The Annals of Statistics
1986, Vol. 14, No. 1, 88-123

THEORY OF PARTIAL LIKELIHOOD!

By Wine Hung WoNG
University of Chicago

A general asymptotic theory is developed for the maximum likelihood
estimator based on a partial likelihood. Conditions are given for consistency
and asymptotic normality, and a method is provided for the calculation of the
asymptotic efficiency of the estimator. The implications of the general theory
are examined in special cases such as inference in stochastic processes, Cox
regression models, and AR processes with missing segments.

1. Introduction. Let y be a realization of the random vector Y with density
fy(y; ¢) depending on a vector parameter ¢ = (#; 7). Consider the situation
where Y, perhaps after transformation, can be partitioned into two components,
Y = (V, W). Correspondingly, the full likelihood will then factorize into a margi-
nal likelihood and a conditional likelihood:

(1.1) fy(y; ¢) = fv(v; &) fup(wlo; ¢).

We will suppose we are interested only in inference about 8; n will play the role
of a nuisance parameter. In complicated problems, the dimension of n may be
high, and the application of maximum likelihood estimation may lead to mislead-
ing results. If in such situations there is a factorization (1.1) such that only one of
the two factors involves 6, then it is often helpful to use just that factor and
disregard the other (which involves 7). Examples and development of marginal
and conditional likelihood methods can be found in Kalbfleisch and Sprott (1970)
and Andersen (1973).

It is clear that if one uses only one factor in (1.1) while the ignored factor
involves both # and 7, then one has not used the full information (about @)
contained in the observations. In exchange for the loss of information we achieve
simplicity in analysis resulting from the elimination of nuisance parameters.
There is also a gain in robustness of validity because the ignored factor in the
likelihood does not have to be specified precisely. In applications these tradeoffs
must be weighed carefully.

In the development of methods based on appropriate factorization of the full
likelihood, the introduction by Cox (1975) of the concept of partial likelihood is
an important milestone. Consider the case when Y can be transformed into a
sequence,

(1.2) Y=(w, X, Wy, Xpyenns Wy, Xyy),

the partition being chosen so that the density of x, conditional on all the
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previous variables depends only on 8. The full likelihood factorizes accordingly
into

N N
(13) ) = | T e[ 11 eaen)],

where d,, = (W}, Xy, ., W,_1, X,_1)s Cp = (W1, X1y ey W,_1, X,_1, W,). Cox called
the second product in the right-hand side of (1.3) the partlal likelihood of 6 based
on X in the sequence (w,, x,),-1, ... n-

EXAMPLE. Suppose we observe J disconnected segments of a Markov process
[z,,l Zm,] [zn2 ot Zp bees[2,, 00 2], SO 2’s between z,, and z,, etc.
are “missing.” The Jomt dens1ty for the data is given by (taking z = constant)

J

(14) l_l[f(zn,lzm,_l) IT f(znlen o}

Jj=1 n=n;+1

Suppose that within the observed segments the one-step transition probabilities
are given by py(x, y) with a parameter 0. If we let w, = z,,, x, = [zp+105 Zm, )s
Wy, =2,, X3 =[2,,.1,--+, 2,,], etc.,, then the partial likelihood based on X is
simply T l[l—l,, nj1 p,,( Z,_1, 2,)). In many situations the missing segments may
have a dlﬁ'erent probabilistic structure from the observed ones. In such cases, the
remaining products in (1.4), namely H _1f(z, 1Zm, ) will typically be difficult to
handle because of nuisance parameters This example is discussed further in
Section 6.1.

The purpose of the present paper is to develop an asymptotic theory for
maximum likelihood estimation based on a partial likelihood. The advantage of
being able to use a partial likelihood is clear: one then has great flexibility in
obtaining a factorization (1.3) such that the loss of information due to the
ignored factor is small.

An equivalent way to define a partial likelihood is as a product ITY_, fo(x,|c,)
of the densities of the conditional experiments x,|c,, x,|c,, ..., xn|cn, where the
o-field generated by c,_ , contains that generated by c¢,, n = 1,2,... . This nested
conditioning requirement plays a key role in our development of the asymptotic
theory: it implies that the scores constructed from the conditional densities form
a martingale differences sequence. This means that the information contained in
the different conditional experiments are not redundant. Now, the likelihood for
a stochastic process x,, ..., x, can always be written as a partial likelihood. Thus
the MLE theory for stochastic processes is a nontrivial special case of the par-
tial likelihood setting. This area has, of course, been studied extensively; see
Billingsley (1961), Silvey (1961), Rao (1966), Bhat (1974), Crowder (1976), Caines
(1975), Basawa, Feigin, and Heyde (1976), Hall and Heyde (1980), and Basawa
and Rao (1980). Billingsley (1961) had already recognized the importance of the
martingale differences structure of the conditional scores and proved asymptotic
normality of the MLE using a martingale central limit theorem developed by
himself. Our treatment of asymptotic normality in Section 4 for the partial
likelihood MLE is an extension of the treatment used in the above mentioned
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works. On the other hand, our approach to the consistency problem is quite
different from the one used in the above works. To draw an analogy with the two
main approaches to consistency in classical MLE theory in the i.i.d. setting, the
approach used in the above works (except for Caines, who treats only a finite
parameter space) is the Cramér approach (Cramér, 1946), namely, to exhibit a
consistent sequence of solutions to the likelihood equation, while the approach
adopted in the present paper is that of Doob (1934) and Wald (1949). The unified
treatment for finite and continuum parameter spaces and the avoidance of
differentiability and uniqueness conditions are two main advantages of the
Doob-Wald approach. This consistency theory is developed in Section 2. The
theory is illustrated in Section 3 by several examples. The example of the Cox
model is included for obvious reasons. The generalized autoregression models are
studied partly because of their potential usefulness in modelling nonnormal time
series data.

Section 5 deals with the theory of efficiency. Our starting point is the classical
work of Bahadur (1964), Hajek (1970), and others on the Fisher lower bound for
regular estimators under the locally asymptotically normal (LAN) condition of
Le Cam (1960). This theory is nicely summarized in the recent monograph of
Ibragimov and Hasminskii (1981). The main problem we face is how to handle
the nuisance parameter, particularly if it is infinite dimensional. The criterion for
efficiency adopted in this paper is an extension of the classical one for the finite
dimensional case. It is also used by some previous authors, e.g., Stein (1956),
Lindsay (1980), and Begun, Hall, Huang, and Wellner (1983), mainly in the case
of i.i.d. observations. In Section 5.2 we present a simple argument showing why
the minimal Fisher information (Lindsay, 1980) provides a lower bound for the
asymptotic variance of regular estimates in the general case. This argument
represents a precise formulation of Stein’s argument which predates the rigorous
theories of Bahadur and Hajek. We also study the method of calculating the
minimal Fisher information by taking the limit in a sequence of finite parameter-
izations and provide conditions under which the method works. At present this
seems to be the only systematic method of calculation in the general case.
Although it is believed that in most cases the minimal Fisher information is an
appropriate benchmark for efficiency comparison, this has never been rigorously
established. We have only been able to provide a partial justification, as discussed
at the end of Section 5.2.

The efficiency theory is illustrated in Section 6 by an in-depth study of the
example of the segmented AR process. Most of the general points made in
Section 5 find concrete representation in this example. The calculation shows
that the partial likelihood is not fully informative in the random level shift case,
even if the shift density is assumed unknown. This result is, at least initially,
rather unexpected. Another example studied in Section 6 is the Cox regression
model. :

Consistency and asymptotic normality in the Cox regression have been inten-
sively studied in recent years: Tsiatis (1981), Liu and Crowley (1978), Andersen
and Gill (1982), Slud (1982), Bailey (1983), and Prentice and Self (1983). In this
paper we use the Cox model mainly as an illustration for the general theory. We
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assume that the covariates are nonrandom, time independent, and can take only
a finite number of values. In this respect our treatment is more restricted than
some earlier ones. On the other hand, an arbitrary risk of the form w(#, z) is
allowed rather than the usual choice e ? used by all authors except Prentice and
Self (1983), who allow a form r(8 - z) where r is a general function. Within our
model we give explicit calculations of the asymptotic distributions. It is hoped
that the ordinary differential equations derived in the appendix are a useful
addition to the literature.

Our calculation of efficiency in the Cox model reproduces some of the results of
Efron (1977) and Oakes (1977), but our method is entirely different from theirs.
Although implicit in Efron (1977), the rigorous derivation of asymptotic efficiency
of the partial likelihood in the Cox model has been given only recently by Begun
et al. (1983) under the i.i.d. covariate assumption; see also Pfanzagl (1982). Our
derivation in this paper is under the assumption of nonrandom covariates. The
discussion also appears to be the first systematic treatment of efficiency for
general risk forms.

2. Consistency.

2.1. Finite parameter space. In the classical framework of i.i.d. observations
where x,, x,,..., x5 areii.d. with common density f(x; 6,); for any fixed 8 + 6,,
if r,(0) = log( fo(x,)/fe(x,)), then the Kullback-Leibler discriminatory informa-
tion between 6§, and # contained in x, is given by

i,(8) = Eg(1,(8)) = [fo,log( fo,/1s) dx > 0.

The variance j,(0) = Var,(7,(0)) is also independent of n. Hence for each 8 + 6,,
we have

N
(2.1) Iy(6) = Xi,(8) = Niy(6) — oo,

N
(2.2) Jy(8) = Xj.(8) = Nji(8) = o(I%(8)).

To see the meaning of these two conditions, denote by R () the logarithm of
the likelihood-ratio, ie., Ry(8) = log((T1}'f,(x,))/T1)fs(x,)) = Z)r,(6), then
the Kullback-Leibler discriminatory information contained in x,,...,x, is
Ey Ry(0) = Iy(0), and the variance of Ry(0) is just Jy(6). Clearly, (2.1) and
(2.2) imply the divergence (to infinity) of R, (), which in turn implies the
consistency of the MLE if the parameter space O is finite. ‘

Now the basic structure of the partial likelihood framework is a sequence of
conditional experiments x,|c,,..., Xxy|cy, Where the o-field generated by c,.,
contains that generated by c,. In each experiment, c, is regarded as fixed and x,,
has a conditional density fy(x,|c,), the partial likelihood is nothing but the
product of such conditional likelihoods (defined up to a multiplicative constant
independent of 6), i.e., PL o« ITN_, fo(x,|c,).

n=1
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To extend the above argument, let

rn(a) = IOg( foo xnlcn)/fO(xnlcn))’ RN = Zrns
1

ln(a) = Eoo(rn(o)lcn)’ IN = ;ln’
i(0) = Var (r(O)le,), Iy =L
mn(a) = rn(o) - ln(a)’ MN = ;mn(o)

Note that R, is the logarithm of the partial-likelihood ratio, i.e., Ry(6) =
log(PL(8,)/PL(0)). Conditional on c,, the discriminatory information (between
6, and 6) contained in x, is just i,(8); for this reason the sum Iy = £}, will be
called the accumulated Kullback-Leibler information in the sequence of condi-
tional experiments x,|c,, X5|Cy, ..., X,|C,. In general, both the conditional infor-
mation i,(f) and the conditional variance j,(f) are random variables; they
reduce to constants when x, is independent of c,,.

When the parameter space © is finite, the divergence of R,(8) for every
6 # 6, implies the consistency of 6, the value that maximizes the partial likeli-
hood. The following theorem provides sufficient conditions for the divergence of

RN-

THEOREM 2A. Suppose %,, %,,... is a sequence of increasing o-fields,
Ry =1XMr, and, for n=1,2,..., r, is measurable with respect to %,, i, =
E(r,|%,_)), J, = Vax(r,|%,_,). If there exist constants 8§ > 0, a,, T o such that
(2.3) P(Iy/ay>8) -1
(2.4) JIn/ay —=p 0

then R /Iy —p 1. If only (2.4) holds, then ay'My = ay'(Ry — Iy) —p 0.
Proor. Let Ay = {Iy/ay > 8}, then
P(|Ry — Iy|/Iy > €) < P(|Ry — Iy| > eday) + P(AY).
The second term goes to zero by (2.3). To estimate the first term, write
N
RN - IN = Z m,,
n=1

and let m%, = m,x(J,/a% < 1) where x(-) is the indicator function. Since
P{m¥% =m, ¥V n=1,...,N} > P(Jy/a} <1} = 1, it suffices to estimate
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P(IN_,m%,| > eday). Now,
E(m*l\‘lnl‘gz;z~l)
Var(m?{’nl‘%z~l) =

x(d,/a% <1)E(m,|%,_,) =0,
J,/ak < 1)Var(m,|#, ),

IIMZ /—\ /—\

JI\? Var(mxnl'%t—l) < Jn'

n

Hence, ay2/¥ < ay?Jy —p 0. Thus, using boundedness of J3¥/a%, one obtains

1

In the above theorem, since a, — o0, (2.3) and (2.4) implies

N

X m¥,

n=1

1 N 1
> eday | < 55 Var| ¥ mi,/ay | = 55 E(JF/ay) ~ 0. O
e“d el e“d

(2.5) Iy —p o
and
(2.6) Iy = op( I}).

The conditions (2.5) and (2.6) seem to be the natural extension of conditions (2.1)
and (2.2); however, until now a proof of the divergence of R, under (2.5) and
(2.6) has not been obtained. In any case, the meaning of the conditions is clear:
(2.1), (2.3), or (2.5) represent “accumulation of information,” (2.2), (2.4), or (2.6)
represent “stability of variance.” Note that for § to be consistent, the conditions
in Theorem 2A must be satisfied by Iy(8), Jy(8) for each 8 # 6, in the finite
parameter space. The constants a, may depend on 6 as long as ay(8)1 oo for
each 6.

In some applications, such as the Cox regression model discussed below
in Section 3, it is necessary to formulate the partial likelihood in terms of tri-
angular arrays, i.e., for each N, there are conditional experiments
(MM, xMetM, ..., x(V[cfV, but for the same n, x¥) and ¢{™) need not be
the same as x(™) and c¢(¥ if N # N’. For the discussion of weak consistency or
asymptotic distribution, it does not matter whether the array is single or
triangular. For simplicity we will always write x, and c,, with the understanding
that in the triangular array case x, and ¢, may depend on N.

In the single array case, the following result of Neveu (1965, page 148) is
relevant for strong consistency.

LEmMMA 2B. With Ry, Iy, Jy as in Theorem 2A, (Ry — Iy)/Iy — 0 almost
surely on the set @, = {Iy 10, 2_(J,/1%) < w0}.

To apply this to partial likelihood,” we must take r, = r,(0) =
log( f(x,lc, )/f,,(xn|c ), hence 2, in Lemma 2B may depend on 6. If P(2,(8)) = 1
for all 6 # 6, in the finite parameter space, then by Lemma 2B we have
P(ming 4 Rn(0) > o0) = 1, from which strong consistency of 6 n follows readily.
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In the classical case of independent observations, both i,, j, are constants, so
P(2,(8)) is either 1 or 0. In the general case of partial likelihood, the whole range
of values in [0, 1] is possible for P(2,(8)). Likewise, the set Q, = {9,, - 6,} may
have probability other than 0 or 1. We call Q, the consistency set, and its
probability P(,) the level of consistency. By Lemma 2B, a lower bound for the
level of consistency is P(Nyc o2(8)).

2.2. Compact parameter space. In this section, we assume the parameter
space to be compact. Extension to a general parameter space will be taken up in
the next section.

THEOREM 2C. Suppose O is compact, and suppose that for any 0 + 8, there
exists an open neighborhood O, of 8 whose closure G, does not contain 6,, and
that there are constants 6 > 0, ay 1 0o (which may depend on 0) such that

(2.7) P( Jinf In(8)/ay > s) -1,

(2.8) JIy(0) /a3 —»p 0 forall 0’ € G,,

The distribution of ay*My(0') is tight in C(G,), where My, = R —
I, and C(Gy) is the space of continuous functions on G,.

Then 8y — 6,.

(2.9)

ProoF. (i) First we show that (2.7)-(2.8) implies that
P( ot Ry(8) < o) > 0.

To see this, observe that by the argument in the proof of Theorem 2A, (2.7) and
(2.8) together imply that the finite dimensional distributions of ajy!My(*) con-
verge to those of the random function degenerate at 0. Hence under the tightness
condition (2.9), a !My(+) — 0 weakly in C(G,), yielding the desired result.

(ii) To prove the theorem, let Oy be any open neighborhood of 6,, and
consider the compact set © \ Oy . By compactness © \ O, can be covered by a
finite number of open sets Oy , . . ., Oy,, each of which satisfies conditions (2.7)-(2.9).
Hence by part (i) of this proof,

P( inf RN(0')sO) 50 fori=1,...,k,
0'€ Gy,
whence

. ‘
2.10 P( inf Ry(8) <0) < ¥ P( inf Ry(8)<0) -0
(2.10) 0,12000 ~(0') igl '011200& ~(0') -
as N — o0, giving the desired result. O

In typical situations the parameter space 0 is also endowed with a metric or a
linear structure. If © has a natural metric, it is convenient, and we will always do
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so, to take O, in Theorem 2C to be an open ball centered at 6. If further, © is a
subset of a normed linear space, then the following criterion for tightness is
useful.

LEMMA 2D. If © is a compact subset of a normed linear space, then
condition (2.9) in Theorem 2C can be replaced by

With probability 1, My(6) has Frechet derivative VM (6) such that
(2.92) for some constant K > 0, P( sup ay'|[VMy(0)| > K) - 0.

[={eA

PRrROOF. Since G, is taken to be a closed ball, any intermediate value between
0, and 6, also lies in G, if 6, and 6, are in Gy. Hence under our assumptions
tightness follows readily from the intermediate value theorem and Theorem 8.2
of Billingsley (1968). O

2.3. General parameter space. To cover more general parameter spaces, a
typical approach, introduced first in Wald (1949), is to consider conditions that
guarantee that @ will eventually be confined to a compact subset of ©. These
types of conditions can be called conditions of “essentially compact parameter
space.” In this section we consider the condition

There exists a compact subset K of O, such that 6, € interior of K,

(2.11) .
and P( 012£(RN(0) < O) - 0.
It is clear that under this condition, if the local conditions (2.7)-(2.9) of Theorem
2C are satisfied for every 8 # 6, in K, then we still have 6 —p ,. The proof is a
straightforward extension of that of Theorem 2C.
The following theorem concerns a special case, covering a variety of applica-
tions, in which essential compactness is automatically satisfied.

THEOREM 2E. Let © be a convex set in R?, 0, € interior of ©, and L,(6)
the logarithm of the partial likelihood. If the local conditions (2.7)-(2.9) are
satisfied for all 8 + 6,, and
(2.12) P(Ly(8) is strictly concavein §) =1 forall N,
then (2.11) is also true, and hence Oy —p 0.

ProoF. Let O, and O, be open balls centered at 6, with radius p, and p,,
respectively; p, and p, are chosen such that p, < p, and O, C interior of ©. Let

G, denote the closure of O, and 8, denote the # in G, that maximizes L y(8).
Since R n(0) = Ly(6,) — Ly(6), we have

<0in(f; Ry(0) < O} c {Ly(0*) = Ly(6,) for some 6* & G,}
€Gy

by concavity

c  {Ly(6**) = Ly(8,) for some 8** € G,\ O,}.
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This last set is seen to have probability tending to zero by applying the result
(2.10) with G, as the parameter space. O

Two remarks about the conditions: (i) the condition (2.12) can obviously be
relaxed to require only that P(L, strictly concave) — 1; (ii) it is clear that the
same proof will go through if © is a convex set in a topological vector space and
6, belongs to the interior of a compact subset G, in ®. However, such a
generalization is only superficial—if every point in a topological vector space is
required to have an open neighborhood with compact closure, then the topologi-
cal vector space must be finite dimensional.

An important class of models where the concavity condition (2.12) holds is the
class of natural exponential families

(2.13) fo(x,lc,) = h,(x,)e* ?=® wrt. ameasure »,.

The functions &, b,, the measure »,, and even the range of x,, may all depend on
¢,. But for any given c,,

b,(6) = log [, (x)e** dv,(x)

is clearly a strictly convex function of 8 if h,(x)dv,(x) is not a degenerate
distribution. Hence Ly(6) = (ZMx,) - 0 — Vb (0) is strictly concave if
h,(x)dv,(x) is not degenerate for at least one n < N.

To apply Theorem 2E, one must also check the local conditions (2.7)-(2.9). As
will be seen shortly, the verification of (2.7)-(2.8) for nonstationary cases can
involve considerable work in each specific model. We now argue that for the
natural exponential family model, the tightness condition (2.9) is automatically
satisfied whenever condition (2.8) is satisfied. To see this, first use properties
of exponential families to check that E((d/d8,)m (8)|c,) = 0 and
Var((3/30 ym,(0)|c,) = Var(x, |c,), where x, is the ith component of x,. If
(2.8) is true then certainly aNszﬂVar(x |c ) =, 0, which is suﬁic1ent for
an'(8/30,)My(0) = ay TN (8/80,)m (8) —p 0. Thus condition (2.9a), and
hence condition (2.9), are satisfied.

3. Examples.

3.1. Generalized autoregression. The normal theory linear model with de-
pendent variable x and regressors z!,..., z? can be written as x,,...,xy ~
independent normals, Ex, = vy,, Varx, = o2, where y, = L2 ,0,z.. To handle
time series data, let the regressors be lagged variables. Then we have the normal
autoregressive model: given x,,..., x x, is normal with mean y, = £7_,0,x,_;
and variance 2.

The distributional assumption of the linear model can be relaxed, normality
may be substituted by any location scale family (with second moments) without
affecting the asymptotic distribution of the least-squares estimates for . The
constant variance assumption is, however, quite crucial; for this reason the linear
model is not appropriate for most discrete data. For example, for binary data x it

n—1»
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is found useful to consider models in which the Probit or Logit of x, depend
linearly on the regressor z,. By allowing a suitable parameter of the distribution
of x, to depend linearly on z,, the scope of the model can be extended to cover
diverse types of data. Such “generalized linear models” are typically applied to
situations where x,,..., x,, are independent, and parameters are typically esti-
mated by maximum likelihood [see McCullagh and Nelder (1983) for develop-
ments of these models]. It seems natural that, to handle time series data, we can
choose the regressors to be lagged values of x,. The resulting model will be called
a “generalized autoregressive model.” It bears the same relation to the gener-
alized linear model as that of the (normal) autoregressive model to the (normal)
linear model.

If we restrict attention to cases where the conditional distribution of x, given
¢, = (x4,...,x,_,) belongs to an exponential family, the generalized autoregres-
sive process can be written in the form:

fo(x,lc,) = h,(x,)exp{x, - v,(8) — b,(6)},

where

¥.(0) = v(n,(8)),  b,(8) = b(v.(8)),
and
(3.1) a0 =6+ L0,

i=1
v, b are known functions. Some special cases are listed in Table 3.1.
The conditions for ergodicity in Table 3.1 will be derived in Appendix A.1l.
Under ergodicity it is possible to obtain fairly general conditions for consistency,
as we now discuss. By familiar results for exponential families,

(@) r,=-=x,40y,+ (b, —B2),

(b) i,=E(r,lc,) =b,— b2 - b'(n})Ay,,
(©) Jn=Var(r,lc,) = b"(n%)(A,)’,

@) m, =~ (x, - &(v?)) - Av,,,

where Ay, = y, — v? and the superscript ° denotes evaluation at the true value.

(3.2)

TABLE 3.1
Conditional Region of ergodicity
distribution b(y) b’(y) ¥(n) (p = 2 case)
1. Normal %72 1 ] 6,=0,1-6,B - 6,B?

must have roots
outside unit circle
e’ )(1 e ) n( L) a bounded polygon
1+e” 1+e” 1-19 (see Appendix A.1)
3. Poisson eY e Indl —-e ") 6,0, 0, > 0is sufficient

2. Bernoulli * In(1 + e7) (
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We assume the following smoothness condition on y and b:

|y’(+)| and &”(y(*)) are uniformly bounded away from 0 and o, for
(3.3) 2

all possible values of n = 6, + Y_0.x,_;
1

Under this condition the asymptotic behavior of I, and J, depends only on
that of XN(An,)2. To satisfy conditions (2.7)-(2.8) in the consistency theorem
(Theorem 2C), it suffices to find constants ay — oo such that, for 6 + 0°,

N N
(3.4) an?Y (An,)? —p 0 but ay'). (An,)? is locally uniformly bounded
: 1 1
away from zero.

If we define Y, = (x,_,,...,x,_,), then {Y,},_,, is clearly a Markov
process with stationary transition function. The process {x,} is said to be ergodic
if {Y,} is indecomposable and admits a strictly positive probability density
invariant under the transition function.

LEmMA 3A. Suppose that the generalized autoregressive process {x,} is
ergodic and that E*x,_x,_; exist for 1 <i <j < p, where E* denotes expecta-
tion with respect to the invariant distribution, then condition (3.4) holds for any
initial probability density.

Proor. (i) First we show that a law of large numbers applies: i.e., for any
measurable function g(Y) = g(x,,...,x,) such that E*|g(Y)| exists, we have
P(A) =1 where A = {N"'ENg(Y, ) - E *2(Y)}. This follows from Birkhoff’s
ergodic theorem by the following amusing argument (pointed out to the author
by R. R. Bahadur). Define G(y,) = P(A[Y, = y,). From the Markov property
G(y,) does not depend on the initial density p,, and P(A) = [G(y,)p(y,) dYy;.
Now if p, = p*, the invariant density, then {Y,},_, , . is ergodic as a strictly
stationary process. Birkhoff’s theorem then implies that [G(y,)p*(y,)dy, = 1.
Since p* is strictly positive, this equation can be true only if G(y,) =1 a.e.
Hence P(A) = [G(y,)p(y,) dy, = 1 for any initial density p,,.

(ii) Now we turn to the main proof. Define a(6) = E*(An,)%, a(d,p) =
E*linfy_2,(8,)7] where dn, = 1,(6) ~ 1,(6°) = (6, — 65) + TL_ (6, ~ ")

;and AR, =1,(6) — 1 (0°). These expectations are independent of n since
they are taken with respect to the invariant distribution. It is easy to see that by
the monotone convergence theorem, a(6, p) = a(f) as p — 0, and in part (iii) of
this proof we will show that a(8) > 0 for all 8 # §,. Hence there exist a ¢ > 0
such that a(8,¢) > 0. The law of large numbers in (i) then gives
N~'ZV[inf 5_g - (A7,)*] = a(8, €) > 0 ae.,, and N~'LN(An,)? - a(0) a.e. Con-
dition (3.4) follows immediately.

(iii) It remains to show that a(8) = E*(An,)? exists and is strictly positive.
To see this, write §=6,—60, d=(0,—60%,_, ., p=E*Y), and = =

.....
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strict positivity of the invariant density implies that £ is strictly positive
definite, it is easy to see that a(#) > 0 unless § = 8°. O

By the same arguments used in part (ii) of the above proof, it is easy to see
that condition (2.9a) is also satisfied under ergodicity. Thus if the parameter
space is taken to be any compact subset in the ergodicity region, Theorem 2C can
be applied to yield consistency of 6.

When the state space of {Y,} is decomposable into several ergodic classes, the
above theory can still be applied to each ergodic class. Another type of non-
ergodicity is much more difficult to handle, namely, when the process exhibits no
steady state behavior, such as the nonstationary normal AR process investigated
in the next section.

3.2. Nonstationary normal autoregressive process. We now return to the
first model of Table 3.1, i.e., the conditional distribution of x, given previous
values is normal with mean 7, = 0,x,_, + 0,x,_,+ --- +6,x,_, and variance
1, but we no longer require 8 to lie in the region of ergodicity.

LEMMA 3B. For the normal AR process, ergodic or otherwise, condition
(3.4) always holds.

ProoF. It is easy to check that if {x,} is an AR process then 5, must be an
ARMA process with the same autoregressive polynomial. Consider the unique
factorization of this AR polynomial

J
(1-6B----—8°B?) = [T(1-A,B)™
Jj=1

The asymptotic behavior of the ARMA process depends on the positions of
the A)’s and their multiplicities. To simplify notations, write A; in polar form,
ie., )\ = pje“"f (here i = V—1), and order the Aj’s so that P, =Py =
=Py, >Pss12 0 >pyand my2my2 - >mJ Let p = p; = max,_,p;
and m = max;_,m;, and consider three cases:

(i) p < 1: in this case, the process is ergodic, there is no difficulty.

(ii) p > 1: thisis the so called “explosive” case, in which the variance increases
exponentially. The problem is to determine the exact rate of increase. By rather
elaborate calculation, it can be shown that

&y o
Var( ~NN-(m-1, ) Y Er.jcos(vij+(w,~—wj)N)’

i=1j=1

where the amplitudes 7;; and the phases »,; are continuous functions of 6 and 6°.
From this it follows that (3.4) holds with, say, ay = (p"N(™~1)3/2,

(iii) p = 1. This is the nonexplosive nonstationary case. It can be shown that
Var(N~(m=1/2y ) > ¢, where ¢ depends continuously on 8 and 6°. Hence (3.4)
holds with ay = (N™ 1/2)3/2, The most complete result on this case can be
found in Tiao and Tsay (1983). O
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For normal AR processes, the tightness condition (2.9) is trivial to verify, since
it has a natural exponential family structure. It is also easy to see that the
log-likelihood is strictly concave. Thus by Theorem 2E, 6 is consistent for 0°,
without requiring any ergodicity or compactness condition.

3.3. Proportional hazard models. Thisis the model which led Cox (1972, 1975)
to formulate the general idea of partial likelihood. It is thus of interest to
examine it in light of the preceding discussions. In the Cox model one observes
failure times of a group of individuals subjected to censoring. Suppose the
(uncensored) failures occur at distinct times ¢,, < --- < ¢,. Let R, be the risk
set at time .,,), i.e., the set of individuals who have not failed or been censored by
that time. Furthermore, suppose that for each individual one also observes a set
of explanatory variables z = (2,,..., 2,). The distinctive assumption of the
proportional hazard model is that the hazard function for an individual at risk at
age t is
(3.5) M¢, 2) = Ao(t)w(8, 2),

where A is the base line hazard measuring the hazard at § = 0, w(6, 2) is a
weighting function (or relative risk factor). The interest is usually in the estima-
tion of the “regression coefficient” 6 = (6,,...,8,), which characterizes how
the explanatory variable z affects the hazard, with § = 0 corresponding to
the case of no effect. If w(#, z) depends only on the inner product @ - z, i.e.,
w(8, z) = w(@ - z), then the model can be called a Cox linear regression model. If,
further, w(8 - z) = e? %, then we have the natural Cox model.

To obtain a partial likelihood for 6, let x, specify the covariate value
associated with the individual who fails at ¢, and let c, denote all death and
censoring times up to and including time ¢,). If p,(2) is defined to be the
fraction of individuals in R, having covariate value equal to z and Z ,, = the set
of covariate values of individuals in R,, then the conditional likelihood of x,
given c, is,

pa(x,)w(6, x,)

2 P.(2)w(8,z)
z€eZ,
The partial likelihood based on x,|c,, n = 1,..., N is just the product of these
conditional likelihoods.

In this paper we will only study the important though special case when the
explanatory variable z is discrete, i.e., z € Z = {z@,..., 2(®}, note that each z")
in Z is a p-vector. Under this assumption the conditional likelihood of x, given
¢, is a function of only p, and 8, i.e,, fo(x,|c,) = f(x,; P,,8). Similarly, there are
well-defined functions r, i, j, and m, such that,

(3.6) fo(xlc,) =

7(0) = (%, Pny8),  m(0)m, = m(x,; p,,0),
i,(0) =i(p,,0), Jn(0) = J(p,,0).

Provided that w(#, z) > 0 is continuous in § € O for each z € Z, the functions r,
m, i, and j are each continuous in its domain. The domain of r or m is
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Z XS X 0, and the domain of i or j is S X ©®, where S is the simplex
S={peR* p;20,Lf p;=1)}

It is now clear that the asymptotic behavior of Iy and J, depends on that of
{p,, n=1,..., N}. To develop the asymptotic theory, consider a sequence of
experiments where N, the number of deaths in the experiment, increases without
bound. In general, for any fixed n, the conditioning variables ¢{™ and c{¥" will
be different if N < N’ due to the fact that in the larger experiment the risk set
R ,, contains more individuals. To avoid confusion, the superscript (N) will be
used if necessary.

Let A‘¥)(t) be the vector of relative proportions of individuals in each
covariate stratum who are still at risk at relative time ¢, where time is scaled by
mortality experience, i.e., the kth component of AN) is defined by A{V)(t) =
p{N(2®) if t = n/N and linear in between. Then

N~ 1,(8)=N"! % i(h™(n/N),8) ~ f‘i(hW)(t),o)dt,

N-'Jy(8) =N! %j(h(N)(n/N),éi) ~ f,(h<N>(t),o)dt.

n=1 0

In Appendix A.2 it will be shown that under the regularity conditions stated,
there exists a (nonrandom) differentiable function A to which AY) converges
weakly in C[0, A]* for any 0 < A < 1. It then follows that

N-1y(8) ~p i((t), 0) dt,

N7(0) = [ J(R(t), ) dt.

The function A is determined by a system of ordinary differential equations
which can be solved numerically. The use of these differential equations will be
further discussed in Section 4. Similarly,

N
-1 . -1 . . (N) pr - 1 . Y ’
VIO 2Nl 0 0) e [ iR 00 e

If i(h(t), 8) > O for any (t,, 8,), then by continuity i(l_z(t)_, 0) > 0 for all (¢, 6)
near (%, 6,), i.e., there exists p small enough s.t. infg,_g _ ,i(h(t),8") > O for all ¢
near t,. The above limit is thus strictly positive.

In the case when the parameter space is compact, the above results imply that
conditions (2.7)—(2.8) are satisfied with a)y = N. The tightness condition (2.9) is
also easy to verify using similar arguments. The consistency of the partial
likelihood MLE then follows from Theorem 2C.

For the natural Cox model, w(f, z) = e®"? and (3.6) becomes a natural ex-
ponential family. If the distribution in the original population with respect to
covariate stratum is not degenerate, then Theorem 2E implies the consistency of
6, without requiring compactness of the parameter space.
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4. Asymptotic normality. For obvious reasons, it is convenient to assume
® C RP. Assuming that the following derivatives exist almost everywhere, we
will write

N
ln(o) = long(xnlcn); LN = Zln’

1.(8) = DL(8), 1.(6)=D%,6), 1,6)=D(0),

where D' is the ith order differential operator. For example, D?,(6,) is the triple
array of third-order derivatives {D;;;0,(8)lg—,}i, j, k=1,..., p» and for any p-vector
e, D’,(6) - .(9)3 = Lie( Dyl (80))e e e

Let u, = [,(6,) be the conditional score for the experiment x,|c,, then under
standard conditions for the conditional densities, we have

(4.1) E(U,c,) =0, v,=Cov(u,lc,) = E(=1,6))lc,).

With Uy = ZNu,, Vy, = TN, the main asymptotic normality result is

.....

THEOREM 4A. Suppose 0 is consistent for 0, € interior of ® C R?, and for
each n, 1, has third-order derivatives almost surely and (4.1) holds. Assume also
that there are constants ay 1 oo and a neighborhood O of 6,, such that

(4.2) ay'Vy »p some p.d. matrix @,
(4.3) ay'(-Ly(8,)) »p some p.d. matrix Q,,
(4.4) P(a;,1 sup|Ly(0)| < M) — 1 for some constant M,
(20 N
(4.5) a; L E(llu)’le,) =5 0.
1
Then

aif*(by - 8)) —p N(0,Q;'QQ1 ).

REMARK. In many cases, if (4.2) holds then (4.3) also holds with @, = @; for
example, a sufficient condition for this is

N
(4.6) ay?Y Var(el (6,)e|c,) »p 0 for all unit vectors e.
1

PROOF OF THEOREM. By definition of § and Taylor expansion,
(4-7) 0= LN(é) =Uy+ iN(oo) : (9 - 00) + f'N(‘9*) ' (9 - 00)2/2,

where 6* lies between 6 and 6,. Let By = —[Ly(6,) + 1/2iN(0*) (0 - 0,)].
Since § — 6,, by (4.3)-(4.4), ay'By becomes positive definite with probability
tending to 1. Hence from (4.7) we have

(4.8) al®(8 - 6,) = [an'By] '(an?Uy).
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First note that [ay'By]™! —p @1}, and thus the theorem will be proved if we
can show that aj'/2Uy - N(0, Q). For any constant unit vector e, define
are martingale differences with respect to

yeee

N
ay'Y. Var(t,|c,) = ay'e’Vye —p e'Qe.
1
Furthermore, it follows easily from (4.5) that

N
a2 L E(It,%lc,) —p O,
1

N N
ay' L E[e21(1t,) > ealf?)lc,]| < e lax® 2L E(|t,)% c,) =5 0.
1 1

Since all conditions for the martingale central limit theorem (Brown, 1971) are
verified for the martingale ay'/2X M, it follows that

N
e (ay?Uy) = ay'?YLt, »p N(0, e'Qe).
1
Since this is true for any unit vector e, ay'/2Uy —p N(0, Q). O

Let us illustrate the theory with the proportional hazard model of Section 3.3.
From (3.6), we have
(4.9) 1,(0) = log fo(x,|c,) = constant + ¢(8, x,) — b(6, p,),

where
c(0,x,) =logw(6,x,) and b(8,p,) = log( an(z)ecw,z))'

We will also assume that

for each z, ¢(-, z) is three times continuously differentiable around
0o,

(4.11) p, is nondegenerate,

(4.10)

(4.12) cov(e(8,, x,)|c,) is p.d. whenever p, is nondegenerate.
Then, using the results of Appendix A.2, conditions (4.2)-(4.6) can be verified,
and hence by Theorem 4A,

N'/(8y - 6,) 55 N(0,Q7").

Furthermore, the (i, j)th component of the (normalized) Fisher-information
matrix @ based on the partial likelihood can be calculated in the following
manner: with w* = w(f,, 2¥) and ¢,, = the ith partial derivative of c(8, z(¥)
wr.t. 0 at 6 = 6,

(4.13) Q= j:oij(h(t)) dt,
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where
K
(a) vij(h) = Z CirCin8r — (Zéekgk)(zéjkgk)-
k=1 k k

(b) The vectors g and & are related by g, = h,w*/(T,hw').

(c) The vector function h(t) is determined by the system of ordinary differen-
tial equations specified in (A.13) of the appendix, with initial values A ,(0) = the
proportion, at the beginning of the trial, of individuals having explanatory
variate value z®),

The form of the differential equation is particularly simple when there is no
censoring:

d 1
(4.14) ?d—thk(t)= ‘th(hk(t)—gk(t))y k=1,...,K, 0<t<l.

In the case of the two sample problem the explanatory variable z is 0 or 1 and
the hazard is A () of A(t)e’, depending on the sample to which the individual
belongs. Let a = e’ ¢ = fraction of individuals in sample 0, then from
(4.13)—(4.14) the asymptotic Fisher information is

(4.15) Jim [N Var(®)] "' = Q= [(2()1 - &(t)) dt,

where

&(t) = h(t)/(h(t) + a1 = h(2))),

d 1
Zh(0) = T (h(0) ~ g(t),  (O) =q.

The differential equation in (4.15) is easy to solve numerically. Values of @
calculated from (4.15) for various values of ¢ and a are presented in Table 4.1.

The two-sample problem is also studied in Efron (1977) and Oakes (1977).
Efron has derived a formula for the asymptotic Fisher information for the special
case when the two samples have different exponentially distributed lifetimes, i.e.,
the baseline hazard A(t) is a constant function. This is formula (4.9) in his
paper, reproduced here as

q(1-q)du
g+ (1-q)auev/e’

(4.16) (Efron formula): [N Var(4)] ' = /1

TABLE 4.1
Values of asymptotic information @

Q calculated using

q o 4.15) (4.16)
0.5 2 0.225345 0.225345
0.5 5 0.159402 0.159402

0.25 5 0.114305 0.114305
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It is a byproduct of our derivation of (4.13)-(4.14) that in the uncensored case
the asymptotic Fisher information @ does not depend on the baseline hazard
Ao(t). Therefore, Efron’s formula, although derived under the constant A(*)
case, is actually applicable to the wider case of arbitrary A, (+), and must
therefore agree with formula (4.15). The values of @ calculated using (4.16) are
also presented in Table 4.1. There is little doubt that the two formulae are
equivalent, although we have not found a direct analytical deduction of one from
the other.

5. Efficiency. In this paper we consider relative asymptotic efficiency as the
ratio of asymptotic variances of estimators [see e.g., Le Cam (1953) and Bahadur
(1964)]. Fisher-information is to be interpreted only through its relationship with
asymptotic variances. Other interpretations exist and may be important, but are
not discussed here.

Let I{*)(¢) = log f(w,|d,), I$(8) = log fy(x,|c,), then by (1.3) the logarithm
of the full likelihood can be decomposed as

N N
(5.1) L) = X 1(e) + X I7(0) = LY(¢) + LKD),
n=1 n=1
the second term being the logarithm of the partial likelihood.
There are three basic situations to consider.

5.1. Finite dimensional nuisance parameter (i.e., n € R’). Suppose that each
of the partial likelihoods L§’ and L{* satisfies the regularity conditions of
Theorem 4A. (Note that for LY, the parameter ¢ = (0, ) is p + r dimensional.)
Denote the MLE of ¢ based on L by ¢ and the MLE of 8 based on L{ by
6™, then

a}v/z(&)(y) — %) -, N(O, S—l),

52 a}v/z(é(x) - 00) -5 N(0,Q71),
where
3 Soo_i S| p Q@+ Hyy | Hy,
) (EJFS}; ro\ Hy [H,|

the p X p matrix @ and the (p + r) X (p + r) matrix H are defined by

27 (x) N ™ F1AS
Q;j= —plimay! > =plimay'YE ( . — | le. |
63 30,08, =0 ), g,
’ LW N I\ [ gpew
H;.= —plimajy! =plimay!) E = - d,|,
’ N do; do; 0 P N21: ( 9 ) 99, 0

and the subscript 0 indicates evaluation at the true value ¢ = ¢,,.
Thus, marginally, al%8® - 6,) -, NQ©, S;. »), where S, =Q+ H, ,
Hy = Hy — Hy, H 'H,,. It is appropnate to call the matrix S, the ‘marginal
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(Fisher) information” for estimating 6 in the presence of 1, and the matrix H,. "
the “loss of information” in using L§ instead of L{.

Why is it sensible to compare 8 to §? One justification is the classical
result that 8 achieves the minimal asymptotic variance among all “regular”
estimators. We now describe this result briefly, in preparation for the discussion
of the infinite dimensional nuisance parameter case.

A sequence of parameter values {¢,} is called a “regular sequence” if

aX*(¢n — ) — e for some e € R?*". An estimate T}, (of ) is called

(i) regular in the Hajek sense if for all regular sequences {¢y}, the distribution
of aj®(Ty — 0y) under ¢, converges to a distribution independent of {¢y};

(11) regular in the Bahadur sense if the distribution of a}/?(Ty — 6,) under ¢,
converges to a normal distribution, and for all regular sequences {¢y}, P(Ty >
Onlon) = 3.

By a regular estimate we mean an estimate regular either in Hajek or Bahadur
sense.

LEMMA 5A. If LY satisfies the regularity conditions (4.2)—(4.6) of Theorem
4A (with ¢ as the parameter and suitable definition of the conditioning fields
F, Fy +++), then any regular estimate {Ty} has asymptotic variance larger
than or equal to that of 6.

The Bahadur part of the above result is in Bahadur (1967). The Hajek part
can be obtained by a modification of Hajek’s original proof (Hajek, 1970) for the
case with no nuisance parameter. Both authors make use of the LAN condition
(Le Cam, 1960) which is satisfied under the hypothesis of the lemma.

With respect to the calculation of Hj.,, the following is a natural question at
this point. It is plain that Hj., is the limiting residual covariance matrix of the
regression of ay'/?D,LY” on ay'/2D,L%). Now L{ = LN, if we regress

Dyl on D, l("’) for each n and denote the residual covariance by k., ,, will it
be true that ay'tVh,., , - H,.,? The answer is no. In general, the hmit will
only be a lower bound for H, ,, although that bound is sharp in the ii.d. case.

5.2. Infinite dimensional nuisance parameter. In this section we change the
notations slightly: A will denote the infinite dimensional nuisance parameter and
1 will denote a finite dimensional parameter to be defined below. The nuisance
parameter space I' is assumed to be an infinite dimensional manifold. For
concreteness we take I' to be a submanifold of a Banach space #. We will derive
lower bounds for the variances of regular estimates of 6. These can then be used
to provide upper bounds for the loss of information due to using a partial
likelihood. The definition of a regular estimate is the same as that given in
Section 5.1, but a regular sequence of parameter values {on = (Oy, Ay)} is now
defined by the property that aX?(¢5 — ¢,) converges in the product topology to
(e, ey) for some e, € R", e, € #.

To obtain lower variance bounds, consider the true nuisance value A, as
imbedded in a smooth parametric subfamily {A = A(): 7 = (9,,...,n,) € some
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neighborhood O, in R”"}. For the parametric problem involving (4, n), one can
calculate, as in Section 5.1, the lower variance bound S, ; for estimating 6 in the
presence of (7,,...,7,). Intuition suggests that this should also be a lower
variance bound for estimating # in the presence of A. We now formulate this
more precisely. We will use differential calculus in Banach spaces, see, e.g., Lang
(1972).

By a smooth finite dimensional parameterization of A we mean a differentiable
map 1 — A(7) from some neighborhood in R” to I'. Of special interest below is
the one-dimensional parameterizations £ — A(§), £ € R!. These can be regarded
as curves in I'. To each curve is associated a tangent vector based on A,
t=lim,_ . (& — &) (M&) — A(&))- The set J of all possible vectors tangent to
T at A, constitute a linear subspace of 5, called the tangent space at A,. The
dimension of a parameterization n — A(n) is the dimension of the subspace I
spanned by the partial derivatives of the map. For simplicity we will always
assume that the parameterization is nonsingular, i.e., its dimension is equal to
that of 5. To obtain concrete results, consider the following regularity conditions.

For any smooth curve ¢ — A(§), the full likelihood L{ with the
(5.4) p +1 dimensional parameter ¢ = (0, {) satisfies conditions
(4.2)~(4.6).

'(5 ) The elements of the limiting information matrix @ in (4.2) are
uniformly bounded for all curves with tangent vector lengths < 1.

THEOREM 5B. Suppose (5.4) holds and let Sy} be the lower variance bound
for estimating 6 in the p + r dimensional problem with parameter ¢ = (0, 7),
where 1 — \(n) is a smooth r-dimensional parameterization of A. If {Ty} is a
regular estimate for 0 in the infinite dimensional problem with parameter
¢ = (0,)), then {Ty} has asymptotic variance > S; 3.

Proor. (i) First we show that {T} must also be a regular estimate for ¢ in
the p + r dimensional problem. To see this, let {(8y, n5)} be a regular sequence
of parameter values in the p + r dimensional problem, then by differentiability

of 7 = A(n),
aX?(M(ny) = Mn)) = ak2[(DA(1°) - (ny = 1)) + olmy = mol)]-

This converges to a linear combination of the components of the derivative of the
map 7 — A(n), since al{®(ny — m,) converges to a vector in R”. Hence
{(8n, A(ny))} is a regular sequence of parameter values in the infinite dimen-
sional problem. The desired conclusion now follows directly from the definition of
regular estimates.

(ii) It is easy to check that if (4.2)—(4.6) are satisfied for ¢ = (4, ¢£) for all
one-dimensional parameterizations £ = A(§), then they are also satisfied for
¢ = (6, 7n) for any finite dimensional parameterization n — A(n). Hence under
(5.4), Lemma 5A can be applied to conclude that {T} has asymptotic variance
larger than S;7 ;. O
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In the case when 6 is a scalar parameter, it is an elementary fact, first pointed
out by Stein (1956), that for any smooth r-dimensional parameterization n —
A(7m), there is a smooth one-dimensional parameterization § — A(£) which gives
the same lower variance bound as in the r-dimensional case. Thus, to obtain the
best lower variance bound for regular estimates of 4, it suffices to consider only
one-dimensional parameterizations of A. A curve {* — A(£*) which yields the
greatest lower variance bound is called a least favorable curve, the corresponding
marginal information for 6 is called the “minimal Fisher information” by
Lindsay (1980, 1983).

Although easy to define, the minimal Fisher information may be difficult to
compute. For the i.i.d. case, Lindsay (1980) and Begun, Hall, Huang, and Wellner
(1983) give geometric insights as well as examples of computation. In the non
i.i.d. case, very few results are available. We now investigate the following general
method for computing the minimal Fisher information: consider an increasing
sequence of parameterizations {n” = A(n”)},_, , ., here r denotes the dimen-
sion of the parameterization. Clearly, the upper information bound S;.,(r)
calculated using the parameterization 7" — A(9(”) will become smaller as r
increases. By choosing the sequence of parameterizations appropriately, we hope
that the limit of these bounds, lim, _, ,S,.,(r), will provide the minimal Fisher
information. For which sequences can the minimal information be calculated by
this method?

THEOREM 5C. If 0 is scalar, (5.4)-(5.5) hold, and a least favorable curve
§* > N(é*) exists, then a sufficient condition for Sy..(r) to converge to the
minimal Fisher information as r — oo is the following:

For any ¢ > 0, there exist r,> 0 such that r > r, entails that
r

t* — Y at”
i=1

tangent vector of the curve £* — A(£*), and t{” denotes the ith

partial derivative of the map 77 — A(n").

<e¢ for some a,...,a,; here t* denotes the

(5.6)

ProOF. To each tangent ¢t € 7, let us associate with it the numbers A(¢)
and B(t) as follows: suppose ¢ is any curve with tangent equal to ¢, then

AP\ (1Y
( 30 )o( Py )03‘7' ’

( Y )2
% |,
Under (5.5), there is a constant K such that ~

|A()| < K|tl,  [B(t)] < K|t

It can also be checked that A(-) is a linear map and B(*) is a quadratic map.
Thus, both A and B are continuous maps.

N
A(t) = limay' L E
1

N
B(t) =limay'YE
1

Z,
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Now consider the two-dimensional problem with ¢ = (8, £). Here the corre-
sponding bound for the marginal information of 8 is given by

(5.7) Sp.e = Spe — B(2) 'A(t)%.

Note that S, , is a continuous function of ¢.

In the 1 + r dimensional problem with ¢ = (8, #("), the corresponding bound
for the marginal information of 6 is given by
(5.8) So.,,' = Soo - So"lS"l_"Tl o
The bound (5.8) can be shown to be smaller than the bound (5.7) when ¢ in (5.7)
is any linear combination of ¢{”, i = 1,..., r. Combining this fact, condition (5.6)
and the continuity of S; , in ¢, the result follows immediately. O

REMARK. Typically, the least favorable tangent ¢* is difficult to calculate,
and one verifies (5.6) by checking that the span of the partial derivatives {#{",
i =1,...,r} becomes dense in the tangent space 7.

We now discuss the case when 6 is a p-dimensional parameter, it is now no
longer possible to find a one-dimensional parameterization which is as difficult as
a given r-dimensional parameterization n — A(7). Instead, it is only possible to
find a p-dimensional parameterization ¢ — A(£) which is as difficult as the
r-dimensional parameterization. Thus we must search for the most difficult
p-dimensional parameterization £* — A(£*), which gives the greatest lower bound
(among p-dimensional parameterizations) for asymptotic variances of regular
estimators of §. Geometrically, the map ¢* — A(£*) gives rise to a p-dimensional
surface in ' which we will call the least favorable surface for the estimation of 4.
Any curve tangent to the least favorable surface at A = A is the least favorable
curve for estimating a particular scalar function of . The marginal information
for 6 given by the least favorable surface is thus the least upper bound for any
finite parameterization. We will still call this the minimal Fisher information for
the estimation of 6. The general method of calculation outlined above can still be
applied: simply calculate the p X p matrix S,., for each 7 and pass to the
limit. An obvious extension of Theorem 5C then guarantees that the limit is
equal to the minimal Fisher information provided span{t{", i=1,..., r} be-
comes dense in the tangent space as r increases.

Returning finally to the partial likelihood situation, if we have a sequence of
parameterizations to which Theorem 5C applies, the marginal information for
estimating 6 is @ + H,., where @ is the same for any parameterization of the
nuisance parameter, and H,., decreases as the parametric subfamily is enlarged.
To get an upper bound for the loss of information of the partial likelihood, we
calculate H,., from L{” for the subfamilies and pass to the limit. Some
illustrative examples are given in Section 6.

We end this discussion with a remark on a difficulty of the minimal Fisher
information as a criterion for efficiency comparison in the presence of nuisance
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parameters. If an estimate achieves the minimal Fisher information bound, then
there can be no other regular estimate with smaller asymptotic variance, and the
estimate can, justifiably, be regarded as efficient. On the other hand, if the
estimate has asymptotic variance larger than the inverse minimal Fisher informa-
tion, should it then be regarded as inefficient? This question remains largely
unresolved in the case of infinite dimensional nuisance parameters, since in this
case it is not known whether there is any regular estimate which can achieve the
minimal Fisher information bound. Results on some special cases of this problem
can be found in Pfanzagl (1982) and Bickel (1982).

5.3. Incidental nuisance parameter. There are examples, in the i.i.d. case,
where “new components” of the nuisance parameter arise as new observations are
made, in such a way that none of the components of the nuisance parameter can
be estimated with diminishing error. In such cases the MLE is often inconsistent.
Neyman and Scott (1948) called such nuisance parameters “incidental parame-
ters.”

Similar phenomena of inconsistency also occur in partial likelihood situations.
Specifically, if n, denotes the incidental parameter which appears only in the
conditional likelihood f(w,|d,), then the full log-likelihood is

N
L(I\%l)(o’ nlr""nN) = L(IG)(O) + ): log f0,1|"(wn|dn)’

n=1

and the likelihood equations are

LY N g1 )
. — =0 ~— (0 =0.

Given any 8, the value for 7,, can be obtained from the second equation, giving
n,, = 9,(0), a random variable whose distribution is unaffected by the collection
of further data w,,,, X, 1, Wyi9 Xp42--- - Substituting 7(8) back in the first
equation, we obtain the equation for 6:

L(x) ()
(0)+ T £,(0) where £,(6) = “-(0,3,(0)).

n=1

Now, although E[(3I{*’/38),|d,] = 0, because of the distribution of #(8), it is
generally true that E(g,(6,)|d,) # 0, and hence the equation for 6 would lead to
inconsistent estimates.

On the other hand, if the conditions of Theorem 4A are satisfied, the use of
only the partial likelihood L§’(8) will of course produce consistent and asymp-
totically normal estimates. Godambe (1976), Andersen (1973), and Lindsay
(1980, 1982) have given some conditions, based on extensions of the concepts of
sufficiency and ancillarity, under which conditional likelihoods are fully informa-
tive.
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6. Examples of efficiency calculation.

6.1. Missing values in AR processes. As a first example, suppose we observe
J disconnected sequences of a time series: [z,,..., 2, ] [znz,..., 2y,1

oLz, J],wheren1<m1<n2<m2<--- <n;<m,;= N. Suppose
that w1thln the segments the series follows a AR(1) model, i.e., z, = 02, .+ a,
provided z, and z,_, are in the same segment, where —1 < 6 < 1, and the a,’s
are ii.d. N(0,1). A partial likelihood can be set up based on the conditional
densities f,(z,|z,_,) of those 2, whose predecessor z,_, is also observed. Then

1 J mj 9
L%)(o) = _5 Z (zt - 02:—1) s
J=1lt=n;+1
J m; J m;
Uy= - E E a,z2,., and Vy= Z E 212—1-
Jj=1t=n;+1 J=1t=n;+1

The conditions for consistency and asymptotic normality of the MLE § based
on the partial likelihood are easy to verify if N~'V, converges to some positive
constant. For simplicity consider the regular case when the length of each
observed segment is m; — n; = k, and the length of each missing segment is
n;— m;_, = 1. We now discuss three different models for the missing values,
leading to different comparisons of the partial likelihood MLE 8 to the full
MLE 4.

(i) The whole series z,,..., z5 follows an AR(1) model: in this case clearly
N~y —p(k/(k+ 1)1/Q — 6%)) as N > oo; on the other hand, the full
information in the complete data z,,..., zy is 1/(1 — 8%). Hence the asymptotic
efficiency of 6 is bounded from below by &/(k + 1); this bound is close to 1 if &
is much larger than .

When I/k is not negligible, the information lost by using only the partlal
likelihood is contained in the conditional densities of z,, glven 2y s J=2...,d.

(We are ignoring 2z, but this does not affect the asymptotlcs) erte 2, as

V4

nj

=ay +0', ,
where
ax =a, +6a, +-- +0'7%, . isN(,0?)
with
0 = (1= 0 /(1 - 7).

Let I = log f(z, |2m,) and o) = Vax{((«?/«?ﬂ)l("’))0|z .]. By direct calcula-
tion, the (normallzed) 1nf0rmat10n contained in L&‘,") is

1 1 1 [d02)\2
N—l (w) 1202(1—1) 4+ — | — .
j;”f TP+l 1- 6% 204( 30 ) ]
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Thus
(asymp. efficiency of §®)
(6.1) ~ k/(1 - 6?)
/(1 - 02) + [126%0 /(1 - 6% + (1/20%)(30%/30)7]

Note that as I — oo, 1/20%(d02/30)2 > 62/(1 — 6%)? and hence (asymp.
efficiency of 8®) — k(k + (82/(1 — 62)))~ L. This limit is close to 0 if 8 is close
to 1, a result quite contrary to intuition. This seeming contradiction is due to the
oversimplifying assumption that the variance of the random errors are known to
be 1. In fact, if y = Var(a,,) is introduced as a parameter, then the last term in
the denominator of the efficiency expression (6.1) disappears, giving the limit 1
for the efficiency as [ - 0.

This is the only context where the assumption of constant error variance
makes a qualitative difference; in the following discussion we will continue to
assume constant variance for the sake of simplicity.

(i) Incidental parameters: Suppose that at the end of each observed segment,
the level of the series is shifted by an unknown amount g, causing the series to
be unobserved in the next [/ subsequent units of time. That is, we assume
Zm 41 =0(p;+ 2z, Dt A, and that the rest of the series follows an AR(1)
model. Thus each of the conditional densities f(z, JZm, ) involves a different

incidental parameter p;. We will assume also that the sequence B, Rg,... has
enough regularity so that
(6.2) P(8, < N"'V,<§,) > 1 forsome constants §,, 8, > 0.

It is clear that some regularity assumptions for the p;s are necessary for
discussion of asymptotics; condition (6.2) is, in fact, quite mild, being satisfied, for
example, if the p s are uniformly bounded. Under this condition, 6 is con-
sistent for 8; in contrast, the MLE 8 turns out to be an inconsistent estimator
for 6, a result we now proceed to establish. Using the fact that z, = a} L

0(p; it 2Zm) where ay., ,isa N(O, 6?) random variable as defined in (1), we obtain

J (w) 1 —2302 -2 1 -1
%ljw=—‘§0 -—a‘b—+0 2( —0([1.]+z ))( I ([.Ll+2 ))

do? 2
ot o]

l

ad 0
— J(w) — __ —f!
Bp.jlj = (zznj+l 0'(p; + zmj)).
The value of p; that makes (d/dp,)l{*’ zero will also make the second and third
terms of (3/ 80)1 (w) yvanish. Recallmg the form of the likelihood equations (5.9),
we see that the MLE 8 must satisfy the equation
' LY J _, d0*

- —0¢ %— =

a6 2 a6

(6.3)
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It follows from an easy calculation that the solution 9,‘{ ) of (6.3) satisfies

0N =9 — }__L 1 0—2§f’i + 0,(1)
Moo 2 k+ 1INy 3 Jop T
Thus, if (67%(90%/36))s_e, # O then it is impossible for 63 to converge to 6.
Finally, it can be checked that for / > 2 the only real roots of the equation

6" %(30%/00) = 0 are 0 and 1.

(iii) Random level shifts: When there are many nuisance parameters we may
try to model them also. In the present example, we will illustrate the efficiency
calculation for the simple model in which the level shifts are random variables
with a common unknown density, independent of each other and independent of
the a,s. The appropriateness of such a model, of course, depends on the
particular application and should be, just like the original autoregressive assump-
tion, subjected to careful scrutiny.

The above model is equivalent to

(6.4) 2, =a}  +0%, +U,

Rjv1 LIRS

where U,’s are i.i.d. random variables with a common unknown density g, with
respect to a given finite measure p, and are independent of the errors a,’s. The
N(0, 6?) random variable axy .. is as defined in (i).

Suppose that the true dens1ty 8, is positive a.e. (p). Then without loss of
generality we can take p to be the measure induced by g,, and take g, = 1. We
will consider h = @ as our nuisance parameter and consider as the nuisance
parameter space, I' = {h: (h®>dp = 1}.Let h,, h,,... besuch that {1, A}, A,,...}
is an orthonormal basis in L?(u), and consider the sequence of parameterizations:

r -1 r r —1/2 r
1+ Yk, (1 + Z’?ihi) = (1 + Z"l?) (1 + Znihi)'
1 1 1 1

Here || * || denotes the norm in L%(p), and we use ( *,*) to denote the corre-
sponding inner product. To verify the crucial condition (5.6), it suffices to make
the following elementary observations:

(a) the tangent space (of I') at A, =11is = {h: (h,1) =0},

(b) the ith partial derivative of A(<|n) at A, is simply A;, i = 1,2,...,
(¢) {hy, h,,...} forms an orthonormal basis of 7.

(6.5) h(en) =

Therefore, we can proceed to calculate the minimal Fisher information by the
method of Section 5.2. By (6.4),

l('W)=10gf Zn;, |zm- = log ko2, — olzm- -u g(u) d""(u) ’
J J+1 J

—u2/2¢12

k
o(u) = v/——o
Let y,=2, - 0’2,,,1_ = ay + U;. Then by direct calculation,
( arw
J

(66 o), = a0 @ () + wi )
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where
1 do 1o 1 do?
T T TR T o
[ = W)k (y—w)dp(u)
M) = T - () b
and

i

("’f"’)) - 2(Gh)(%),

where G is the integral operator defined by
Jko(y — u)h(u) dp(u)
(Gh)(y) = —
Jko(y — u) dp(u)

These and many expressions derived below can be given a probabilistic interpre-
tation if we introduce three abstract random variables Z, U, and Y, where Z
denotes a r.v. having a distribution equal to the marginal distribution of 2
U denotes a r.v. having density go(u), and Y denotes a r.v. such that the
distribution of Y given U = u is N(u, o?). It is also assumed that Z is indepen-
dent of (U, Y). The operator G can now be interpreted as a conditional expecta-
tion (Gh)(y) = E(h(U)|Y = y). Furthermore, it can be easily checked that
J
J7 1Y Var

( az}w)
j=1 36 /o

- o}E(Z*)Var(f,(Y)) + 2a,0, E(Z)Cov( f,(Y), fo(Y)) + aiVar(f,(Y)),
J1 z Cov

(az}m) oI5
= 30 o'\ o |,

- Cov[alE(Z)fl(Y) t a, fz(Y)a(Ghi)(Y)]-
The first limit is the variance of
6.7) [a(Var( £,(Y)))Z] + £,(Y), where f(Y) = q,E(Z)f,(Y) + az f(Y).

Thus the marginal information H,., for 8 contained in L{” is obtained by
setting (k + [)H,., = the residual variance in the regression of the random
variable (6.7) on the variables (Gh,)X(Y), i =1,...,r

Since Z is independent of Y it is clear that H,., cannot be made to vanish by
increasing r. We now show that the variance of the second term f(Y) in (6.7) can
be explained arbitrarily well by increasing the number of explanatory variables
in the regression. Consider the Hilbert spaces H(Y) = {f(Y): Ef%Y) < o},
and H(U) = {h(U): ER*(U) < }. It is clear that fy(Y) € H(Y). To prove
the result, it suffices to show that f,(Y) is in the closure of the subspace
of H(Y) spanned by {1,Gh,,Gh,,...}. Since {1, h}, h,,...} is a basis of
H(U) and G1 =1, it is enough to show that G: H(U) —» H(Y) is an iso-
morphism. The continuity of G follows from the inequality E{[(Gh)Y)]?} =

2
mj

2
m;
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E{[E(h(U)|Y)]*} < ER*(U) < 0. That this map is 1-1 can be seen by checking
that

(Gr)(y) =0 Vy=>fk.,(y—u)g0(u)h(u)du=0 Vy=h(U)=0 ae.

That this map is also onto can be seen by the following argument: if f(Y) L
Gh(Y) for all A€ H(Y), then we have E(A(U)f(Y)) =0 for all A; hence
E(f(Y)|U = u) = 0 for all u € support (g,); it then follows from the complete-
ness of the normal family that f(Y) =

Thus the minimal Fisher information contained in the supplementary partial
likelihood L™ is a?Var( f,(Y))Var(Z). Can this information for § really be
utilized? The following argument convinces us that there must be some way to
make use of at least part of this information. Consider the simplest case I = 1;
then z, = bz, +e; where ¢;=a,  + U Suppose 2, can take only two
values, say 8 and —4. Then condltlonal on the z2,,'s, the observatlons z,’shavea
two-sample location shift structure. Though the den51ty for ¢; is unknown it is
possible to estimate the shift 266. The larger the value of & [and thus Var(Z)],
the easier it is to estimate 6. In our model the z,,’s can of course take values
other than +4, but even if we throw away all the information in f(z, |2,
except for those z,, ’s with values close to +8, the above argument 1mp11es that
we still can use the remaining ones to estimate 6.

How can one make use of this information? A natural approach might be some
kind of adaptive estimation involving the estimation of the mixture density g.
However, such a method would be very complicated and its properties are largely
unknown. The loss of information, a?Var(f,(Y))Var(Z), serves as a guide in
choosing between the partial likelihood or more complicated methods. Note that
a; decreases exponentially as the length [/ of the missing sequences increases.
Thus if 6, is not too close to 1 and [ is large, we can be sure that the partial
likelihood is nearly fully informative.

REMARK. There is a special structure in this example which, at least heuristi-
cally, allows an easier computation of the minimal Fisher information. For fixed 4
and Zmy ¥ =2, ~ 6% 2, is a complete sufficient statistics for the unknown
shift u;. In the above we have by exploiting this completeness and sufficiency,
essentlally showed that the affine subspace generated by the scores of the
nuisance parameters, (3/{*)/d7,), i = 1,2,..., is the same as the subspace
generated by L2 functlons of y;. Since projection to this subspace is the same as
conditional expectation, the minimal Fisher information can be calculated more
easily in the following way: _

(a) calculate the “conditional 6-score” s; — E(s;|y;) where s; denotes the
0-score given in (6.6), i.e.,

s; = E(s81%) = ai(2m, = E(2)) ()
(b) calculate the “conditional score information,”
i, = Var(s; — E(s;|y))
= a?Var(Z)Var( £,(Y)).
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This gives the same value as the minimal Fisher information derived above. The
approach of studying information by conditioning on a complete sufficient
statistics (which may depend on 6) of the incidental parameter is studied in an
insightful paper of Lindsay (1983). The definition of the conditional score
information (i,) as given in that paper is not entirely correct—being defined in
terms of the density conditional on the incidental parameter (rather than the
density with the incidental parameter integrated out); which, in the context of
the current example, leads to i, = a?Var(Z)E(Y — U)?, a value always too large
as compared to that given above in (b), namely, a?Var(Z)E(Y — E(U|Y))>.
Nevertheless, Lindsay’s main theorem which asserts that in the i.i.d. exponential
family mixture setting i is the same as the minimal Fisher information, seems to
be correct after appropriate modification on the definition of i, The above
example indicates that Lindsay’s theorem might be expected to hold in more
general settings.

6.2. Proportional hazard model. As another illustration of the general the-
ory, we treat the proportional hazard model under the assumption of no censor-
ing. In this case the information missed by the partial likelihood L is
contained in the conditional distribution of ¢, given d, = (¢,_,,R;) where
R, = R, = risk set after ¢,_,. Now, given d,, t, is a random variable with
hazard function Ay(£)b,(0) for t > ¢, ,, where b,(0) =X,.qw(b,2) =
(N — n+ 1L, czp(2)w(8, 2). Thus,

14 = log f(£,/d,,) = log Aq(t,) + log b,(6) = [* Ao(£)B,(6) ,

n—-1

and
™ ¢,
a0, |, =a, —a,T* whereT*= f 71>\00(t)bn(00) dt,
(6.8)

d
Zzelpn(z)%w(ao’ Z)

(%
Qi =\ 755 /0] T
a6 0 Ezelpn(z)w(ao’z)

Here A (+) denotes the true value of the base line hazard A ().
Embedding A ((¢) in the parametric family A (£) = A oo(2) exp{Xi_,1,8:(¢)}, we
have

d ,
FoMlE) = Rl £)eE8O - g, (2),

J

lw) . !
(69) ( - ) = g(t) = [ Aal0)Bu(00)g,(8)

J

n—1

= —&(t (T2 = 1) + Oty — o).

From the distribution of ¢, given d,, the distribution of T,* conditional on d,, is
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seen to be an exponential distribution with expectation 1; using this fact, we have

-

al(w) al(w)
Cov - ’ . dn = 0,Q,;,
i 80‘ 0 301 0 J
(a1 [ a1
COV “ ’ - dn = anig '(tn—l)’
\ 76, ), | o, |, /
[ g1\ [ g1
Covl| —— |, | ld.| = g,(t,_1)g(t,_,).
oy |\ amy |, 8,(t,-1)g;(t,_1)

We now discuss the asymptotic behavior of these conditional covariances as
N - o0, n > o0, n/N - x € (0,1); rigorous proof for every step will not be
provided, but sufficient details are given so that the limiting values can be
obtained numerically in each model specification. The limiting value of a,;
depends on that of p,(z). Hence,

ZZEZ-}—lZ(‘x) aol

ZZE Zz’z(x)w(aoy Z)

where h, is obtained by solving an O.D.E. as g'ivén in Appendix A.2. To
investigate the asymptotic behavior of ¢,, note that from E(T* ,|d,.,) = 1, we
have

a
w(00, z)

(6.10) a, —alx)= asn/N - x,

1 1
E L1 — d = = .
[AOO(tn)( n+1 tn)l n+1] N(l _ x) Zzelhz(x)w(aoy Z)
Suppose #(x) is the limiting value of ¢, as n/N - x,
z -
A(t) = [Aao(s)ds and y(x) = A(#(x)),
then the above expression suggests that y satisfies the O.D.E.
1 1
1-x X, cph,(x)w(by, 2)
Thus #(x) = A~'(y(x)) can always be solved numerically for any specified w and
A go; under obvious conditions, #(x) is a strictly increasing function of x, #(x) — oo
if x —» 1. If we define £(x) = g,(#x)), then gi(t,_,) - g(x)asn/N — x.

Finally, returning to the conditional covariance, we see that
- -

with y(0) = 0.

d
(6.11) EY(JC) =

1N o\ [ a1 ,
R i N o o fjaix)a;(x) dv = o Hoy,
1 8 [faw) ([ aw ”
N nz=:1 Cov a6; 0’ 3"'1’ 0 dnJ —d) '/<; ai(x)gj(x) dx = et Hi,p+j’
; _
1N A\ [ a1 L
N ngl Cov anj 0’ a"’j' 0 d" ” ‘/(;gj(x)gj,(x) dx T det Hp+j,p+j"
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It is easy to see that under suitable conditions the functions a,(¢+), i = 1,..., p,
are square integrable functions, i.e., the regression of (9/*)/30), on (3’ /3dv),
is equivalent to a projection in the Hilbert space L2[0,1] of a,,..., a, on the
subspace spanned by £,,..., &,. Since the g,’s are arbitrary, the g;’s are also
arbitrary, and hence the residual variance can be made arbitrarily small by
choosing g;’s appropriately. In the natural Cox model, Efron (1977), and Oakes
(1977) have given formulae for the efficiency of the partial likelihood. But the
calculations from these formulae can become very complicated in special cases. In
the theory presented here, the parameterization of the base line hazard is general
enough to include the special cases studied by the above authors. Explicit steps
are provided for the numerical computation of the matrix of loss of information.
The computation is straightforward if an O.D.E. solver is available. The above
discussion also appears to be the first systematic account of efficiency calculation
for the case of the general form of the relative risk. However, further effort is
needed to remove the present restriction of no censoring.

APPENDIX

A.l. Ergodicity of some generalized AR processes. For the Bernoulli
case, the transition matrix for {Y,} is

NG 0,0) (0,1) (1,0) (1,1)
(0,0) 1-6, 6, 0 0

(0,1) 0 0 1-(6,+6,) (6, +0,)
(1,0) | 1 —(6,+86,) (6,+9, 0 0

(1,1) 0 0 1-(6,+6,+86,) (6,+86,+86,)

The region of ergodicity is clearly determined by requiring all eight nonzero
entries in the matrix to be strictly positive. This defines a nonempty polygon in
R3.
For the Poisson case, let p, = (1 — e™ ™) = E(x,|x,_;,.-.), and
g(x’ ylny m) = P(xi =XX_,= ylxi—l =n,x; ;= m)’

then

()"

g(x’ ylm’ n) = anye_u" x!

= Snyexp[—(l - e—(00+01y+02m))]
X(l - exp[—'(oo + 01y + 02m)])x/x!’

where §,, is the Kronecker delta symbol. If 8, > 0, it is clear that all states are
reachable from each other. Hence the chain is irreducible. It is clearly aperiodic.
To see that it is ergodic, let g2(x, y|n, m) be the two-step transition matrix.
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Then g2%((0,0)|(n, m)) > ¢ > 0 for some ¢ > 0. Hence
P(x2i =0,%5,_1 = Olxy,;_yy=n, Xoi-1n-1 = m) > &,
S0,
Py(first return to (0,0) > 2n + 1)
= POO((x2’ xl) * (010)r(x4! x3) #* (OrO) e (x2n1 x2n71) * (010))
<(1-¢)".

It follows that mean recurrence time to (0, 0) is finite, and the chain is ergodic.

A.2. Stochastic development of proportional hazard systems. The
model is described in Section 3.3. First consider the case when there is no
censoring, then conditional on the death times Lay - - -5 L), the stochastic evolu-
tion of the system is equivalent to the following: a population of N individuals is
sequentially sampled, at each draw the probability for any individual to be
selected is proportional to the weight w(f,, z) where z is the explanatory
variable value associated with that individual, the selected individual is then
removed before the next draw. Throughout we suppose that the set of possible
values of the explanatory variable is finite, i.e., Z = {z®,..., 25}, An individual
will be called a type & individual if the associated explanatory variable value is
2™, Let w, = w(6,, 2») and

(A1) x, = k if the individual selected at the nth draw is of type £,
A2) MY}” = the number of type k individuals just before the nth draw,
nk
(A3) A =M /(N - n+ 1) = proportion of type k before the nth draw,

(a4) g - wkha:p/( L whP) = P, = ks, 5,00
j=1

The question is: With the initial proportions gq,,...,qx of the K types of
individuals fixed and the population size N — oo, is there any nontrivial limiting
behavior in the evolution of the system? If so, how to calculate the limits?

A simple simulation showed that the quantities that become stable are the
values of A{}) and g}’ when n increases with N in such a way that n/N - t.
If we define the random vector functions A‘V)(+) and g™)(+) by

(A5)  RM(¢) = {h%) ift = n/N

. . . fork=1,..., K,
linear interpolate otherwise

(A6) £i™(2) = w, k(1) / ( T t)),

the simulation result suggested that there is a function Z(+) such that, as
N - oo, h™X(t) »ph(t) forall 0 < ¢ < 1.

How does the limiting function A(+) depend on the sampling weights w,’s and
the initial proportions g,’s, and how can one actually calculate it? We will only
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briefly indicate the resolution to these questions here: from (A.1)-(A.4) it is clear
that

n+1 1 X -
AN - MM s, I
k ( N ) N — n( nk jgl kj (x,,—k))

A7
- N N-n N —n ) WGk
n+1 n
E[hgv)( ~ ) - hEN)(ﬁ) xl,...,x,,]
(A8)
1

1
=¥ TN /N - gV (n/N)).

Writing ¢ = n/N, At=1/N, and passing to the limit as N — oo in (A.8), we
obtain

(A.9) h(t+ At) — h(t) = At- (h(t) — &(t))/(1 - ¢).

In other words, to determine A(?), it is only necessary to solve the system of
ordinary differential equations:

(A.10) Ch(t) = (h(1) — &),
with

gi(t) = w,jzk(t)/( g w,jlj(t))
and

h,(0) = g, (initial values).

For example, suppose the initial population size is N = 5120, divided equally
into two types, and the sampling weights are w, : w, = 4:1. A computer Monte
Carlo experiment of 200 replications is performed. In each replication, we record
the proportion £(0.4) of the type 1 individuals among those still surviving just
before the 2048th death (5120 X 0.4 = 2048). The mean of these 200 proportions
is 0.33592 and the SD is 0.0055. The normal score plot is given in Figure A.1
below; there is clearly no evidence of nonnormality. By solving the O.D.E. (A.10)
for A, we obtain A(0.4) = 0.33597. Using the A solved from (A.10), we solve (A.11)
to get o = Var[YN (h — h)], at ¢t = 0.4, we obtain v = 0.1491, giving SD(k) =
0.0054. In fact, much more is true: forany A < 1, sup0<,<A|h(N)(t) h(t)| =p 0;
furthermore, for any t<1, VN (h(”)(t) h(t)) is asymptotically normal w1th
well determined variances and covariances. For example, in the simplest case,

= 2, if 5(¢) = Var[VN (hN(t) — hy(¢)] and S(¢) = 2w, h,(t), then

20

d _ _ _ 1
(A.11) a” = m[(s -w,) + g (w, - wz)] )2g1( &)
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F1G. A.1. Normal score plots of h(0.4) for 200 replications.

with ©(0) = 0. The rigorous proofs are not of central interest in this paper and are
omitted. These results are in excellent agreement with those from simulation.

To extend these results to the case when censoring is possible, let N;, = total
number of deaths, N, = total number of censors, then N = N, + N, = population
size. Let MY, D, g, hN)(+), gN)(+) be as before, in addition, let I{}’ =
number of censors during the interval (,,), ¢, 1)), i.e., between the nth and the
(n + 1th deaths, and L)) = X7_,l{)). Assume that, as N - oo, Np/N =
proportion of deaths - 1 — a, and as n/N,, — x, the proportion of various types
of censors stabilizes, i.e.,

(A.12) L) /N, - somelimit y,(x), asn/N, - x.

Then by the same reasoning that led to (A.10), we can derive the ordinary
differential equation for A:

(1-a)?

(A13) By = T o [ (k= g)e+ alhri= v,

-

where v, = LXy,.
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