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ESTIMATION OF SURVIVAL CURVES FROM DEPENDENT
CENSORSHIP MODELS VIA A GENERALIZED
SELF-CONSISTENT PROPERTY WITH NONPARAMETRIC
BAYESIAN ESTIMATION APPLICATION!

BY WEI-YANN TsAI
Brookhaven National Laboratory

This article presents a family of estimators of the survival function based
on right-censored observations which admit the possibility that the censoring
variables may not be independent of the true failure variables. This family is
obtained by generalizing the self-consistent property (Efron, 1967) of the
product limit estimator (Kaplan and Meier, 1958). By assuming a Dirichlet
process prior distribution of the observable random vectors, nonparametric
Bayesian estimators of the survival curve—which is also a member of this
family—are derived under a special loss function. These nonparametric
Bayesian estimators generalize results of Susarla and Van Ryzin (1976), who
impose a Dirichlet process prior on the failure survival function without
considering any prior distribution of the censoring variables. Large sample
properties of this family of nonparametric Bayesian estimators are also
derived.

1. Introduction. Let X?,..., X? be independent random variables, each
sharing the same survival function S°%(¢) = P(X° > ¢t) with the random variable
X°. The variables X?, i = 1,..., n present the true failure times on n individu-
als subject to right censoring. The observations consist only of independent
random vectors (X, §,), i = 1,..., n, with the same distribution as (X, §) where
X is an observable random variable and

(1.1) 8={1 if X = XO,
0 if X<X°

The aim is to estimate S° from the data (X, 8,),...,(X,,9,). This type of
problem arises in many practical situations—such as cancer research, biomedical
studies of survival, and life testing—and has been treated by a number of
authors. [See Kalbfleisch and Prentice (1980) for a recent list of references.]
Kaplan and Meier (1958) suggested a product limit (PL) estimator for S°(+)
and showed that this estimator is in fact a maximum likelihood estimator. Their
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estimator $9,(¢) is given by

1 t< X3,
. k
(1.2) S8.(t) = 1‘[1(1 —-d,/n;) X <t<Xkiy k=1,...,m-1,
j=
0 Xm <t
where X < X% < --- <X@, represent m distinct observations among

X,,..., X,, with

s

n=Y I(X;>X%), j=12,...,m,

J
1

l

d. =

J

M:

I(X,=Xx,8,=1), j=12,..,m,

~.
—

and I(+) denotes the indicator function.

This product limit (PL) estimator has received a great amount of attention in
recent years. Breslow and Crowley (1974), Féldes and Rejto (1981), and Meier
(1975) based study of the properties of PL estimators on some continuity
assumptions and special structure of the censoring mechanism. Langberg,
Proschan, and Quinzi (1981) show that the PL estlmator is strongly consistent in
dependent random censorship models.

Efron (1967) established a property of the PL estimator, which he named the
self-consistency property. An estimator $° is said to be self-consistent if

n (X0 1o §9(¢)

(1.3) S =X ——+ X —~gx)

That is the proportion estimated to survive past ¢ is equal to the proportion of
the subjects observed to survive past ¢ plus the sum for all individuals censored
before ¢, of the estimated conditional probability of surviving past ¢ given
survival to the censoring time.

In Section 2 we extend the definition (1.3) to a more general situation. Based
on this extension, we derive a family of estimators. Large sample properties of
these estimators are also derived, under weaker conditions that the conditions
imposed by Breslow and Crowley (1974).

Susarla and Van Ryzin (1976) [hereafter referred to as SV (1976)] applied
Dirichlet process priors of Ferguson (1973) to S° and obtained a nonparametric
Bayesian estimator under a squared error loss function. They found that their
Bayesian estimator reduces to the Kaplan—-Meier PL estimator as the “prior
sample size” tends to zero.

In Section 3 we derive a Bayesian type estimator from the generalized
self-consistent property. We also show this Bayesian type estimator can be
derived formally for a special loss function by use of Dirichlet process priors for
the distribution of the random vector (X, §;). If one puts Dirichlet process prior
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only on the uncensored observation, then the above nonparametric Bayesian
estimators reduces to the estimators of SV (1976).
We conclude with some extensions to more general cases.

2. A generalized self-consistency property. In order to unify the nota-
tion for discrete, continuous, and mixed cases of random variable X °, we follow
the notation of Kalbfleisch and Prentice (1980, pages 8-9) and define

+ DS%(u)
2.1 A(t) = - [ =
(21) ®=-[ S0
and
(2.2) y(A%)(t) = rlin; ]jl {1 - [AO("i) - AO(”i«l)]},
where 0 = uy < u, < --- <u, =t thelimit r - oo is taken as u, — u,_, — 0;

and the integral and operator “D” in (2.1) are Riemann-Stieltjes integral and
differential operator, respectively. From definitions (2.1) and (2.2), we obtain

DS°(u) AS(s)
Y 0 — == 7 -
SO(t) = Y(A°)(2) exp(gg S0 ) n(1 S0 )
where the integral ¢{DF/H means integration over the intervals of points less
than ¢ for which F(+) is continuous, and AF(s) = F(s™) — F(s™).
In estimating the survival function S(¢) in the presence of censoring, various
authors such as Breslow and Crowley (1974) and Meier (1975) typically adopt, for
mathematical simplicity, one of the following two censorship models:

(M.1) Independent random censorship models: There exist independent, identi-
cally distributed censoring random variables C,,...,C, such that X, =
min(X?, C,), §, = I(X? < C,), and C; and X are independent.

(M.2) Fixed censorship models: There exist n constants c,,...,c, such that
X, = min(X? ¢;) and §, = (X’ < c;).

Furthermore, all authors make one of the following continuity assumptions for
S? and S? (where S? is the survival function of C,):

(C.1) The functions S° and S? have no common discontinuities.
(C.2) The function S° is absolutely continuous and /or S? is absolutely continu-
ous.

Assumption (C.1) is obviously weaker than (C.2), but it need not hold in many
practical situations of interest. As a matter of fact, the PL estimator S9, defined
in (1.2) is adjusted for ties, and to the best of my knowledge, no rigorous proof of
the consistency of S 9. exists in the literature that omits assumption (C.1). In this
section we show how a generalized self-consistent property can be used to obtain
a family of consistent estimators of S° without making any of the assumptions
(M.1), (M.2), (C.1), or (C.2).
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Let

(2.3) S(t)=P(X>td=1),

(2.4) S(t)=P(X >t,6=0),

and

(2.5) S(t) =P(X >t)=S,(¢t) +S(¢).

We now assume that the censoring mechanisms should satisfy

(A.1) fo’P(x0 > )X =x,8 =0)DS(x") = /:S"(t)/SO(x)DSC(x‘)

for0 <x <t < o0.

From Lemma 2.2 and Definition 2.4 below, it is natural to require (A.1) in
order to obtain consistent estimators of S° by using self-consistency approach.
There are other conditions suggested by other authors from different approaches.
The detailed comparison is postponed to the Remark 2.10.

It can be readily seen that (A.1) holds under the models (M.1) and (M.2).
Moreover, even if the censoring random variable C; under model (M.1) is not
independent of the failure random variable X?, in certain cases (A.1) may still
hold. We illustrate with an example.

ExampLE 2.1. Let (X?,C;), i =1,..., n be independent, identically distrib-
uted random vectors having the bivariate exponential distribution of Marshall
and Olkin (1967) with the survival function

(2.6) S(t,, ty) = P(X > ¢,,C; > t,)

= exp(—At, — Aty — Apmax(¢, £,))
for t,,t, = 0 and A}, A,, Aj, > 0. Straightforward computations show that
P(X?>t|X;=x,8,=0)=P(X?> t|X? > C,= x)
= exp(— (A, + A)(t — x))
= 5(¢,0)/5(x,0);
hence (A.1) holds.

LEMMA 2.2. Let S, and S, be as defined above. Then
(2.7)  8%t) = S,(t) + S(¢*) - f"p(xo > ¢|X = x,8 = 0) DS,(x")
0

fort >0,

where t* = t* ort".
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Proor.
S°(t) = E(I(X°>t)) = E(E(I(X° > t)|( X, 8)))
=jﬁﬂﬂX°>0M=xﬁ=lﬂXL—&uﬁ)
+ [TE(I(X° > )|X = x,5 = 0)D(1 - 5(x"))
+ [“E(I(X° > £)|X = x,6 = 0)D(1 - S(x"))
—Su)+suﬂ—f P(X°> )X =x,8 = 0) DS(x").0
THEOREM 2.3. If and only if (A.1) holds, then

8°(¢)

(2.8) SO(t) = S,(t) + S.(t*) - f SO( )

where t* = t* or t".

DS(x~) fort=>0,

ProoF. Lemma 2.2 implies the result. O

Theorem 2.3 has been derived by Tsai and Crowley (1985) under models (M.1),
and served as an important equation for studying large sample properties of PL
estimators.

Now we define a generalized self-consistency property of an estimator $ of S°.

DEFINITION 2.4. An estimator S° of S° is said to have a generalized self-con-
sistency property if and only if there exist consistent estimators S and S
respectively, of S, and S,, such that

8°(¢)
8%(x)
Let S (t) and S () be the empirical subsurvival functions of S, and S, respec-
tively, so that S,(¢) = S%t)=n"'S7 I(X,>t,8,=1) and S(¢)= S"(t)

n 'L I(X; > t,8,=0). Then (2.9) reduces to (1. 3), which is the definition
of the self conmstency property of $° given by Efron (1967).

(2.9) S(¢) = §,(¢) + 5.(¢) —fo DS(x”) fort> 0.

THEOREM 2.5. Let T = sup{t|S(t) > 0}. Then the unzque solution of (2.7) or
(2.8) for t < T has the following explicit expression:

+ DS, (x
s | - [ a0

+DS,(x) AS,(x)
(¢ S(x) )xq(l B S(x7) )

(2.10)
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ProoF. From (2.8), we obtain
0 = —DS°(t) + DS,(t) + DS,(t") — (DS°(t)) f s°( ) DS,(x7)

S°(¢)

8%¢)

—DS°(¢) (1 +f’L DS,(x7)
0S%x) ¢

For t < T, S(t”) # 0 implies SO(t‘) #* O' therefore we have

DS°(t) [ .,
S(¢~ )(S( o)+ f SO( ) DS(x )) = DS,(t).

Thus, by using (2.8),

DS(¢t7)

+ DS, (t).

DS°(t) DS/t
%) T SAE) + 8(6)
Hence
e DS%(x t* DSu x
(2.11) A(t) = ‘fo sO(i-)) - _fo S(x(‘))

or

0 =10 - o[- [ T |

«DS,(x AS(x
g 528

The following two corollaries are direct results of Theorems 2.3 and 2.5.

COROLLARY 2.6. If and only if (A.1) holds, then the subsurvival functions
S.(*), S(*) determine the survival function S°(t) according to expression (2.10).

COROLLARY 2.7. S%t)isa generalized self-consistent estimator if and only if
there exist consistent estimators S (*) and S( ), respectively, of S,(*) and S/(*)
such that

N ¢ DS(x)
S(‘)=Y(‘f 56 +36 -))()

Let ¢ be a family of estimators (S, ( ), c( ) of (S,(*), Sc(-)) such that

R loglog n
sup| (t)—Su(t)|=O(V i ) a.e.,
0<t<T n
loglog n
sup |S(t) — S(t)|=0 a.e.
0<t<T n

(A.2)
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and
Vn ((.§u, §c) —(S,, S.)) converges weakly to a bivariate Gaussian process
(X, Y) which has mean (0, 0) and a covariance structure givenfors < ¢t < T
by
Cov(X(s), X(2)) = [1 - S,(s)]S.(2),
s Cov( X(s), ¥(1)) = ~8,(s)S2),

Cov(Y(s), X(t)) = —S(s)S,(2),
Cov(Y(s), Y(¢)) = [1 — S.(s)] S(2)-
Define a family y° of estimators of S° by
Ap A ot DS,(x
0= (880 - - [ e [0 8) =4,

By slightly modifying Theorem 4.4 of Tsai and Crowely (1985), the following
large sample properties of S° € y° are established.

THEOREM 2.8. If (A.1) holds, then the following two properties hold for
every 8° € y°:

. N loglog n
(i) sup |S%¢) - S%¢)|=0 a.e. asn - o,
0<t<T*<T n

(ii) Vn (8 — 8°) converges weakly to a Gaussian process Z with mean 0 and

Cov(Z(s), Z(t)) = s°(s)s°(t)/:s-2(x ~)DS,(x) fors<t<T*<T.

ProoF. Since the only two properties of S¢ and S¢ used in Theorem 4.4 of
Tsai and Crowley (1985) are properties (A.2) and (A.3), therefore in replacing
(Sg, 8¢) by (§u, .) € ¢, the whole proof here may be carried through the same
way. O

REMARK 2.9. Under (M.1) and (C.1), Peterson (1977) derived a unique expres-
sion for S° in terms of S, and S, which is equivalent to formula (2.10). In
addition, formula (2.11) is a well known result under (M.1) and (C.2) (Breslow and
Crowley, 1974).

REMARK 2.10. For the special case in which S, = S¢ and S, = S¢, Efron
(1967) derives the result of Theorem 2.5 by mathematical induction.

REMARK 2.11. In the literature, there are quite a few mathematical formula-
tions of what restrictions should be placed on the censoring mechanism so that
the standard methods of analysis are appropriate. Williams and Lagakos (1977)
derived constant-sum models from the likelihood function. A model for right
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censored survival data is of the constant-sum type if and only if
ds,(¢) /tdS (%) _
ds(¢) S(x)
A special model of the constant-sum type is a survival independent censoring
model introduced by Williams and Lagakos (1977) which satisfies
SO(¢)
(A.5) P(Xi°>t|Xi=x,8i=O)=0——— forO0 <x <t < oo;
S°(x)
that is, censoring at time ¢ carries the same information as survival beyond time
x. Since (A.5) implies (A.1), (A5) is therefore also a sufficient condition for
Theorem 2.3.
Another formulation, outlined by Cox (1975) and more formally defined by
Andersen and Gill (1982), is the model which satisfies

[ )
o S(x7)  JoS%x")
that is, the failure rate of an item on test at time ¢ should be unaltered by the
censoring that has taken place. Kalbfleisch and MacKay (1979) proved that the
constant-sum model (A.4) is equivalent to (A.6). It can be readily proved that
(A.1) is also equivalent to (A.6) by following a similar line of proof as for Theorem
2.5.

Another formulation was due to Langberg, Proschan, and Quinzi (1981), who
under assumption (C.1), derived a necessary and sufficient condition of Corollary
2.6 as follows:

(A.4)

(A.6) for0 <t < oo,

sy [ S ' int ¢ of S
(A7) - = { 5% or every jump point ¢ of S,

S(¢7)
1 otherwise,

and

P(C>2t|X°=1¢t)=P(C>t|X°>¢).
They also proved the strong consistency of the PL estimator, under (A.7) and
(C.1). It is conjectured that (A.7) is equivalent to (A.6) under assumption (C.1). In
certain realistic situations, assumption (C.1) may not always hold; then (A.1) or
(A.6) is preferable, and the results of Theorem 2.6 are stronger.

REMARK 2.12. Recently, Robertson and Uppuluri (1984) [hereafter referred
to as RU (1984)] generalized the PL estimator by using the idea of redistribution
of mass to the right which was first considered by Efron (1967). 'I‘heir generali-
zation has strong connection with (2.7). Let P(X° > J)|X X 8=28,)=
W,,;, where X ;) < -+ < X, are the order statistics of X ., X, and ( U)an
be the RR matrix defined by RU (1984, page 368). Then the estimator S°
obtained from the procedure 1 of RU (1984, page 369) is a solution of

89(¢) = S2(¢t) + Se(¢t) — f”P(x0 > t|X = x,8 = 0) DS%(x),
0
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although their generalization is restricted to discrete estimators and cannot
guarantee to obtain a consistent estimator of S°.

3. Nonparametric Bayesian estimator of S°. Let P be a random prob-
ability measure on (£, IT), where & = R*Xx{0,1}, Il = B X C, B is the o-field of
Borel sets restricted to R*, and C = {¢,{0},{1},{0,1}}. Let a* be a nonnull
finite measure on (2, IT). Furthermore, assume the random measure P to be a
Dirichlet process on (Q, IT) with parameter a* and (X, $,),...,(X,,8,) to be a
random sample of size n from this Dirichlet process P. Our purpose is to estimate
the survival function S° from a Bayesian point of view. [For the definition of the
Dirichlet process and some basic results, see Ferguson (1973).]

The nonparametric Bayes estimators of S (¢) and S(¢) are, respectively,

a*((t, ), {1}) + L I(X; > ¢t,8,=1)
a*(Q) +n ’

S.(t) =

and
a*((t, ), {0}) + T~ I(X; > ¢t,8,=0)
a*(Q) +n ’

S(t) =
under the squared error loss function
L(8.,8) = ["[5(u) - 8.(u)]* duw(w),
0

where w(+) is a weight function, $.(x) is an estimator of S.(u), and . =u or c.
Therefore, we may derive a self-consistent estimator S°(-) of S°(+) from S,(*)
and S/(+) by

DS, (x) )(t)

S¥(t) = Y(‘f(f 5 +8x)
(3.1)
- D(a*((x,00), (1)) + T2, I(X, > x,5,=))
=Y(—f0 a*([x,0),{0,1}) + Z7_ I(X; > x) )(t).

It is easy to show §u( +) and S(+) satisfy conditions (A.2) and (A.3); therefore, the
following results follow.

THEOREM 3.1. If assumption (A.1) holds, then

- loglogn
() sup |S°%t) - S°%%¢)|= O(V eoen ) a.s., .
0<t<T*<T n

(ii) Vn(S° — S°) converges weakly to a Gaussian process Z, as defined in
Theorem 2.8.

REMARK 3.2. It can be shown that S:O is the Bayesian estimator of S® under
the loss function L(S% S°) = [y Y(S°)(¢) — vy Y(S°)(¢)]? Dw(t), where y~!
denotes the inverse operator of y. [For a proof, see Tsai (1983).]
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REMARK 3.3. When o*(R*, {0}) = 0 and a*((¢, o), {1}) = a(t, ), then S°(¢)
defined in (3.1) reduces to

~ a(t,o0) + X7 I(x; > ¢ a(X*,0)+n;,—d,;
52 S = D20 e ) |
a(R*) +n iXy<t a(X(ipoo) tn;,
where X ¥, n;, and d;, i = 1,..., m, are defined in (1.2). If a(¢, o0) is a continu-

ous function in R* and SZ(*) and S¢(+) do not have any common discontinuities,
(3.2) will be a version of the formula derived by Susarla and Van Ryzin (1976)
with the following main differences:

(i) If Sg(+) and S¢(+) have common jump points, then formula (3.1), as well as
formula (3.2), will reduce to the Sp, defined in (2.1) as a*(2) - 0, but the
formula derived by SV (1976) will not.

(ii) It should be clear that our censoring scheme is more general than the
censoring models considered by SV (1976).

(iii) In the present paper, it is assumed that the Dirichlet process prior is given
to the probability measure of the random vector (X, 8,), whereas in SV (1976)
the prior is incorporated in the survival function S° of X° and they do not
consider any prior in the distribution of the censoring variable.

(iv) The estimator S° is derived with respect to squared error loss on y~}(S°),
while the result of SV (1976) is derived with respect to squared error loss on S°.

4. Discussion. In this paper we have presented a unified approach to
estimating the survival function of right censored data which combine the results
of Efron (1967), Breslow and Crowley (1974), Meier (1975), Susarla and
Van Ryzin (1976), Peterson (1977), and Langberg, Proschan, and Quinzi (1981).
We only consider “exclusive censoring,” where the censoring observation is of the
type X? > X,. There are no conceptual difficulties in extending this method to
“inclusive censoring” problems (where the censoring observations are of the type
X? > X;), to “doubly censoring” problems (where the censoring observations are
of the type X? > X, or X? < X,), to the competing risk problem, or to other
incomplete observation problems.

In Section 1 we assume that (X, 9,),...,(X,, §,) are independent, identically
distributed random vectors. The results of Sections 2 and 3 still hold even if this
assumption is weakened so that (X,,$d,),...,(X,,9,) are independent random
vectors, not necessarily identically distributed.

The proofs of these results proceed along the lines of the proofs given in
Sections 2 and 3, so we will omit most of the details. The main chore remaining
to complete the proof is to establish (2.8) with some modification.

Let

Si(t)=P(X;,>t 8 =1) fori=1,2,...,n,
Si(t)=P(X,>t,8,=0) fori=1,2,...,n,

5.40) = 5 L i)
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and
_ 12
S(t) = = X Si¢).
n;.

If

f()tP(Xi°>t|Xi=x,Si=1 dSi(x )_fso((t)) DSi(x")

fori =1,..., n, then we have

So(t) = —'I;E f I(X2>t)

S°(¢)

=%§:{S(t)+8'(t) fS"( )

DS‘(x)}

=8,(t) + 5(¢) - / SO( ) DS(x).

Therefore, Theorems 2.7 and 3.1 still hold as long as conditions (A.2) and (A.3)
are satisfied when S, and S, are replaced by S, and S,, respectively.
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