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ASYMPTOTICS FOR CONFIGURAL LOCATION ESTIMATORS!

BY STEPHAN MORGENTHALER

Yale University

This paper examines the asymptotic properties of compromise estima-
tors. By this we mean an estimation method which compromises between a
finite number of sampling situations in a small sample optimal way. We
develop the asymptotic theory of such estimators in the location problem and
show that under a specific choice of a pair of sampling situations the
compromise estimator is asymptotically robust in Huber’s sense.

1. Introduction. Configural polysampling denotes a method of estimation
which is geared to small sample sizes and produces “robust” methods [see
Pregibon and Tukey (1981)]. There are important differences to the robustness
philosophy as developed by Huber (1964). Since in small samples the distribu-
tions of estimators are quite intractable, one has to rely on numerical methods in
order to evaluate even relatively simple performance summaries such as the
mean-square-error. This holds true except in some simple cases—such as the
Gaussian sampling model —where a few expectations can be evaluated in closed
form. In this connection, it is important for the statistical community to realize
that numerical methods are perfectly acceptable. They do, however, limit the
number of sampling situations we can take into consideration. This is in contrast
to an asymptotic approach, where, for simple models, an infinity of sampling
situations can be considered simultaneously [Huber (1964)].

Pitman (1939), for example, solves the small sample problem for a single
sampling situation in a location and scale setting. In this paper we will show
what happens if Pitman’s method is extended to two sampling situations with
known scale. And we will address the question of the asymptotic performance of
such estimators.

An asymptotic analysis is the simplest way to learn something about the
behavior of an estimator in a variety of sampling situations. But it only gives a
partial answer and we should not forget the more important approach based on
performing ‘“experiments” for small sample sizes. This paper, however, will
restrict attention to asymptotic discussions.

In Section 2 we will introduce the idea of compromise estimators and discuss
their optimality properties. Section 3 contains the corresponding asymptotic
theory. As an example we define a compromise estimator which is asymptotically
everywhere at least as good as Huber’s minimax estimator.
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2. Configural estimators.

2.1. Pitman’s estimator. Let x,, x,,...,x, be n independent observations
from a symmetric distribution F(x — p) where 1 — F(x) = F(—x) for all x. We
also assume that F(x) # 0 or 1 for any finite x and furthermore that F( ) has
density f( ) with respect to Lebesgue measure.

We restrict attention to symmetric sampling situations in order to avoid the
issue of what “parameter” we try to estimate. Symmetry of the underlying
distribution allows us to define a target, namely p = center of symmetry. Further-
more, we will not get into any discussions if later on we allow for two—or many
—different sampling situations. The center of symmetry is well defined for all
symmetric shapes which means the estimation of p is a well defined problem for a
large class of sampling situations.

The solution Pitman gives is

[T f(x; + r)dr
J2 I f(x, + r)dr

(2.1) Tp(xy,..05%,) =

[see Pitman (1939)]. This estimator has the smallest mean-square-error among all
location equivariant estimators. Location equivariance is a reasonable restriction
on a location estimator 7Y ). It means that

(2.2) T(x,+r,...,x,+r)="T(x,,...,x,)+r, reRr,

i.e., the estimator changes in the same way as the sample.

REMARKs. (1) The most revealing way of deriving (2.1) is through the
concept of “configurations.” By this notion, we mean the pattern of the points in
the (ordered) sample, as specified, for example, by the gaps between the observa-
tions. It is easily seen that this is an ancillary statistic. The Pitman estimator
then is chosen such that conditioned on the configuration the estimate is
unbiased. Since the conditional variance cannot be affected by the choice of the
estimate (under equivariance), this has to produce the smallest mean-square-
error.

(2) The conditions on f( ) such that (2.1) exists are discussed in Pitman
(1939).

Formula (2.1) produces an estimator T} of the center of symmetry p no matter
what the underlying sampling situation. It, therefore, need not be so that the x;’s
are sampled from F(x — ).

Let us introduce G(x — p)—again G(x) =1 — G(—x) for all x’s—as the
sampling situation for x,,..., x,. This is a new way of looking at the Pitman
estimator T and it, of course, immediately lets us see the optimality property in
a new light. If, e.g., F = ® and G = Cauchy, we are looking at the behavior of
the arithmetic mean under Cauchy sampling. If we are open minded about the
assumptions we base our inference on, we have to admit that in small samples we
cannot, with any reasonable precision, know what the underlying sampling
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situation is nor should we attempt to make inferences about it. Huber (1964)
formalizes the idea of a robust method as a procedure which “behaves well” in
the neighborhood of a parametric model. Huber, therefore, would allow G( ) to
be chosen somewhere near F( ) and he modifies 7% in such a way that the
behavior of the new estimate is acceptable for all allowed G( )s. This leads us
away from considering estimates like 7% which are optimized at a single “ point.”
Since—in small samples—we will never be able to tell at which “ point” we are, it
ought to be obvious that single-point-optimization is a bad strategy.

2.2. Compromise estimators. Let us now consider the case where x,, ..., x,, is
a sample from either F,(x — p) or Fy(x — p), where F, and F, satisfy all the
constraints of F (see the beginning of Section 2.1). We are now interested in
location equivariant estimators which optimize at two “points,” namely F, and
F,, simultaneously. This is obviously impossible. However, decision theory teaches
us that estimates of the form

Te ry o X1se05 %)
(2.3) fr{aﬂ, o+ )+ (1= T2 fo(x; + 1)} dr
{anz=lfl(xt + r) + (1 - a)H,=1f2(xi + r)} dr

(0 < a < 1) are bioptimal in the sense that they cannot be improved in both
sampling situations F, and F, simultaneously [see Ferguson (1967)].

REMARKs. (1) We can also write
Te ry o X155 %,) = awg (%1, ..., %,) Tp(%y, -0 x,)

(2.4)
+(1 = a)wp(xy, .0, %) Tp(%1, 0005 X,)s

where
JI fu(x, + ) dr
[oITr, oz +7) + (1= I, fo(x; + 1)} dr

(k = 1,2) and Tg( ) is defined in (2.1). We, therefore, can interpret the family of
bioptimal estimators as a weighted mean of the single-situation optimal estima-
tors. Note, however, that the weights are “adaptive,” they depend on the sample
values. Of course, any equivariant estimator can be represented as a weighted
mean of the single-situation optimal estimators. What matters here is the
simplicity and form of the weights together with their small sample optimality
property.

(2) It is clear from (2.3) that Ty, 5, o = Tf, and Ty, g, 'TF1 .

(3) The picture which helps us most in understandmg the compromise estima-
tors is shown in Figure 2.1.

Note that since we only consider location equivariant estimators the risk in
any given situation does not depend on the parameter value p [see Ferguson
(1967)]. The bioptimal or compromise estimators are the ones which lie on the
convex boundary curve.

wp(%y,...,%,) =
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(4) A Bayesian interpretation of the estimator (2.3) is possible. In that
framework, (a,1 — «) is a prior distribution on the set of underlying sampling
shapes.

(5) In order to implement (2.3) in an actual application, formula (2.4) has some
interesting interpretations. Pregibon and Tukey (1981) derive the formulas from
the point of view of sampling in the case of unknown scale. This leads to the
consideration of different weights wy, and wy,.

The choice of the two compromising distributions F, and F, is of importance
in applications of the technique. In many applications it is traditional to consider
F, = ®, the Gaussian shape. The choice of F, is somewhat related to the choice
of the contamination parameter ¢ in Huber’s model. F, will influence two aspects
[see (2.4)]: g

(i) the “relative weights” wy and wpg,;

(ii) the “other” optimal estimator T},.

These two aspects have an interpretation in the theory of M estimators. The first
is connected with the choice of tuning constants, as for example, k in Huber’s v,
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function (¢ ,(x) = max(— k&, min(%, x))), and the second with the shape of the
function. From small sample studies, we know for example that a redescending
¢ function is advantageous—it costs little and buys a lot. If we want such a
behavior then F, has to be chosen as a heavy-tailed counterpart to the Gaussian,
for example, a distribution with Pareto tails.

3. The asymptotic behavior of compromise estimators. In this section
we are going to explore what happens to compromise estimators [see (2.3) or (2.4)]
if we sample from a distribution G( ) and let the sample size n grow. We will see
that the weights w, and wjy, usually tend to (0,1) or (1,0), respectively. A
compromise estimator for large sample sizes, therefore, will be close to either the
optimal estimate under F, or the optimal estimate under F,. This is a reasonable
behavior since the “information” about the sampling situation G( ) grows as the
sample size gets large. The distinction between F, and F, is, therefore, more and
more estimable. In a few words then, we can say that compromise estimators
exhibit an adaptive behavior with the relative weights w, and wy [see (2.4)]
guiding the adaptation.

3.1. The asymptotic behavior of the relative weights. Suppose x,,...,x, is a
sample of size n from G(x — p). We assume that G( ) is symmetric around O.
The relative weights are defined as

_ JITZ fo(x; + 7) dr
) HalTz i + 1) + (1 = )T fo(x; + 7))} dr

(k = 1 or 2), where the notation is the same as in (2.4).
The following lemma treats an overly nice case, a model distribution with
Pareto tails for example is not covered.

(8.1) wp(xy,...,x,)

LEMMA 3.1. Let us assume that both —log f, and —log f, are convex. We
also require that the first two derivatives exist and that the second derivatives be
bounded:

d d
a;log fi(x), = log fy(x)

dx
exist and
d? d?
Wlog fi(x), Ix;log fa(x)

exist and are bounded from below.
Finally, with regard to the modeling distributions F, and F,, we need
2 2

d d
s log f,(x) <0 and Flog f(x) <0 forxe[-8,8] forsomesd >O0.

Let us furthermore assume that G is such that the functions

Al(r) = flog f(x + r) dG(x)
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and
A%(r) = /log fo(x + 1) dG(x)

exist for all r, achieve a unique maximum at r = 0, and are such that the second
derivative at r = 0 exists and is bounded. If

(3.2) 108 1:(x) dG(x) > [ 1og f,(x) dG(x)
it follows that

wFZ(xly » X )

wﬂ(xl’. ) -0 a.s.

ProOF. Let X, X,,... denote a sequence of ii.d. random variables with
common distribution G. From (3.1) we have

sz(le'“’Xn) ;-lfz(X +r)dr
wFl(XU""Xn) fn lfl(X + r)dr

Now
I(X,,..., X,) =fi=1£[1f(x,.+ r)dr
= fexp(n(;ll- é:l log( f(X; + r)))) dr
= fexp(nAn(r)) dr
where

A(r)= ;1; i log( f(X; + 1))

and f stands for either f, or f,.
(1) Due to the strong law of large numbers we have

(3.3) A,(r) > A(r) as.forall r.

Convergence is uniformly in r for r € [ -8, §] because of our convexity assump-
tions. For the same reason, the function A,(r) is maximized in some interval. Let
R{ denote the center of that interval of maximal points. For n large enough the
maxima is unique since —log f is strictly convex in [ -8, 8]. It follows that

R} >0 as.
(2) Let us define ’
L, (X,,..., X,) = [ exp(mA,(r)) dr.

The integral I, , allows an asymptotic expansion as m — oo. For large values of
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m, we get

L (X,,..., X,) ~ [exp(m[4,(R}) - HAy(RE)\(r - Ry)’]) dr
(3.4) 12
- exp(ma,(RE)( = | (14x(RD)

The theory of asymptotic expansions in this simple case is treated, for example,
in Chapter 4 of deBruijn (1981). Convergence of I, ,(X),..., X,,) takes place in
the sense of real functions. The values of X,..., X, do not matter. For large
enough n, the convergence in (3.4) is uniform in n. This follows from the error
formula in deBruijn (1981, page 64) and the bound on the second derivative of
A, (r) provided by the lower bound on the second derivative of log f. In short, the
argument goes as follows. The asymptotic expansion (3.4) works uniformly with
respect to n because the function A, (r) can be approximated by a quadratic near
its maxima uniformly in n.

(3) If we blend the probability structure which underlies the sequence
X,, X,,... with the asymptotic approximation (3.4), we get

1
~log I(Xy,..., X,) ~ A(0) = [log f(x) dG(x) as.
We therefore conclude from

[ 108 £i(x) dG(x) > [ log fy(x) dG(z)
that

1 1
-~ log I( X,,..., X,) — ;logI2(X1,..., X,)

(1 we(X,,..., X,)
= —|—|log
n) we(X,,..., X,)

) — constant > 0 a.s.,

where I,(X,,..., X,), I(X,,..., X,) refer to f=f, and f = f,, respectively.
From this last statement the assertion of the lemma follows immediately.

However, Lemma 3.1 is not strong enough for our purpose. If the underlying
* distribution G does not have a first moment for example, then Al(r) and A%(r)
will be — oo for all r. Under stronger assumptions on F; and F,, we can prove the
following.

LEMMA 3.2. Let G be such that its second moment is infinite. The assump-
tions on F, and F, from Lemma 3.1 still hold. Furthermore we assume that the
ratio d(x) = f(x)/f(x) is bounded and satisfies (logd(x))™! = O(x~2%) for
large |x|, i.e., log d(x) tends to — o like a quadratic or faster.

It then follows that

wp(%,...,%,)

-0 a.s.
wp(xy,...,%,)
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Proor. Let X, X,,... denote a sequence of ii.d. random variables with
common distribution G. Then we have

JI o fo( X+ r)dr [T, d(X; + )T f( X + ) dr
M, f(X; +r)dr JTEo f(X; + 1) dr

<max [[d(X;+r).
roi=1

The lemma is proved if we can show that maxI1”. ; d(X; + r) — 0 a.s. But thisis
a consequence of 7, logd(X; + r) » — oo a.s. which follows from our assump-
tions via the strong law of large numbers.

REMARKS. (1) The asymptotic expansion (3.4) shows how closely the maxi-
mum likelihood estimator is connected to the Pitman estimator. Note that
|A”(0)] is equal to the Fisher information if G = F, i.e., the sampling distribution
and the modeling distribution are the same. We will see below that the maximum
likelihood estimator is indeed asymptotically equivalent to the Pitman estimator.

(2) It is reasonable to believe that Lemma 3.1 holds in greater generality. The
convexity conditions on the —log densities are probably not needed and could be
replaced by suitable assumptions on F, and F, close to the origin.

COROLLARY 3.1. Under the assumptions of the Lemma 3.1 or Lemma 3.2, the
compromise estimator Ty, r, , (@ = 0) is asymptotically equivalent to the Pitman
estimator Ty,

Proor. Apply the lemmas to formula (2.4).

REMARKS. (1) Corollary 3.1 states that with increasing sample size the
compromise estimator will pick either one of the two single-situation-optimal
estimates depending on (3.2).

We therefore expect that

(35)  [log f,(x) dG(x) — [log fy(x) dG(x) = /lg(fl()

fx(x)

is a quantity which decides whether the sampling situation G is “closer” to the
modeling situation F, or the modeling situation F,.

The quantity (3.5) is closely related to the Kullback-Leibler mean information
for discrimination [Kullback and Leibler (1951)]. Their formula is

o f(x)
1(1.2)—jlo (f( ))fl(x)dx

where I(1: 2) is the mean information for discrimination per observation from
sampling situation F.

(2) The asymptotic behavior of the compromise estimators (2.3) does not
depend on a [unless (3.5) = 0].

) dG(x)
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(3) More results about Pitman estimators can be found in Johns (1979) and
Klaassen (1981). Easton (1984) has proved the results given in Section 3.1 for the
more general case of unknown scale.

3.2. Asymptotics of the Pitman estimator. In order to get asymptotic
efficiencies for the compromise estimators we need to know more about the
asymptotic behavior of the Pitman estimators Ty, and Tj,. Port and Stone (1974)
provide the information in the case where the sampling situation and the
modeling situation are identical. In our more general setup we can argue the
following way:

Jrexp(nA,(r))dr

TF(xl,...,xn) = - fexp(nAn(r)) dr ’

where
Adr) =% Etowfxr) (10 =5 FO)

If we expand the numerator asymptotically we get

exp(nd,(r3'))/ rexp( = $ndn(ry)(r = 7))
Jexp(nA,(r)) dr

Te(x)ye.0yX,) ~ —

n
—~ _rO’

where ry maximizes A,(r) (see deBruijn, page 66). We therefore showed that
asymptotically the Pitman estimator and the maximum likelihood estimator
(—rd) agree. This agreement is good enough—namely Tp(X,,..., X,) + 1" =
0,(n"'/?)—to conclude that the asymptotic distributions are the same. Huber
(1967) then provides the necessary results.

3.3. Huber’s contamination model: An example. To illustrate the use of the
theory we developed, let us look at the compromise estimators based on the two
modeling densities

fl(x) = ¢(x) ( )1/2 exp( 2)’
fo(x) = (1 = &)o(x) if |x| <k,
= g.,,_)li)z exp( - klxl) otherwise,

where k is such that (2¢(k)/k) — 2®(=k) = ¢/(1 — ¢). The alternative den-
sity is, of course, the least favorable choice in the class of distributions
{(1 — &)®( ) + eH( ): H( ) symmetric} [see Huber (1964)].

The asymptotic variance of an estimator compromising between these two
symmetric situations [see (2.3)] will be equal to either of the asymptotic variances
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of the Pitman estimators,
Ty, = arithmetic mean
or
Ty, = Pitman estimator for the least favorable distribution.

If we sample from distribution G( ), we have for these asymptotic variances
(b = [xdG(x))

as. varg TF f(x - ﬂa) dG(x),

f(‘l’k(x V‘G)) dG(x)
(J¥ilx = pg) dG(x))2 ’

as. varG(sz)

where
Yu(x) = —f;(x)/fo(x) = max(—k, min(k, x)).

In his 1964 paper, Huber shows that the M-estimator based on y,( ) is
asymptotically minimax for sampling situations chosen from the contamination
class. Since Ty, has the same asymptotic behavior as this M-estimator, the same
claim can be made for Tj. The following proposition explains the asymptotic
behavior of the compromise estimator [see (2.3)]. In order to be able to prove it,
the contamination class needs to be reduced a bit.

ProrposiTION 3.1. Let G(x) = (1 — ¢)®(x) + eH(x), where H(x) + H(—x)
=1 for all x’s and H( ) puts all its mass outside the interval [ -k, k], but is
otherwise arbitrary. Furthermore, assume that 0 < ¢ < 0.5. Then

as. varg( compromise estimator) < as. varg( Huber’s minimax estimator).

Proor. From Lemma 3.1 and Lemma 3.2, we know that

[ 1og f,(x) dG(x) — [ log fy(x) dG(x)
= f{logﬁl—/; - §x2} dG(x) — flog( @ )1/2) dG(x)

L ® k_2_.
—f_k— 1x2dG(x) —-2/1; ( 7 k|x|) dG(x)

= —log(l1 —¢) + 2Lw{k|x| - k? - %} dG(x) -

is the quantity which decides about the asymptotic variance of the compromise
estimator. Note that we made use of the symmetry of the sampling distribution
G in the derivation of (3.6). If (3.6) is positive, the compromise estimators will
behave asymptotically like the arithmetic mean, otherwise like the Huber estima-
tor. All that remains to be considered, therefore, is the case where (3.6) is positive
(or zero) because in the other case the assertion of the proposition is trivial.

(3.6)
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First, note that (3.6) can only be positive if G has finite variance. Using our
assumptions about G = (1 — €)® + ¢H stated in the proposition, (3.6) can be
written as

2 2

—log(1 —¢) +2(1 — E)Lw(klxl - k? - x?)d)(x) dx

+e/(k|x| - %2 - %2) dH(x)
(3.7) =—m41—a—w1—oﬁﬂx—kfd¢u>

—sj:o(x — k)’ dH(x)

> —log(1 —¢) — (1 — &)[—ko(k) + ®(—k)(1 + £2)]
€ €
~k o
where o7 = [x%dH(x) is the variance of the contaminating distribution.
A comparison of the asymptotic variances of the sample mean and Huber’s
estimator is not hard. We have

(3.8) as. var(sample mean) = (1 — ¢) + eoZ,
as. var;(Huber estimator) = J(¥ul(x)) dG(xZ
(J¢u(x) dG(x))
(3.9) _ [Ex2dG(x) + 2f1§°k22dG(x)
(f¥i(x) dG(x))

_ (1 - )/ 422 d®(x) + k% + 2k*(1 — &)®(—k)
(1 - e)*(@(k) — ®(-k)) '

In this last formula we have again used all our knowledge about the sampling
situation G( ).
What remains to be shown is

nonnegativeness in (3.7) — 3.8 < (3.9).
But

(8.7) 20 > eof < —2log(1 — &) + 2(1 — e)ko(k)
—2(1 — &)®(—kR)(1 + k2) — ek?
and, therefore, we have ,

(38) = (1—¢) +eo% < (1—¢) + 1og($) +2(1 - e)ko(k)

—9(1 — &)®(—k)(L + k?) — ek,



COMPROMISE ESTIMATORS 185

Using the equation linking ¢ and &,
2¢(k)
k

—2<1>(—k)=(1f—£),

we can simplify and get

(3.8) < log(%y (L= R (1 - ¢) = 21— )0(—k) — ek?,

(3.8) < log( - 5)2 + (1 -¢€)(1-20(-k)).
Along the same line of thought, we can simplify (3.9) to get
1
(1-e)(1-20(-k))
Putting all these results together, we finally have
2¢(k)
k

(39) =

39)>1+(1-¢

4¢(k)
k

> (1= e)(1 - 20(—k)) + (1 — ¢)

1 2
>(1- E)(l - 2@(—/@)) + log(:) > (3.8)

if only we show that

(3.10) (1-e) 4¢I(ek) > log( 1 : £)2

holds. This last inequality is only true for £ small enough, e.g., ¢ < 0.5. For such ¢
values we have

1 2
log( ) < 3, 0<ex<05,
1—¢
and (3.10) is therefore proved if we show that
4¢(k
(1-¢) ¢l(e ) > 3e

49(k) o(k)

(3.11) o 2T, =2~ 20(-k)

o 2k®(—k) > 2¢(k)
© 3k®(—k) > ¢(k) for k €[0.436,00).
This last inequality (3.11), which is equivalent to (3.10), does indeed hold and
is left for the reader to check.

Proposition 3.1 is now proved for all the cases where (3.6) is strictly positive.
Some care is needed if (3.6) is zero. Then the compromise estimator is asymptoti-



186 S. MORGENTHALER

cally a convex linear combination of Tz and Ty, but since the asymptotic
variance of Ty, is lower than the asymptotic variance of Ty, the compromise
estimator will have an asymptotic variance below the asymptotic variance of Tf,.

REMARKS. (1) We have identified a class of sampling situations G, namely
those where (3.6) is positive, for which the mean is a more efficient estimator than
Huber’s minimax estimator. It would be of interest to show how big this class is
and also to check whether it contains all sampling situations for which the
sample mean is asymptotically better than Huber’s minimax estimator.

4. Discussion. This paper deals with estimators which compromise between
different “shapes.” This idea, as we have seen, produces robust estimators. If we
compromise between the Gaussian and Huber’s least favorable distribution, we
have a family of estimators (for different values of a) which dominate Huber’s
minimax M-estimator asymptotically.

Several points need to be clarified, however. The idea of compromising is
different from the usual asymptotic robustness theory as developed by Huber
(1964) and (1981). There, the compromising takes place in a neighborhood of the
“central” model, whereas in our approach the different shapes need not be close
together. A neighborhood model is in fact only a first step toward robust/re-
sistant techniques for small sample sizes. For samples of size 5, we would advise
to compromise between the Gaussian and something like the slash (= distribution
of a ratio of a Gaussian over an independent uniform) rather than using the only
moderately tailed least favorable distribution.

The intention of this paper is not to show that we should use a compromise
between the Gaussian and the least favorable distribution, but rather to let
people know of the merits of compromise estimators in a language which many
statisticians are used to, namely asymptotics.

Results found through small sample experiments are of greater importance. It
is clear, for example, that the situations (or shapes) we compromise ought to
change with the sample size. The amount of “information” in the sample grows
with the sample size. Not only are we able to estimate ““parameters” with less
variability, we also gain insight into the underlying shape. Compromise estima-
tors use this knowledge in an optimal way and with our choice of the shapes we
can fine-tune the procedure. Important choices have to be made in that respect
and more (probably experimental) research for small sample sizes is needed.
Subject-matter knowledge might prove useful in this connection.

The extension of Pitman’s ideas to more than one shape provides us with a
tool to find meaningful small sample methods of the robust/resistant kind. In
order to make the asymptotics simple, we did not deal with the scale parameter.
In actual applications, the inclusion of this additional parameter is, however, no
problem [see Bell and Morgenthaler (1981) for an example].

Acknowledgment. Many thanks to the referees for a careful reading of the
manuscript, and for pointing out several mistakes.
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