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SPECIAL INVITED PAPER
ON THE CONSISTENCY OF BAYES ESTIMATES

By PERrsi DiacoNis' AND DAVID FREEDMAN?

Stanford University and University of California, Berkeley

We discuss frequency properties of Bayes rules, paying special attention
to consistency. Some new and fairly natural counterexamples are given,
involving nonparametric estimates of location. Even the Dirichlet prior can
lead to inconsistent estimates if used too aggressively. Finally, we discuss
reasons for Bayesians to be interested in frequency properties of Bayes rules.
As a part of the discussion we give a subjective equivalent to consistency and
compute the derivative of the map taking priors to posteriors.

1. Consistency of Bayes rules. One of the basic problems in statistics can
be put this way. Data is collected following a probability model with unknown
parameters; the parameters are to be estimated from the data. Often, there is
prior information about the parameters, for example, their probable sign or order
of magnitude. Many statisticians express such information in the form of a prior
probability over the unknown parameters. Estimates based on prior probabilities
will be called Bayes estimates in what follows.

This paper studies points of contact between frequentist and Bayesian statis-
tics. We derive frequency properties of Bayes estimates and suggest a Bayesian
interpretation for some frequentist computations. Our main concern is con-
sistency: as more and more data are collected, will the Bayes estimates converge
to the true value for the parameters?

If the underlying probability mechanism has only a finite number of possible
outcomes (tossing a coin or die) and the prior probability does not exclude the
true parameter values as impossible, it has long been known that Bayes estimates
are consistent. As will be discussed below, if the underlying mechanism allows an
infinite number of possible outcomes (e.g., estimation of an unknown probability
on the integers), Bayes estimates can be inconsistent: as more and more data
comes in, some Bayesian statisticians will become more and more convinced of
the wrong answer. The class of tail-free and Dirichlet priors was introduced to
insure consistency in such settings. We present examples showing that mechani-
cal extension of such priors to other very similar settings leads to inconsistent
estimates.

In Section 2 we review other points of contact between the mathematics of
frequentist and Bayesian statistics. In Section 3 we offer two Bayesian uses for
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2 P. DIACONIS AND D. FREEDMAN

frequentist computations. The first is a subjective equivalent to consistency
involving intersubjective agreement. The second uses frequency computations as
a way of thinking about priors. As part of the discussion, we compute the
derivative of the map taking priors to posteriors. Mathematical details are given
in the appendices.

To define things, consider a family of probabilities {@4: § € ©} on a space Z.
Write @7 for the infinite product measure on £ * which makes the coordinate
random variables X,, X,,..., independent with common distribution @, We
will assume throughout that & and © are Borel subsets of complete separable
metric spaces. Let p be a prior probability on ©. Let P, be the joint distribution
of the parameter and the data:

P(A x B) =fAQB°(B)u(d0)

for Borel sets A and B. The posterior is the P,-distribution of the parameter 6
given the data X,,..., X,; we denote this by p,(d0|X,,..., X,)). The usual
Bayes estimate is just the mean of the posterior.

Here are a few typical examples:

Coin-tossing. % has two points, H and T for heads and tails, respectively.
The parameter space ® can be taken as the unit interval: § € 0 is the probabil-
ity of a head. Then Z* is the space of sequences of heads and tails; @5 makes
the sequence independent; in any position there is chance 6 of getting a head and
1 — 6 of getting a tail. We call this a “f-coin.” Informally, P, may be described as
follows: choose 8 at random from g, then toss a #-coin. Of course, the posterior
p(d8|X,,..., X,) has a density with respect to the prior, proportional to the
likelihood function:

05— 05| fo501 = 0y w(an)|,

where S is the number of heads and n — S the number of tails. Thus, the Bayes
estimate is

J657 1@ = 0)" P u(do)/ [65(1 - 0)"F(an).

Rolling a die. This is the same as coin tossing, except that 2= {1,2,3,4,5,6},
and O is the “6-simplex,” all sequences §,,..., 6 of length six whose terms are
nonnegative and add to one:

6
;>0 and ) 6,=1.
i=1

Rolling an infinite die. The same, except = {1,2,3,...} and © is an
infinite-dimensional simplex. Despite the superficial similarity, all the paradoxes
of inconsistency already appear in this case. From our point of view, this is the
simplest natural example of a nonparametric problem: estimating an unknown
probability on the positive integers. On the other hand, we are still in the
dominated case, so the posterior can still be computed in the usual way: p,
denotes this familiar version of the posterior.
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The real line. Now &= (— o0, ), and O is the set of all probabilities on Z.
This is another nonparametric problem: estimating an unknown probability on
the line. There is an additional complication: © is undominated. The posterior
still exists but in general there is no explicit formula for it. There will usually be
many versions of the posterior and this causes some technical difficulties.

We will use the weak-star topology: if p, and p are probabilities on ©, then
p, = p iff ffdp, — [fdp for all bounded continuous functions f on ©. We
denote point mass at 8 by 8. Thus, u, = &, iff p,(U) — 1 for every neighboar-
hood U of 6.

In the coin tossing case, © is the unit interval; p, — p weak-star if and only if
1 ,[0, x] = p[0, x] for all intervals such that p{x} = 0. Turn next to the infinite
die. Then p,, — p if and only if

p.{016, <x,and 6, < x,... and 4, < x,}
- p{0l6, <x,and 0, < x,... and 0, < x,}
for all £ and all x’s such that
pn{6|0,=x,0r0,=x,...0r0,=x,} =0.

Finally, take the line. Changing the imagery a little, p, — p if and only if

k k
) [n / fi<x)o(dx)]u,,<do) > [ [rl / f,-<x)o<dx)]u(do)
0li=1 6] i=1
for all £ and all bounded continuous functions f; on Z.

Consistency. The pair (8, p,) is consistent if for @3’-almost all sequences, the
posterior p, converges to point mass at § in the weak-star topology. The
weak-star topology has the fewest open sets of any natural topology, so it is fairly
easy for posteriors to be consistent. Minor technical difficulties apart, if (4, n,,) is
consistent in our sense, the Bayes estimate for §—in the sense of a posterior
mean—will be consistent too. We say p, is consistent if (8, p,,) is consistent for
all 4. Notice that consistency depends to some extent on the version selected for
B ,,. Often, there is only one natural version, as in the dominated case. Sometimes,
a natural version can be selected on the basis of continuity in the data: see Zabell
(1979) and Tjur (1980). Sometimes, however, there is no sensible way to resolve
the ambiguity. When there is a natural version of p,, as in the dominated case,
we will say that (6, p) is consistent rather than (0, u,,).

In the coin-tossing example, what does it mean for (4, n,) to be consistent?
Just that a Bayesian with prior p, who happens to be tossing a 6-coin, will
eventually find this out: his posterior will concentrate in smaller and smaller
intervals around 6 as more and more data comes in. Likewise for the infinite die.
More specifically, (8, 1) is consistent if and only if for any positive integer & and
any small positive e,

L AN, Xy, X} 21 asn—> o ae. QF,
where
N,,={¢:9€0Oand|p,— 0| <efori=1,...,k}.
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For coin-tossing, (0, n) is consistent iff p assigns positive mass to every open
interval around 6. For the infinite die the situation is much more
complicated—and that is what the present discussion is all about.

Doob (1948) proved a very general theorem on consistency: one implication is
that (0, p,,) is consistent for p-almost all . Thus, a Bayesian with prior u can be
sure that the posterior will converge. (This does not depend on the version,
because null sets do not matter here.) Doob’s work has been extended by
Breiman, Le Cam, and Schwartz (1964). However, a frequentist using a Bayes
rule will want to know for which 8°’s the rule is consistent.

For smooth, finite-dimensional families, (8, p) is consistent if and only if @ is
in the support of p. See Freedman (1963) or Schwartz (1965). (The support is the
smallest closed set of probability 1.) But the assumption of finite dimensionality
is really needed. For example, take & to be the positive integers. Take ® to be
the set of all probabilities on Z. Take 8 to be the geometric distribution with
parameter ;. Freedman (1963) constructed a prior p with the following proper-
ties:

o Every open neighborhood of 8 has positive p-probability.
o For f>-almost all sequences, the posterior converges to point mass at a
geometric distribution with parameter .

This example is generic in a topological sense: for most priors p and most
parameters 6, the pair (4, p) is inconsistent. To make this precise, we need the
notion of “category.” A set is of the first category if it is contained in a countable
union of closed, nowhere dense sets. First-category sets are the topological
equivalents of null sets. Put the weak-star topology on #(®), the set of priors on
0. Then the set of consistent pairs (8, p) is of the first category in ® X #(0). See
Freedman (1965).

Tail-free and Dirichlet priors. The existence of such counterexamples sug-
gests the need for some careful investigation. Are there priors consistent for all
parameters? (We will call such priors “consistent.”) For countable &, Freedman
suggested using tail-free and Dirichlet priors, showing that these priors are
consistent at all parameters. This work was extended by Fabius (1964), who
showed how to construct consistent tail-free priors for any complete, separable
metric . These ideas were further developed by Ferguson (1973,1974) with an
excellent survey of the literature. Other extensions include “neutral-to-the-right
priors.” See Doksum (1974).

Here is a brief description of tail-free priors. For definiteness, consider the
problem of estimating an unknown probability 8 on the positive integers. Write 6,
for the ith coordinate of 8. We visualize the prior as randomly selecting a
probability on the positive integers. Even more crudely, what the prior does is to
randomly distribute a total mass of 1 among the integers. Thus, 6, is the
randomly selected mass assigned to the integer 1, while 6, is the mass assigned to
2, and so on.
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The simplest tail-free prior on the integers can be described by “stick-break-
ing.” Let S,, S,, ..., be independent and uniform over [0,1]. Think of a stick of
unit length. Break off a piece of length 6, = S,. This leaves a remaining piece of
length 1 — 6,. Now break off 6, = S,(1 — 6,), §; = Sy(1 — 6, — 0,), and so forth.

Freedman (1963) suggested a useful extension: the distribution of any finite
number of the 6;, say 0,,..., 8y, can be specified in an essentially arbitrary way.
Then the prior is completed by stick-breaking; the “cuts” S; are independent but
not necessarily uniform or even identically distributed. The S; take values in
(0, 1) and have arbitrary distributions with two restrictions: S; falls into any open
interval with positive probability and X E(S;) = oo. The cuts are used to distrib-
ute mass inductively as follows: suppose mass m = Zf; 10, < 1 has been assigned
and mass 1 — m remains; now mass 0y, = (1 — m)Sy, is assigned to N + 1
and mass

1-m-(1- m)Sy., = (1-m)(1- Sn+1)

is left for the next move, which is carried out using Sy, ,, and so on.

The motivation is as follows. A Bayesian may have a reasonably clear opinion
about 6, for some i’s. However, it seems unlikely that such an opinion can be
carefully quantified for all i. Freedman’s extension of stick-breaking allows a
Bayesian to approximate any prior by one consistent at all parameter values;
indeed, any prior can be approximated (weak-star) by specifying the distribution
of a finite number of 4,

Early users of “stick-breaking” were Banach (1964), Kahane and Salem (1958),
and Eberlein (1962). Kahane and Salem studied sums S = ¥%,r,X;; the X, are
iid, taking the values 0 or 1 with probability ; each; the r; are nonnegative and
sum to 1. When is the distribution of S absolutely continuous? Kahane and
Salem prove that for “almost all” sequences (7, 15, ...) the law of S is absolutely
continuous with an L? density; “almost all” is relative to a stick-breaking
measure. Banach and Eberlein were interested in a natural integral over the
function spaces [, and /; and used stick-breaking as a key ingredient.

Dirichlet priors are tail-free; the S; having certain beta distributions. Usually,
Dirichlet priors are parametrized in terms of a finite measure a on the observa-
tion space %, which is for the moment general. The Dirichlet prior D(a) with
base measure a can be characterized as follows. Partition the observation space &
into a finite number of sets A,, A,,..., A,. Consider a probability § on the
observation space, selected at random from D(a). Then 6(A,),...,0(A,) are
random variables with respect to D(a). These have a Dirichlet distribution on the
k-simplex, with parameter vector (a(A,),..., a(A,)). More concretely, these are
distributed like

U/s,...,U/S,

where S = U, + --- + U, the U, being independent gamma variables with shape
parameter a(A;). When the observation space is the integers, a is specified by
a countable collection of numbers a,, a,,.... Let ||a|| = La,;. By assumption,
||| < oo. For a Dirichlet prior with parameter measure a on the positive
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integers, the cut S; has a beta distribution with the two parameters a; + --- +a;
and ||la|| — (a; + -+ +a;).

Dirichlet priors have been suggested for use in a wide variety of problems.
Also, some writers have considered using mixtures of Dirichlet priors; see Antoniak
(1974) or Dalal and Hall (1980, 1983). It is natural to ask whether mixtures of
Dirichlet priors are consistent. The first step is easy; any mixture of a finite
number of consistent priors is consistent. However, in Freedman and Diaconis
(1983), we showed that a countable mixture of Dirichlet priors can be incon-
sistent. A starting point of our construction is an example showing that a mixture
of a Dirichlet prior and a point mass at a certain long-tailed probability is
inconsistent. Such priors are similar to the ones suggested by Jeffreys (1967) for
Bayesian hypothesis testing. On the positive side, we showed that if the mass of
the parameter measures are bounded, then the mixture is consistent.

The inconsistent priors in Freedman (1963) were constructed with malice
aforethought. Bayesian reaction seems to be, “Oh, nobody would ever use a prior
like that.” See, for example, the remarks in Box, Leonard, and Wu (1983, page xi).
That a Jeffreys-style prior is inconsistent should therefore be of interest. More-
over, in Diaconis and Freedman (1986), we give examples of priors suggested by
practicing Bayesians, which turn out to be inconsistent. That paper is fairly
technical and the following heuristic discussion may be helpful.

The location problem. Consider estimating an unknown location parameter ¢
with squared error as loss. The observations are modelled as

X,=0+e, i=12....

The ¢; are independent disturbance terms with a common distribution G. If G
has known density g and a prior u is put on 8, then the Bayes estimate is the
mean of the posterior distribution:

811 g(x; — 8) p(db)
TN g(x; - 0)p(df)

If u(d@) is taken as Lebesgue measure, then this becomes the Pitman estimator.
If the density g in (1.1) is unknown, it can be estimated from the data. Often, g
is assumed to belong to some parametric family. Fraser (1976), Box and Tiao
(1973, Chapters 3 and 4), and Johns (1979) all propose estimators of that general
type, with a prior distribution on the parameters of the family. Such estimators
can be inconsistent; the argument is like that in Freedman and Diaconis (1982b)
or Diaconis and Freedman (1986) as outlined below.

A nonparametric approach to estimating G is also natural. This involves
putting a prior on 8 and a prior on the law G of ;. Dalal (1979a, b) has suggested
using a Dirichlet prior for G. We will now show that for a Dirichlet prior with a
Cauchy base measure a, the Bayes estimates are inconsistent.

To avoid identifiability problems, we will assume that the law G of ¢ is
symmetric. To put a prior on symmetric G’s, we symmetrize the Dirichlet as
follows: if G is a distribution function for a random variable X, let G~ be the
distribution function of —X and let G = (G + G"), so G is symmetric. Let D,

(1.1) 6=
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be the law of G, where G has a Dirichlet distribution with base measure « on R.
This is a symmetrized Dirichlet. The construction was first suggested by Dalal
(19794, b). For further discussion see Hannum and Hollander (1983). We assume
that the base measure a has density a’ and write ||a|| = a(R). We make § and G
independent; our prior for 6 has density f on R while G is chosen from D,.
The posterior distribution of 6 is computed in Lemma 3.1 of Diaconis and
Freedman (1986). For simplicity, we only discuss the Bayes estimate here.

THEOREM 1. Suppose that X,,..., X, are all distinct. Let §;; = 3(X; + X)
and suppose 0, ; are distinct. The Bayes estimate 0 is

[fﬂw(ﬂ)dﬁ + Zﬂuw,j]/[fw(ﬁ)dﬁ + Y o ]

i<j i<j

with

w(8) = llal /(6) klfl}w(xk -

W; ) %[ f(oij)/al(aij)] ﬁ ""(Xk - oij)’

k=1
5.

1 7]

HX - X;).

For the next result, take f to be standard normal and a to be Cauchy. We
suppose that in fact the ¢, have a density A which is symmetric about 0, with a
strict maximum at 0; further, A is infinitely differentiable and vanishes off a
compact interval.

THEOREM 2. For some h, the Bayes estimate is inconsistent. Indeed, for
large n, there is probability near ; that 0 is close to y and probability near 3
that 0 is close to —vy, where y + 0 depends on h.

REMARKS. (1) Theorem 2 is valid when « is any t-distribution.

(2) When sampling from a continuous density, X; and §,; will be distinct with
probability 1. .

(3) The Bayes estimate # is a convex combination of two other estimates:

8, = fﬁw(0)d0/fw(0)d0
and
Z ij lj Zwij'
i<j i<y

The first is a Bayes estimate, as at (1.1), when sampling from known density «’.
The second is a weighted average of the ,;, which estimate § from the pair X,
and X;. If o’ is one of the standard unimodal densities such as normal or Cauchy,
the weight «,; is relatively large when 6, is in the center of the X,’s. It turns out
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Fi16.1. The counterexample density h.

that 6, dominates 8, as n — oo for some h; for others 0, will dominate. Here, we
focus on the first case.

(4) The h constructed in Theorem 2 is trimodal, as in Figure 1. It has a unique
maximum at 0 but the two other modes matter. If desired, 2 can be chosen
strictly positive on the interior of its interval of support.

(5) Any of the classical estimators, such as the mean or the median, will be
consistent in this situation, so the Bayes estimates do worse than available
frequentist procedures.

(6) In Diaconis and Freedman (1986), we argue that the Bayes estimate is
consistent for any strongly unimodal density A: strong unimodality means that A
increases up to its unique maximum and then decreases. Further, we show that if
log o’ is convex, then the Bayes estimate is consistent for any symmetric A.

(7) Doss (1983a,b,1984) has carried out similar computations for neutral to
the right and tail-free priors. He has also introduced some other methods of
symmetrizing. Very roughly, his results parallel ours; it does not seem possible to
find a consistent prior concentrated in a neighborhood of the normal location
family.

(8) A subjective rationale for mixtures of location models is discussed in
Freedman and Diaconis (1982a).

We now sketch the argument for inconsistency. As explained in Remark 3, the
Bayes estimate is essentially

8, = joa(o)do/fa(o)do

with ©(0) =TT 1/[1 + (X, — 6)?], the X, being the data. We have

i=1

w(8) = exp{— En:l logll + (X, - 0)2]} = exp{—nE[log(l + (X, - 0)2)]}
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F16.2. The function H.

In the approximation, the sum has been replaced by its mean under the true
sampling distribution. Now consider

H(8) = E{log[1 + (X - 8)*]}.

If X takes only the two values +a where a > 1, then H has a local maximum at
0, a global minimum at +vy, and tends to infinity at + co. Of course, H is
symmetric. See Figure 2.

Now we estimate the integrals in the numerator and denominator of 4, by
Laplace’s method. As a function, w(8) is close to exp[ —nH(6)], so only #’s near
+ vy matter, and as n tends to infinity, 91 oscillates between +y and —7v. The
two-point distribution of X can be smoothed out to the density A shown in
Figure 1.

This argument is like the one used in Freedman and Diaconis (1982b) to show
inconsistency of M-estimators. It has been objected that the counterexample
density 4 is not in the “support” of the Dirichlet, since the Dirichlet chooses a
discrete measure with probability 1. A technical response is that the Dirichlet
assigns positive mass to every open set of probabilities, so 4 is in the support—the
smallest closed set of full prior mass. A broader response is that the Dirichlet
assigns zero mass to any particular probability. After the fact, therefore, any
troublesome probability can be differentiated in some qualitative way from a
Borel set of full prior mass.

The foregoing discussion has all been asymptotic. What are the implications
with finite samples? Consider an estimation problem with a large amount of data
—and a large number of parameters. A Bayes rule will do well for most
parameter values, “most” being defined relative to the prior measure itself. On
the other hand, a set of parameters which is large as judged by one measure may
be quite small as judged by another, so Bayes rules may be quite unsatisfactory
for a practical frequentist. Bayesians usually argue that the data will swamp the
prior—but this may not happen in high-dimensional inference problems, or it
may occur, but very slowly. Our view is that the oscillation at infinity will even
show up with large, finite samples—in high-dimensional problems.
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On the other hand, even the most dedicated subjectivist will usually not insist
on quantifying all the precise details of a prior opinion in a high-dimensional
situation. Our results indicate that small changes in the details of a prior can lead
to Bayes rules with much better operating characteristics.

Quantifying these ideas is hard and that is why we give asymptotic results. We
hope to study the finite-sample problem elsewhere, and in particular, we hope to
quantify the extent to which small changes in the prior can make small changes
in the posterior but big improvements in rates of convergence. The derivative of
the posterior with respect to the prior is a relevant concept and will be discussed
in Section 3.

2. Other connections between Bayesians and frequentists. Frequentists
often discuss Bayes rules for the following reasons. First, the complete class
theorem, as in Wald (1950), Le Cam (1955), Stein (1955), Sacks (1963), or Brown
(1981), implies that all admissible procedures are approximately Bayes. Similarly,
all minimax procedures are approximately Bayes. So not much is lost by confin-
ing attention to Bayes procedures. Thus, Bayes procedures are convenient,
tractable, and close to optimal. For instance, in some problems confidence sets are
difficult to obtain. Welch and Peers (1963), Hinkley (1980), and Stein (1981)
suggest using regions of high posterior mass, the prior being chosen so that
Bayesian and frequentist coverage probabilities agree to several terms in an
asymptotic expansion. Similarly, Bayesian techniques are used as a way of
eliminating nuisance parameters. Berk (1970) gives examples of this in sequential
analysis.

The common thread is a kind of pragmatic use of Bayes methods by frequen-
tists: theory and convenience suggest the use of Bayes rules. As long as a Bayes
rule is to be used, one may as well work with a prior that concentrates on a
plausible part of the parameter space.

Second, Bayesian techniques can be helpful in proving frequentist theorems.
For example, consider estimating the mean of a univariate normal with known
scale and squared error loss. Any admissible estimator must be an analytic
function of the observations. The only available proof uses complete class
theorems of Sacks (1963) and Stein (1955) to represent the estimator as a formal
Bayes rule. It is easy to show that formal Bayes rules are suitably smooth.
Another example of this sort is in Matthes and Truax (1967).

Naturally, frequentists have been interested in frequentist properties of Bayes
procedures. Theorems dating back to Laplace (1774) show that the posterior
distribution can be approximated by the distribution of the maximum likelihood
estimator. Modern versions of these theorems can be found in Bernstein (1934),
Von Mises (1964), Johnson (1967,1970), Le Cam (1982), or Ghosh et al. (1982).
Bayesians use these results to show that standard frequentist procedures are
nearly Bayes. See Lindley (1965). '

There are many other points of contact between the frequentist and Bayesian
schools. However, there is often some incompatibility between Bayes rules and
frequentist desiderata. For example, Blackwell and Girschick (1954) followed by
Blackwell and Bickel (1967) and Noorbaloochi and Meedan (1983) have shown
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that there are essentially no unbiased Bayes procedures. Other points of dif-
ference are emphasized in survey articles by Pratt (1965), Cornfield (1969),
Lindley (1972), and Neyman (1977). Savage (1972) gives a review.

Sufficiency gives a point of technical contact. Kolmogorov (1942) introduced
the notion of Bayesian sufficiency—a statistic is Bayes sufficient if for any prior
the posterior only depends on the data through the sufficient statistic. For
smooth, finite-dimensional problems, Bayesian sufficiency is the same as the
frequentist concept. Recently, Blackwell and Ramamoorthi (1982) give an in-
finite-dimensional example where the two notions disagree.

Points of agreement arise in Bayesian discussions of robustness as in Berger
(1984) or Kadane and Chuang (1978). Here frequentist properties of Bayes
procedures are used as a means of protection from naive specification of the prior.
A similar compromise was suggested by Hodges and Lehmann (1952).

3. Bayesian interpretations of consistency. It is useful to separate Bayes-
ians into two groups: we will call them “classical” and “subjectivist.” Classical
Bayesians, like Laplace or Bayes himself, seemed to believe there is a true but
unknown parameter which is to be estimated from data. This parameter is part
of an objective probability model for the data. Prior opinion about the parameter
is expressed as a probability distribution. Subjective Bayesians like de Finetti
and Savage reject such ideas; for them, probabilities represent degrees of belief
and there are no objective probability models. (Freedman used to be a classical
Bayesian, while Diaconis is a subjectivist.)

Consistency properties of Bayes rules are clearly of interest to classical
Bayesians; as data comes in, the posterior should converge to point mass at the
true parameter. We will now argue that frequency properties of Bayes rules are
also of interest to subjectivists. The first reason has to do with “intersubjective
agreement.” In some circumstances, Bayesians learn from experience, so opinions
based on very different priors will merge as data accumulates; the data swamps
the prior. We will now argue that consistency is equivalent to merging of
intersubjective opinions under certain conditions.

A general result of this type was provided by Blackwell and Dubins (1962). To
state their result, assume that P and @ are probabilities governing a process
(X, X,,...). Let P, and @, be regular conditional probabilities for the future
(X,+1 X,495---) given the past (X, X,,..., X,,). We think of P and @ as the
priors of two Bayesians, and assume P and @ are mutually absolutely continu-
ous: P = @), the Bayesians agree on what is possible or impossible. Blackwell and
Dubins show that almost surely, P, and @, merge in variation distance.

Reverting to the context of Section 1, assume that § - @, is a homeomor-
phism and consider two Bayesians with priors p and », respectively. Now p = » if
and only if P, = P,, and p L v if and only if P, L P,. So the Blackwell-Dubins
result does not apply when p L », as is usually the case with Dirichlet priors.
However, even if merging in variation distance does not happen, “weak-star
merging” is still a possibility. We say two sequences {a,}, {8,} of probabilities
merge weak-star if and only if «, and B, become indistinguishable from the
point of view of integrating bounded continuous functions: more precisely,
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R(a,, B,) — 0 for every weak-star continuous function R defined on pairs of
probabilities satisfying R(a, a) = 0. As an example, R might be a metric for
weak-star convergence; or R(a, 8) might be (fda — [fdp.

We show that the version p, is consistent if and only if P, and P, merge
weak-star for any », in the following sense. Recall that P, is the joint distribution
of § and X, X,,.... Let P, be the law of X, ,, X,,,5,..., given X,,..., X,,

determined by the formula

P, = [QFu.(db).

A Bayesian with prior p holds the opinion PB,, about the future X, ., X, ,5,...,
after seeing the data X,,..., X,,.

THEOREM 3. Suppose 8 — P, is continuous, one-to-one, and continuously
invertible. Suppose the version p, is consistent. Let v be any other prior. As
n — oo, P,, and P,, merge weak-star along P,-almost all sequences. Conversely,
if P,, and P,, merge for all v, then p, is consistent.

Informally, the prior p is consistent if and only if any other subjectivist with
prior » is sure that P, and P, will merge on the future, as more and more data
comes in. Theorem 3 is proved in Appendix A. Similar issues were considered by
Lockett (1971).

This completes our discussion of “intersubjective agreement.” We turn to our
second reason for thinking that frequency properties should interest subjectivists
as a way of specifying priors. The idea is simple: after specifying a prior
distribution, generate imaginary data sequences, compute the posterior, and
consider whether the posterior would be an adequate representation of the
updated prior. This is quite close to the checks for coherence proposed by
de Finetti and Savage; see de Finetti (1974, pages 229-246) for examples and
Savage (1971) for a review. This use of fictitious samples was suggested by the
“device of imaginary results;” Good (1950, page 35) uses this device as a method
of roughly quantifying a prior in difficult situations. We call it the “what if”
method: what if the data came out that way?

Take the prior suggested by Dalal (1979b) for use in symmetric location
problems as discussed in Section 1. If data were generated from the density A of
Theorem 2, the posterior would oscillate and never converge to the center of
symmetry. The “what if” method strongly suggests modifying the prior. We give
further examples and discussion in Diaconis and Freedman (1983).

The “what if” method suggests various interesting mathematical problems.
For example, to what extent do the Bayes estimates determine the prior?
Diaconis and Ylvisaker (1979) show that the posterior mean of the natural
parameter in an exponential family determines the prior under suitable regularity
conditions. Diaconis and Ylvisaker (1985) give counterexamples in location prob-
lems.

For a fixed observation x, Bayes theorem gives the relationship between the
posterior and the prior. This defines a map from measures to measures. In the
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next theorem we calculate the derivative of this map and the norm of
the derivative. This helps to identify data sets x where small changes in the prior
cause large changes in the posterior. These may be the most informative x’s for
the “what if” method. (Of course, they may also be unlikely x’s.)

In the theorem, probabilities are considered as a subset of all signed measures,
with distance defined by the variation norm: the distance between p and » is the
total mass of the signed measure p — v. Equivalently,

== [

where o is any dominating o-finite measure, e.g., ¢ = p + ». With this norm, the
measures form a Banach space.

Suppose {Q,: 0 € O} is a “dominated family;” there exists a o-finite measure
A on X with all the @,’s absolutely continuous with respect to A. Let f(x|6) be
the density of @, with respect to A: we write dQ, = f(+|§) dA. We will assume
that f is jointly measurable and sup, f(x|6) < oo for every x. For a probability p
on O, define

dp dv

do do

do,

T(p) = N(p)/D(p),
where

N(p) (d6) = f(x10)n(d8) and D(n) = fe f(x10)n(d8).

Thus, N(p) is a measure and D(p) is a number; T(p) is the posterior distribu-
tion. We confine ourselves to the x with D(p) > 0, a set of P,-measure 1. The
dependence on x is suppressed for the moment. The map p — T(pt) takes priors
into posteriors. It has a derivative T at p. This T is a linear map on signed
measures such that

T(p+8) = T(p) + T,(8) + o(]|8])) as||8]| - 0,

where § is a signed measure with signed mass 0. The norm of TL will be used as a
measure of the effect of a small change in p. This is defined by

IT)l = sup |T,(8)I.
18]=1

Let sup, f(x|0) = supy{ f(x]0): u{0} = 0}, the sup over an empty set being 0 by
convention. Under the given conditions:

THEOREM 4. (a) T,(8) = [N(8)/D(p)] — [N(w)D(8)/D(1)*]
(b) T, < supy f(xI8)/D(p).
(©) 1T} > supy f(x18)/D(k).

Theorem 4 is proved in Appendix B. In (a), the quantity N(p) is a signed
measure, normalized by D(p). Likewise, N(p) is a signed measure, normalized by
the factor D(8)/D(r)?. Thus, T,(8) is a signed measure. As is easily seen, this



14 P. DIACONIS AND D. FREEDMAN

measure has signed mass 0. For many priors the upper and lower bounds of (b)
and (c) coincide. Then conclusion (b) has a simple interpretation in terms of
likelihood ratios: the x’s where the posterior is most sensitive to small changes in
the prior are the x’s which have high ratio of objectivist likelihood to subjectivist
likelihood. These x’s are the ones where the “what if” method will be most
informative: at such x, small changes in the prior can make big changes in the
posterior.

As an example, consider a normal location problem with known variance o2.
Without loss, suppose there is only one observation. Let u be a normal prior for
the location parameter 6. Suppose that p has mean p, and variance of. Then
D(p) at x turns out to be the normal density at x with mean p, and variance
o2 + o2 The norm computed in (b) is

[(02 + 002)/02] o exp{é(x - p0)2/(o2 + o(;")}.

This is large when x is far from p,. We have carried out similar computations for
the other standard one-dimensional exponential families with conjugate priors.
The results are similar: values of x far from the mean of the prior lead to large
norms.

On the other hand, for examples of the type considered in Freedman and
Diaconis (1983), the posterior concentrates at some distance from the maximum
likelihood estimate, so [f dp will be many orders of magnitude smaller than max f
for most data sets, relative to the true sampling distribution. Such data sets will
have high leverage, and a posterior, which may seem on reflection to be unsatis-
factory, so the “what if” method might prompt revision of an inconsistent prior.
This completes our discussion of the “what if” method and with it Bayesian
defense of frequentist analysis.

4. Conclusion. We return now to the big picture. There is a probability
model for data and some of the parameters are to be estimated. A statistician
who really has a sharp prior probability distribution for these parameters should
use it, according to Bayes theorem; inconsistency on a null set of a priori
probability zero is an irrelevant nuisance. On this point, there seems to be general
agreement in the statistical community.

Often, a statistician has prior information about a problem (say as to the
rough order of magnitude of a key parameter), but does not really have a sharply
defined prior probability distribution. Many different distributions would have
the right qualitative features and a Bayesian typically chooses one on the basis of
mathematical convenience. In smooth, low-dimensional problems, this ought to
help, and anyway cannot lead to disaster, because the data will swamp the details
of the prior. :

Unfortunately, in high-dimensional problems, arbitrary details of the prior can
really matter; indeed, the prior can swamp the data, no matter how much data
you have. That is what our examples suggest, and that is why we advise against
the mechanical use of Bayesian nonparametric techniques.
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Merging of posteriors and the weak-star topology. We suppose O is a
Borel subset of a complete separable metric space—a Borel set for short. Next,
for each § € O, we have a probability @, on the Borel subsets of another Borel
set 4. Thus, © is the parameter space and £ the observation space. The map
6 — @, is assumed to be 1-1 and Borel. For a prior probability p on 0, we write
P, for the probability on ® X £ defined by

P(AXB)= fA Qy(B) u(db),

where A is Borel in ©® and B is Borel in 2 ®. As is easily verified, if H is a Borel
subset of ® X £ *, then

(A1) By(H) = [ (8 X QF)(H) p(df).

As usual, §, is point mass at 6.
Fix a version p, = p (dé|x,,..., x,) of the P-law of § given X, = x,,...,
X, = x,. Here, as elsewhere, 6 denotes the coordinate map

(0, x,,x,,...) > 0.

The posterior p, may be considered as a function on ® X &>, or just >, or
even £ ", according to convenience.

Consistency of (6, u,) depends not only on g, but also on the choice of the
version p,, which is well defined only a.e. An artificial example may clarify the
point.

ExamMpPLE A.l. Let © =[0,1], £=1[0,1], @, = 85, and let p be Lebesgue
measure on ©. Let

pa{dolxy,..., x,} = Sx,
unless x;, = 0 in which case
pa{dolxy, ..., x,} =8y 5.
This p,, is a (stupid) version of the law of # given X|,..., X, because
P{X, =0,...,X,=0} =0.

For this version, p, is consistent except at § = 0 when p, — 8, 5.

Bayes estimates of an unknown probability on the line provide a less artificial
example, where {@,} is not dominated by a o¢-finite measure. Then, the posterior
can be changed on a set of measure zero, so consistency is determined for p
almost all 8 but not for all 4. .

The next topic is the weak-star topology for probability measures on 0. Recall
that O is a separable metric space by assumption, but ® need not be complete, or
compact, or locally compact: for example, ® might be the irrational numbers in
the unit interval. Let % be the set of bounded, continuous functions on 0. If «,
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and « are probabilities on ©, then a, - a weak-star if and only if [fda, — [fda
forall f € ¥.

A technical problem is that € will not usually be separable. However, it is
enough to consider only the uniformly continuous f € € to be specific, let ©, be
a countable dense subset of @. For each 6, € ©, and nonnegative rationals r < s
and arbitrary rationals u, v, define a function f =f, , , , on © as follows:

f(6) =u for @ with p(6,,0) <r
=y for 6 with p(6,,0) >s

while

£(8) =us_ p(6y,0) +UP(00:0) -r
s—r

s—r

for 6 with r < p(6,,0) < s. Here, p is the given metric on ©. Clearly, f is
bounded and uniformly continuous. Let €, = {f}, a countable collection. Let
€,={fv - vfy for f,€ %, and k=1,2,...}. Let €,={f; A -+ Af: for
f,€ €, and k=1,2,...}. Here V and A are pointwise max and min, respec-
tively. Now €, and %, are countable subsets of ¥, and pointwise dense, as
follows.

LEMMA A.l. If f € €, there is a sequence f, € €, with f,1 f pointwise;
and another sequence g, € ¢, with g, | ¥ pointwise.

ProoF. Use the method of exhaustion: for instance, if f € €, then f = inf{g:
g€ % and g>f}. 0O

COROLLARY A.l. If [fda, — [fda forallf € € ,U € ,, then a, > a weak-
star.

We can now prove Doob’s theorem in our context.
COROLLARY A2. p, — 8 weak-star, P-almost surely.

Proor. Fix an fe€ ¢,U ¢ ,. By Corollary A.l1 it is enough to prove that
/fdp, — f(8) ae. P.But [fdu, is a version of E{f(0)|X,... X,}, so [fdp, >
E{{(8)|X,, X,,...} a.e. by martingales. The last step is to prove identifiability:
that @ can be computed measurably from all the Xs, a.e. P,.

The identifiability argument will only be sketched: it is at this point that
“l1-1-ness” matters. Since § > @, is 1-1 and Borel, so is. the inverse: see
Kuratowski (1958, Section 35.5). So we only need to compute @, from X, X,,....
Using Corollary A.1 again, we only need to compute [gdQ, for g € ¥, ,U €.
But

(a2) [ed@,= tim —[a(X,) + - +&(X,)]

a.e. by the law of large numbers.



CONSISTENCY OF BAYES ESTIMATES 17

In a bit more detail, let H, be the subset of ©® X 2 where (A.2) holds. Then
H, is Borel, and & X Q3°(H,) =1 for all 6 by the law of large numbers. So
P(H,)=1by (Al). O

The following lemma and corollary are used later.

LEMMA A2. A Borel set is homeomorphic to a dense Borel subset of a
compact metric set.

Proor. This standard fact can be proved by appealing to Urysohn’s lemma
(Kuratowski, 1958, page 119) and then (Kuratowski, 1958, page 397). O

COROLLARY A.3. 0 — QF is weak-star continuous.
ProoF. Let f be bounded continuous on £ and
g(0) = [ {dQs.
g‘w
We have to show that g is continuous.

CASE 1. Z is compact. Then f can be approximated by finite linear combina-
tions of functions [1%_, f,(x;) with f, bounded continuous on .

THE GENERAL CASE. Embed % as a dense Borel subset of the compact
metric space (£, p) and metrize 2 by p: see Lemma A.2. The bounded, p-uni-
formly continuous functions on Z are those which extend to continuous func-
tions on . Now use Corollary A.1 to reduce the general case to Case 1, the point
being that a function g which is both upper and lower semicontinuous is
continuous. O

The next topic is “weak-star merging.” Let a, and B8, be probabilities on ©;
the sequences {«,} and {B,} merge weak-star if and only if R(«a,, 8,) — 0 for all
continuous functions R which satisfy R(a, @) = 0. Some possible choices for R:

R(a,B) = ff da — ff dB for a fixed bounded continuous f,

(A.3) R(a,B) =A(a,B) with A a metric for the weak-star topology,
R(a,B) = T(a) — T(B) for a fixed bounded continuous function 7.
For the next theorem, we also need

P, = f@ Qzu,(db).

This is the “predictive” distribution of X, ,,, X, ,o,..., given X,,..., X,,. Of

course, P,, = P, (|x,...x,) is a probability on 2%, depending on the first n

data points.
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We will prove somewhat more than Theorem 3. To state the result, let
G C © XZ* be theset of (0, x,, x,,...) such that p (d¢|x,...x,) = 8, weak-
star. Notice that G depends on p, and p, is consistent if and only if (8, X
QP )NG) =1 for all 4.

THEOREM A.l. Let § - Q, be 1-1 and Borel. Fix a prior p. on © and a
version p,, of the posterior. The following three conditions are equivalent.

(i) p, is consistent.

(i) P(G) = 1 for all probabilities v on 0.

(iii) p,(dolx,...x,) and v {do|x,...x,} merge weak-star as n — oo, with P,
probability one, for all probabilities v on ©.

Suppose that 8 — @, is continuous and has a continuous inverse. Then (i) is
also equivalent to

(iv) P, and P,, merge weak-star as n — o, with P, probability one, for all
probabilities v on 6.

Proor. Fix »v. We will prove that (i) = (ii) = (iii). The first implication is
trivial: from (A.1),

(A4) P(G) = [(8 % QF)(G)»(do)

and (8; X @) G) =1 for all 4 from the definition of consistency. For the next
implication, suppose (ii) for ». We will argue that a.e. P,,

(A'5) | 80’
(A.6) v, 80.

The notation may be a bit confusing: @ is being used for the coordinate function
(0, x,, x5,...) = 6 and its value 6. It would follow from (A.5-A.6) that R(p,,, »,)
— 0. Now (A.5) holds on G, which has P.-probability 1, by assumption. And (A.6)
holds a.e. P, by Doob’s theorem, Corollary A.2 above. Thus, (i) = (ii) = (iii).
Clearly, (iii) = (i): take » to be point mass and R as in (A.3).

Now assume that § — @, is 1-1 and continuous. We will argue (i) = (iv).
Indeed, suppose (i). We will show that a.e. P,

(A7) B, - @7,
(A.8) P, QF.
For (A.7), let f be bounded and continuous on £ *. By definition,

erfdPM= fefgmfdQ?’Mn(dﬂ).

Now g: 8 — [fdQf is a bounded, continuous function on 0, in view of Corollary
A.3. In view of (i), [gdp, — g(0) a.e. Q7 for all 4. Thus, [gdu, — g(0) ae. P,.
This proves (A.7) via Corollary A.1, letting f run through the analogs of ¢, and
% » on Z*. For (A.8) by Doob’s theorem, (fdP, — g(6) a.e. P,, and the rest of

the argument is the same. Thus, (i) = (iv) in the presence of continuity.



CONSISTENCY OF BAYES ESTIMATES 19

‘Finally, assume (iv), and let » = &5, so P, = 8, X @ and P,, = Q¢ a.e. Q.
Also, P,, = [Q3 1, (d¢) — @QF° ae. QF by (iv). Thus U(p,) — U(§,) ae. Q7
and p, = §, a.e. @7, by Proposition A.1 below, where U is defined. O

REMARKs. (1) Consider a Bayesian with prior p who chooses p, as the
posterior. Consider a second Bayesian with the generic prior ». Now G is the set
where the first Bayesian gets the parameters # right. Condition (ii) in the
theorem is that any second Bayesian will be sure that the first Bayesian gets 6
right—whatever # may be. Condition (iii) is that any second Bayesian is sure
that his posterior will merge weak-star with that of the first Bayesian. (This is
well defined, since P-null sets do not matter here: any version », can be used.)
Condition (iv) is that any second Bayesian is sure that his conditional opinion of
the future given the past will merge weak-star with that of the first Bayesian.

(2) The implications (iii) = (i) or (iv) = (i) are valid with much weaker
notions of merging. Essentially, only one R is needed, provided R vanishes on
the diagonal and is positive off the diagonal. Subfamilies of functions R lead to
different notions of merging:

() ffda, — [fdB, — 0 for every bounded continuous f.

(ii) A(a,, B,) — 0 for A metrizing the weak star topology.

(iii) T(a,) — T(B,) — O for every continuous function on the probabilities.
These notions are all different, even on R. For example, let a,, = 8, 8, = 8,., /,,
with 8, a point mass at x. Then A(a,, 8,) = 0 for Prohorov’s metric, but there is
a bounded continuous f with [fda, =1, [fdB, = 0. Thus (ii) is different from
(i). To see that (iii) is different from (ii), take a, =86, B,= (1 — (1/n))8, +
(1/n)8,.,. Take T(a) = a(1) + a(2)% + --- +a(n)" + --- . Now T(a,) = 1 but
T(B,) - 1/e.

The notion of merging we use implies merging in the above senses and is
equivalent to merging in the finest uniformity compatible with the weak star
topology (see Kelley, 1955, Chapter 6). For further discussion of these issues, see
Diaconis and Freedman (1984) and Dudley (1966, 1968).

(3) The continuity conditions are needed to conclude (iv) from (i). To see this,
take ® = [0,1] and 2= {0,1} and let

16 for 6 € [0,1),
f(6)=<40 for6 = 1,
1419 forde(d,1].

Let @, be f(8#)-coin tossing. Let u be the uniform distribution on ©. Straightfor-
ward analysis shows that p is consistent, but the predictive distribution P,, does
not merge with P,, when » =38, ,. Lockett (1971) gives a similar example
involving geometric variables.

(4) The continuity conditions are needed to conclude (i) from (iv). To see this,
take © = [0,27) and & as the unit circle. Let F(§) = e map © onto Z. This F
is 1-1 and continuous, but does not have a continuous inverse at ¢ = (1,0) € 4.
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Define @, = 8p)- Let p be uniform on ©. Define a posterior, maliciously, as
Pl x,) = 8pr,, ifx, #§
=8, 1, ifx;=§

So (0, p,,) is not consistent. But P,, —» @7 a.e. @7, for all §, even 6 = 0, and so
merges with P, a.e. P, for any ».

The following is required to complete the proof of Theorem A.1. If S is a Borel
set, we write 7(S) for the set of probabilities on S, endowed with the weak-star
topology. The set #(S) is Borel too. Let S, be a Borel subset of S. Let
P, = {p|p € m(S) and p{S,} = 1}. Then £, is a Borel subset of 7(S). Let M
map %, onto w(S,) as follows: if a € #,, then Ma is the restriction of & to the
Borel subsets of S,. Thus, M maps probabilities on S to probabilities on S,. We
write M = M(S, S,) to show the dependence on the spaces S and S,.

LEMMA A3. M is a homeomorphism of 2, onto =(S,).
Proor. Use Corollary A.1. O

Using Lemma A.3, we can view 2 as a dense Borel subset of the compact
metric space (£, p); metrize Z by p. Then 7(2’) can be viewed as a Borel subset
of the compact metric set 7(Z'). For pu a probability on 0, let

Up) = [ QF n(db).
e
So U(p) is a probability on Z .
ProPOSITION A.l. U is a homeomorphism of m(0®) into w(Z ).
PROOF. Let ® = 7(Z). Let U map m(®) into =(Z =) as follows:
U(p) = [6=u(db).
6

Then U is continuous, and 1-1 by de Finetti’s theorem (Diaconis and Freedman,
1980, Appendix). Since w(@) is compact, U™! is continuous. Next, suppose % is a
Borel subset of 2, © is a Borel subset of (%), and @, = . In this setting,
U(pn) = [gf* u(df). Now apply Lemma A.3 twice, with M, = M(®,0) and

=M(Z*, ). Then U= M,sUcM;' is a homeomorphlsm on 7(0). To
see that the composition makes sense, let u € 7(6) and » = M '; then v € 7(0)
and »(®) = 1, so Up)(Z*®) = 1 because (%) = 1 for § € ©.

The general case is almost immediate: § — @, being continuous and 1-1 on 0,
the image ® under this mapping of © is a Borel subset of 7(%'): see Kuratowski
(1958). Apply the prewous argument with ® in place of ©. Let M, map w(@)
onto 7(0) by the recipe (Myp)(A) = u{f: Q, € A} for Borel A c @ This M, is
a homeomorphism because § — @, is. Now U = oUosM['o M, is a homeo-
morphism too. O
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The derivative of the posterior with respect to the prior. Proceeding
heuristically for a moment, the derivative of the ratio T(p) = N(pn)/D(p) is

T, = [ D(s)N, - N(w)D,] [D(w)"

Now N(p) is linear: N(p + 8) = N(p) + N(8). So N# = N(°). Likewise, D(p) is a
linear functional, so D, = D(+). For example, in our sense, the derivative of the
linear function ¢: x — 3x is just ¢, because ¢(x + h) = ¢(x) + ¢(h).
The upshot is T, = R, where
N(- N
Ry DO NW
D(p)  D(p)

This is part (a) of Theorem 4. For a rigorous proof, we must show that for any §
with signed mass 0,

T(p +8) = T(p) + R,(8) + o(lI8]).
The difference T(p + 8) — T(n) — R,(9) is easily seen to equal

D(8) D(8)
'(N(‘” _N(")D(u))(D(u)D(u+8) |
The norm of this is smaller than
D(3) |D(8)]
(B.1) D(R) D(p+9) {IIN(3)II + IN(p)I| D(n) }

Let C = sup, f(x|0) < oo by assumption. Then |D(8)| < C||8|| and ||N()| <
C||8||. Further, D(p + 8) tends to D(p) as § tends to 0. It follows that the bound
(B.1) is smaller than C(y)||8]|% for ||8|| small. This completes the proof of part (a).
_ To prove part (b) of Theorem 4, fix x and write f for 6 — f(x|0). Let
f=1/D(p)so [fdu = 1. Then

dT(8) = fds - ( f f‘ds) fdp.

Choose o to dominate both |8| and p, e.g., 6 =|8] + . Then dé = §do and
dp = pdo and

dr(8) = [8 - (/f‘ds)n] fdo.
We must show
(B2) I, < 118]] - sup f.

Indeed,
f[sfdo= ff‘ds and f,xf‘da = /f‘du= 1.
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Thus, 7':‘(8) has signed mass 0, namely, ’1.;‘(8 O] = [fdo — [fdo = 0. It follows
that

(B3)  |T(8)I=2f [8— ( / f'ds)ﬂ]+f'do= 18- ( ff’dS)mfdo.

Assume without loss of generality that [fd8 > 0. For @ > 0 and real d, clearly
(d—a)*< d*. So

IT.(8) < 2f3+f—do < 2(/3* do)(sup f).
But

8+ do =} [181do = 81

because (8 do = [ d8 = 0. This completes the proof of (B.2), and hence part (b) of
Theorem 4.

To prove part (c) of Theorem 4, we must show that for every & > 0 there is
signed measure § with signed mass 0 and total mass 1, satisfying

IT.(8)Il = (1 — &) sup, f.

Choose 8§, with u{f,} = 0 and f(,) > (1 — ¢)sup,f. Let & = 2(8,, ©), where
8, is point mass at 6,. Let 0 = p + 8. Then the rightmost expression in (B.3) can
be evaluated, and is f(00),

IT.(8)I1 = £(85) = (1 = ¢) sup, f. O

REMARKS. (1) Ordinarily, sup, f = sup f, so the theorem determines ||T;‘||. If
e.g., p{f} > 0 and f(8,) > sup{f(8):  # 6,}, then sup f > sup, f. In this case,
||T'L|| is hard to compute. However, it can be shown that ||T,|| = sup||Z,(8)|| where
8 = 18, — 30y, and 8, # 0, vary over ©.

(2) If § is required to be absolutely continuous with respect to u, a similar
argument shows that ||ﬂ(8 )|| < p-ess. sup f, the inequality being sharp if e.g., p is
continuous.

(3) We have chosen to differentiate in the set of signed measures. Our strong
derivative is called the “Frechet derivative.” Another standard way of perturbing
p is to consider the mixture (1 — ¢)u + ev for some probability » as ¢ tends to
zero: the “Gateaux derivative.” The mixture can be written as p + &(» — p) and
the notions of derivative coincide—for bounded likelihood functions.

(4) Similar computations can be carried out for Bayes rules. If # is a real
parameter, the mapping M

_ J81(x16) u(db)
[f(x10) u(d0)

has derivative
N()  N(w)
" D(p)  D(p)

D(-),
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where N,(8) = [0f(x]0) 8(d0) and D(8) = jf(xlﬂ)p,(d0) as before. The norm of
M is computed as follows. Let ¢ = N;(p)/D(p). This is the Bayes rule based on
TR Let g(0) = (0 — ¢)f(x|0). Define range g = sup g — inf g. Then

|IM,|| = 4 range g.

(5) Theorem 4 assumes a dominated family. In the undominated case, the
derivative need not exist in our strong sense. The difficulties can already be seen
in the following simple example: take 2 and ©® to be the real line mod 10. Let
Qqs{x} = 3 if x = 0 + 1; suppose the prior u for § has continuous density f on 6.
the posterior for # given x is supported at x + 1 with mass

flx 1) i£0=x—1
(B.4) ey = | 10D
if0=x+1

f(x—1)+f(x+1)

The map T is norm continuous at no x. To see this, consider a sequence of
continuous prior densities f, converging to f in variation distance but pointwise
at no point. More specifically, let s, =1+ § + -+ +1/n. Let g, on the line
vanish to the left of s, — (2/n); increase linearly to the value 1 at s,; decrease
linearly to zero at s, + (2/n); and vanish to the right of that value. Wrap g,
around the line mod 10; let f, be the sum of f and the wrapped g,, normalized
to be a density. Clearly f, —» f in L, but f(x) = f(x) for no x.

The argument is only sketched. Fix a real number 6 with 0 < § < 10; for any
integer k, the real number & + § wraps to the same point 4 in ©. For inﬁnitely
many n, for some k=%,, we have s, <k + 0 <s,,,. Then g (k+8)> 3,
because s, ,; — 8, < 1/n. For such n, we have

1
o) > |10+ 3|2

because [g, = 2/n. Since g, has only one bump, this can be either at x + 1 or
x — 1, but not both. Thus, for any x, for infinitely many n, we have both the
following relations

flx+1)> f(x+1)+-;—

n+2

fo(x = 1) =

So f, does not converge pointwise, and from (B.4) the map T is not continuous.

In this example, the posterior is Gateaux differentiable: A derivative can be
calculated by considering (1 — ¢)f + &g as ¢ tends to zero. The Gateaux deriva-
tive exists quite generally, as we will show elsewhere.

(6) In the situation of Theorem 4, the same result holds if the weak-star
topology is used instead of the norm topology, provided f is bounded continuous
in 6.

(7) A related computation is contained in Huber’s (1973) discussion of Bayes-
ian robustness.
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1. General remarks. Diaconis and Freedman have demonstrated some ad-
vantages and pitfalls of Bayesian inference. In summary, their results include the
inconsistency of location estimates based on a Dirichlet prior; the equivalence of
weak consistency and weak merging of posteriors; and an analysis of the sensitiv-
ity of the posterior to changes in the prior. In this discussion, we provide
additional insight and point toward new developments. It is argued that the
Dirichlet is a poor choice of prior because the Dirichlet mixture has a likelihood
which is exponentially smaller than every product likelihood. We give conditions

'Work supported in part by NSF Grant ECS 82-11568 at Stanford University.


http://www.jstor.org/page/info/about/policies/terms.jsp

	aos_01
	aos_02
	aos_03
	aos_04
	aos_05
	aos_06
	aos_07
	aos_08
	aos_09
	aos_10
	aos_11
	aos_12
	aos_13
	aos_14
	aos_15
	aos_16
	aos_17
	aos_18
	aos_19



