.1), which we shall call the normal limit case. The derivation in
the general case follows essentially the same lines as indicated here.

If ¢ denotes the MC test corresponding to ¢4 (for simulation sample size m)
we have for any sequence fulfilling (4.2)

(4.3) E, 42— G, 8-n),
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where

G, x) = folfb(fb’l(u) + x)b(a, m, u) du.

To calculate the ARPE of the MC tests wrt the original tests we may apply a
result due to Rothe (1981).

We first observe that the tests (<7>§) satisfy the conditions A, B, and C of
Rothe’s paper with functions g(6) = (6 — 6,)* and H(n) = G, 8- ﬁ ). Hence
for fixed @ and B, 0 < a < 8 < 1, an appeal to Theorem 3 in Rothe (1981, page
666) yields that

o () - ()|’
eteot) = |G

is the ARPE of the MC tests wrt the original sequence of tests. This quantity
depends on a and B, but turns out to be independent of the slope. To study the
limiting behaviour of e,(a, 8) (m — o0) one first observes that the limiting
function in (4.1), considered as a function in «, fulfills the conditions of the power
function B(«a) in Section 3. Furthermore it is concave. Thus by virtue of Corollary
3.3. and Theorem 3.2. it is easy to show that

e (a,B)11 asm — 0.

This convergence is uniform in 8 on every compact subset of (a, 1). If simulation
sample size m is a nondecreasing function of n and we let m = m(n) and n
simultaneously tend to infinity then the MC test and the exact test are asymptot-
ically equivalent.

If we are considering two sequences of tests with slopes 8, and §,, respectively,
the ARPE of the corresponding MC test is (in an obvious terminology)

eMCl,MCZ(a’ B) = eMCl,l(a’ B) - €1,0° €9 MC2(a: B)
= e, =208}/8;.
Thus in the normal limit case the ARPE of two sequences of MC tests is the
same as that of the corresponding original tests. '
The problem of ARPE of MC tests in the normal limit case has already been

tackled in the literature. Hope (1968) conjectured that for fixed a > 0 there exists
a constant y < 1, with

G o(n) = ®(@7'(a) + v y/n).
This would imply that e, (a, 8) = y%, which is obviously not the case, and thus
demonstrates why she did not succeed in developing a satisfactory efficiency
concept for MC tests.
In order to achieve an asymptotic efficiency measure independent of 8 we use
the concept of local asymptotic Pitman efficiency, slightly modifying a proposal
by Hajek and Sidak (1977). '

DEFINITION 4.1. If e, o(a, B) denotes the ARPE of two sequences of tests
and the limit

91,2(0‘) = ll}i?}xehz(a’ B)
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TABLE 2

Local asymptotic relative Pitman efficiency of MC tests
for simulation sample size m in the normal limit case

(in percent).
[
m 0.01 0.025 0.05 0.1
19 81.0 86.8
39 89.8 93.0
99 95.6 97.1
499 974 98.6 99.1 99.1
999 98.7 99.4 99.5 99.7

exists, then e, ,(a) is called the local asymptotic relative Pitman efficiency
(LARPE).

By using I’'Hospital’s rule and interchanging differentiation and integration it
is easy to show that in the normal limit case the LARPE of the MC tests wrt the
original tests is

Jof (@ Y (u))b(a, m, u)du |?
(@ () ’
where f denotes the normal density. Furthermore lim,, _, e,(a) = 1. By means

of numerical integration and some integral transformations e, (a) is calculated in
Table 2.

en(a) =
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