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COMBINING INDEPENDENT ONE-SIDED NONCENTRAL ¢ OR
NORMAL MEAN TESTS

By JoHN I. MARDEN!

University of Illinois at Urbana-Champaign

The admissibility or inadmissibility of procedures for combining several
one-sided tests of significance into one overall test when the individual tests
are based on independent normal or noncentral ¢ variables is considered.
Minimal complete classes are found, from which the following results (with
some exceptions) are obtained. The likelihood ratio tests and Tippett’s proce-
dure are admissible in both cases, the inverse logistic and sum of significance
levels procedures are inadmissible in both cases, and Fisher’s and the inverse
normal procedure are admissible in the normal case but inadmissible in the ¢
case.

1. Introduction. The admissibility or inadmissibility of several methods for
combining independent tests when the individual test statistics are noncentral x?
or F variables was determined in Marden (1982a) and Marden and Perlman
(1982). In this paper we consider one-sided testing problems based on indepen-
dent normal or noncentral ¢ statistics. Oosterhoff (1969) has considered combin-
ing nonindependent ¢ tests, and Oosterhoff and van Zwet (1967) have considered
the normal case. Birnbaum (1955) states the minimal complete class for the
normal case, which we repeat in Section 2. That for the ¢ case is presented in
Section 3.

The basic setup has T),...,7T, independent, where the distribution of T;
depends on 6;. We test

(1.1) Hy):0=0 versus H,:86€0,=0-{0},
where A

8=1(64,...,6,) and © = {8 R”|§,>0forall i}.

> Yp

One class of procedures is based on the observed significance levels p, of the
individual T}’s, i.e.,

(1.2) pi=p(t)=Py(T; > t,)

when T, = t; is observed. P, represents the null distribution of T = (T),..., T,).
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1536 J. 1. MARDEN

Procedures proposed include those with the following rejection regions:

(1.3) -2Y log p; > X%p,a (Fisher);

(1.4) miin p;<1—-(1-a)V?P (Tippett);

(1.5) -Yo Y(p)>/p0'1l-a (inverse normal);
(1.6) - Y log[p/(1 —p,)] > b, (inverse logistic);
(1.7) Yp.<c, (sum of p,’s).

Here, @ is the standard normal distribution function.
In the normal situation we have

(1.8) T, ~ N(6,,1).

Other tests which are appropriate in this case include the likelihood ratio test
(LRT), which rejects H, when

(1.9) Y(T)* >d, [z°=max(0,2)],

and linear combination tests which reject H, when

(1.10) ot > (Zv2) "o - )

for y € ©,. Test (1.10) is most powerful for alternatives along the ray 6 = ay,
a> 0. When y, = --- =7, test (1.10) becomes

(1.11) Y'T.> s, (sum test),

which is equivalent to the inverse normal procedure (1.5). Oosterhoff (1969) finds
the most stringent test for p = 2, which rejects H, when

(1.12) YeTi>m,,

where the constant r depends on a.
[Define the power envelope of a class 2 of tests to be

(1.13) e(8,2) =supEy(¢) fore@,.
dED
The maximum regret of a test ¢ € @ relative to 2 is
(1.14) sup [e(8, 2) — Ey(¢)].
[ISISN

The most stringent level a test is that with smallest maximum regret relative to
the level a tests.]
In the ¢ case we have

(115) Tt - tv,(ai)’

i.e., T, is noncentral ¢ with »; degrees of freedom and noncentrality parameter 6,.

If we are given
(1.16) (Z

i

i=1,...,p,j=1,...,n,+1},  Z;~ N(p;0?),
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then

(1.17) T.= v 12/(X(2,- Z)'/n)

where Z, = YZ,,/(v; + 1), is distributed as in (1.15) for 6, = |»; + 1p,/0,. If we
consider problem (1.1) based on (1.16), then the LRT has rejection region

(1.18) Y (v, + l)log(l + vi(TiJ’)Z) > e,.

This test is also appropriate for testing (1.1) based on T. We will henceforth refer
to (1.18) as the LRT, although it is not the LRT for our original problem based
on T. Unlike in the normal case, there is no most powerful test along a ray
0 = ay, a > 0. The locally most powerful (as a — 0) test in the direction y
rejects H, when

V.
: I‘(E‘ + 1)
(1.19) v 127X > fa
I‘ _t + —
(2 2)
where
T;
(1.20) X =

The asymptotically most powerful (as a — o0) test in the direction y has
rejection region

(1.21) ZYiz(Xi+)2 > 8o

Linear combination tests, as in (1.10), may also have good power along a given
ray.

The optimality properties of test (1.10) in the normal case, and tests (1.19) and
(1.21) in the ¢ case, are essentially unique, hence those tests are admissible for
their respective problems. Table 1 exhibits the status of many of the other tests.
These results are proved in Section 2 (for the normal case) and Section 4 (for the
t case) using the appropriate minimal complete class.

In Table 2 we summarize the admissibility /inadmissibility results in the four
problems (normal and noncentral x?, F, and ¢) for the omnibus tests. For
simplicity of presentation we assume p > 2, a < 3, and the denominator degrees
of freedom in the F and ¢ cases exceed two. In all cases the LRT and Tippett’s
procedure (1.4) are admissible, and the inverse logistic (1.6) and sum of p,’s (1.7)
procedures are inadmissible. Fisher’s procedure (1.3) is admissible except in the ¢
case and certain situations in the F case. The inverse normal procedure (1.5) is
admissible only in the normal case.

REMARK 1.1. A test can also be evaluated by determining whether it is
parameter consistent, i.e., whether |8 » oo automatically implies that the
power approaches one [see Anderson and Perlman (1979)]. It is easy to see that
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TABLE 1
Admissibility (A) or inadmissibility (1) of several tests

procedure t case normal case
Fisher’s (1.3) v, = 2forall i A A
v; # 2 for some i 1
Tippett’s (1.4) A A
Inverse normal (1.5) p>2 I A
P=2,r,<2,v,>2 I
(1, 72) #(2,2)
Inverse logistic (1.6) p>2 I I
pP=2,v #, I
Sum of p;’s (1.7) v; > 2 for some i, a < } I I
v, = 2forall i A
LRT (1.9) or (1.8) a<l—-27° A A
Sum (1.11) P=2v =p,a= A A
otherwise I
TABLE 2
Admissibility (A) or inadmissibility (I) of several tests
procedure normal case noncentral t case noncentral x2 case noncentral F case
LRT A A A A
Fisher’s (1.3) A 1 A A/T*
Tippett’s (1.4) A A A A
Inverse normal (1.5) A I 1 I
Inverse logistic (1.6) I I I I
Sum of p;’s (1.7) I I I I

p>2 a< %, denominator degrees of freedom in ¢ and F cases exceed 2.
*1 if some numerator degree of freedom is one, A otherwise.

most of the tests considered in this paper are parameter consistent. Some
exceptions follow.

Suppose ¢, < p — 1 in the sum of p,’s test (1.7). Then as 6, - oo, with
0y, ..., 0, fixed, the power approaches

Eog,...,ﬂp)( Zpi < Ca) <1.
=2

Since ¢, <p — 1 if and only if a <1 — (p!)”!, the test is not parameter
consistent at the usual levels. Similarly, if in one of the locally most powerful
tests (1.19) in the ¢ situation we have
fo— er(V1/2 + 1)21/2 0
>
['(»,/2 +1/2) ’

N

the power will remain bounded away from one if 6,,..., 8, are bounded.
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TABLE 3
Noncentral t case (maximum regrets relative to tests considered in percent), a = 0.05, p = 2.

procedure Tippett’'s LRT Fisher’'s sum inverselogistic inverse normal sum of p;’s

VisVs (14) (1.18) (1.3) (1.11) (1.6) (1.5) 1.7
1,1 57 30 21 45 31 42 68
2,2 39 19 11 17 25 37 68
3,3 30 14 8 9 21 33 68
5,5 23 10 6 12 17 28 68
10,10 18 8 4 15 13 23 68
20, 20 16 7 4 16 11 20 68
50, 50 15 7 3 17 10 19 68
00, 00* 14 6 3 18 10 18 68
2,10 27 14 19 35 30 40 68
5,50 18 9 9 24 20 30 68
10, 20 17 8 5 18 13 23 68

* Normal case.

Normal case (maximum regrets relative to all level « tests in parentheses)

most inverse
a Tippett's stringent(1.12) LRT (1.9)' Fisher’s logistic sum sumof p;’s

0.001 29 — 8(10.5)  7(14.6) 13 37422 9%
0.01 20 — 7(109)  5(14.1) 12 26(33.4) 86
0.05 14 10 (10.7) 6(11.0)  3(13.0) 10 18(25.5) 68
0.10 11 —(10.8) 6(10.8)  2(12.1) 8  13(2L.3) 55

REMARK 1.2. We compared the powers of the tests when p = 2. Table 3
contains the maximum regrets (1.14) relative to the tests considered in the table.
Fisher’s procedure (1.3) is best in this sense when », = »,. In fact, when », = », >
10 and a = 0.05, none of the other tests beats Fisher’s by more than 4% in power.
The LRT (1.9) or (1.8) is almost as good. When », and », are disparate, the LRT
is somewhat better that Fisher’s. The sum of p,’s test (1.7) looks very bad. Since
the other tests are parameter consistent, and as 8, — oo with 6, = 0, the power of
the sum of p,’s test approaches (2a)'/?, the maximum regret of this test is
1 - (2a)2

The tests are ordered in Table 3 so that the farther to the left (right) the test
is, the relatively more power the test has along the axes (equiangular line). Thus
Tippett’s procedure (1.4) is generally better that the LRT when exactly one 6, is
positive, while the LRT is better when 6, = 6,, etc. We note that the sum test
(1.11) in the normal case appears to dominate the sum of p,’s tests everywhere
(by very little when 6, = 6, and by a great deal even a moderate distance from
the equiangular line).

Table 3 also includes (in parentheses) the maximum regrets (1.14) relative to
all level a tests for some of the tests in the normal case. These are taken from
Oosterhoff [(1969), Table 2.5.1]. The most stringent test (1.12) minimizes this
value among all level a tests. A drawback to this criterion is that it is obtained
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by comparing each test to all other tests, while we are looking at permutation
symmetric (¢(x,, x,) = ¢(x,, x,)) tests. An alternative criterion, to which the
maximum regrets relative to the tests considered is an approximation, would be
to find the maximum regrets relative to all permutation symmetric level a tests.

2. The normal case. Birnbaum (1955) states that the minimal complete
class of tests of (1.1) based on T as in (1.8) consists of all tests of the form

(1 iftec,
*=10 iftec, ae[p],

where C is a closed, convex and nonincreasing subset of R” and p is Lebesgue
measure. By nonincreasing we mean

(2.2) teC, s<t=seC[s<tmeanss; <t foralli.]

(2.1)

The proof uses the fact that T has an exponential family density. See also
Oosterhoff [(1969), Section 1.4] and Eaton (1970) for this result.

It is easy to see that tests (1.4), (1.5) = (1.11), (1.9), and (1.12) have acceptance
regions of the correct form C, hence they are admissible. Birnbaum (1954) states
that Fisher’s procedure (1.3) has convex acceptance region. To see this, note that

-2 /2

ad e o0
2.3 - —1 ()= —————dz = —u(u+20)/2 g
(23) ot o8P0 = Ic ul

t

where we make the substitution u = z — ¢. Since u > 0, (2.3) is increasing in ¢.
Thus the statistic in (1.3) is convex in t, and is clearly increasing in t, so that the
acceptance region is convex and nonincreasing proving the test admissible.

Arthur Cohen has shown (personal communication) that the inverse logistic
procedure (1.6) does not have convex acceptance region unless p = 2 and a = 1,
in which case the test is equivalent to the sum test (1.11) with s, ,2 = 0. Fix
(t3,...,t)) and look at the slice {(¢,, t,, £3,..., t)I(t), t,) € R?}. Consider the
line ¢, = ¢ — ¢, for fixed . Using ’Hospital’s Rule we find that

2 00 ife >0,
(2.4) lim - Y log[p(t)/(1 —pi(t))] = {1 ife=0,.
horeo i -0 ife<0
Thus for any & > 0, if ¢, is sufficiently close to either + oo, then
(tl, e—t,t9,..., tg) & acceptance region
and
(tl, —e—t,t3,..., tg) € acceptance region.

Hence the boundary of the acceptance region in this slice is asymptotic to the line
t, +t, =0 as ¢, > +o0. The only way for this to occur with the acceptance
region convex is to have the boundary be the line ¢, + ¢, = 0. This cannot
happen for all (¢3, ..., tg) unless p = 2, hence the only time this test has a convex

acceptance region is when p = 2 and b, = 0, which gives a = 1.
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Finally, take 0 < ¢, <p — 1 in test (1.7) so that 0 < @ <1 — 1/p!. Choose
(3,...,ty) so that

p
(2.5) 0<c,— Lp(t))=co<1.

i=3
The acceptance region in the slice contains {(¢;, ¢,)|¢, < p; '(c,) or £, < p; '(¢,)},

where p; '(¢,) € (— 00, ) since 0 < ¢, < 1. Thus this acceptance region cannot
be convex, showing the test inadmissible.

3. The t case: minimal complete class theorem. We find it convenient to
work with X = (X|,..., X)), where X, is defined in (1.20). The space of X is

(3.1) Z={x€RP|-1<x;,<1foralli}.

Several definitions are needed before describing the minimal complete class. Let
f(x; 0;, v;) be the density of X; when 6, obtains, and define

B2 R(x;8) = [TR(x, 6,7,
i=1
where
(33)  R(zi7,0)= (1+ 1) 2exp(12/2)f(2; 7, ) /f(2;0, »)
(3.4) =(1+ 72)(”+1)/2c(v)_1fwexp(—a2/2)exp(a'rz)a”da
0
(3.5) = (14720072 f le(v + k) /e(»)](72)" /R,
k=0
and
v+1
(36) C(D) = F(T)Q(V_l)/2.

By Lemma 5.1(a) we can extend the definition of R(z; 7, ») to values of T =
by taking

(3.7) R(z;00,v) = {c(y)_lr(y FUlh iz <0,
00 ifz>0

We can therefore take R(x; 0) to be a continuous function of 8 for 8 in
©={00<6,<c0,i= 1,...,p}

for each x.
Define #'= {w € R?|0 < w;<1,i=1,..., p} and the map
(3.8) w:T-> W, wi(x) = (x7)°

[see (1.9)]. Let %, be the class of closed, convex, and nonincreasing [see (2.2)]
subsets of #”.
For a set D C R?, let

(3.9) J(D) = {ilthere exists x € D with x, > 0}
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and
(3.10) (D)= {8 € 0|6, < oo for i € J(D)}.
Define ® to be the class of tests ¢: & — [0, 1] of the form
1 ifxew '(C,),
(3.11) =<1 ifd(x;N\,m,,m)>c,
0 otherwise ae.[p],
where C, € €, \ € 0, 7, is a finite measure on ©, = {8 € 04|20, < 1} m, IS a

locally ﬁnlte measure on ©,, the closure of ®, = {§ € ©,|L6, > 1} in O(C,),
lef < oo,

+1
d(x; N\, 7, m) = LA\, C(Z( 3 )xi
(3.12)
R(x;0)
+/@QT" (d8) + be(x; 0)m,(db),
and
(3.13) |d(x; N, 7, m,)| < 0 for x € interior v '(C,).

The main result follows.

THEOREM 3.1. The class of tests ® is minimal complete for (1.1) based on T
as in (1.15).

The set w '(C,) is convex and nonincreasing for C, € %,,. Using (3.4) and
(3.7), we see that for each 8, R(x; 0) is convex and nondecreasing in x, so that d
of (3. 12) is also convex and nondecreasing. Thus the acceptance region of a test
(3.11) is essentially w ™ %(C,) N {x|d(x; \, 7, m,) < ¢}, a convex and nonincreas-
ing set. Hence we have the following useful corollary.

COROLLARY 3.2. A test ¢ is admissible for problem (1.1) based on T as in
(1.15) only if it is of the form

(1 ifxegA,
*= o ifxeA ae.[p],

where A is closed, convex, and nonincreasing.

(3.14)

We turn to the proof of the theorem. We will first present some local and
asymptotic properties of R(x; 0), and then use these properties to show how to
prove Theorem 3.1 using the proof of Theorem 2.1 in Marden (1982b). The proof
of the asymptotic properties we defer to Section 5.

LocAL PROPERTIES. Let [;(x) = (d/00,)R(X; 0)|q_o = [c(¥; + 1)/c(v;)]x; by
(3.5). For each x, as 2.6, > 0,

(3.15) R(x;8) =1+ Y6.,(x) +o(X6,),
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and

(3.16) sup [R(x;8) ~ 1

——— <k
00, Zoi
for some K < oo independent of x.
(3.15) follows from (3.5). For (3.16), write

p

(3.17) R(x;8)-1= ) (R(xj, 6, ;) — 1) l:[R(xi;Oi,vi),

j=1 i=0
where R(x,; 0,,7,) = 1. When 8 € 0, with 6, > 0 for all ¢,

R(x;0) — P |R(x;8., -
(3.18) l—(—2+1—|s R ; ) Il_IR(x,, 8;,v:),

Jj=1 J

where by (3.5), since 8 € O, implies that §, < 1
|R(x;; 6;,7,) —1/6, < R(1;1,7,) =1 < 0

J2 U
and
R(x; 0,,v,) < R(1;1,»;) < .
Thus the left-hand side of (3.18) is bounded by some K for all 8 € ©, with 6, > 0
for all i, hence by the same K for all 8 € O, proving (3.16).

ASYMPTOTIC PROPERTIES. Let C C & be such that for some sequence {7, } of
proper measures on 0,

(3.19)
C = closure C’; C'= {x € &'|lim sup /R(x; 0)7,(do) < oo}.

n—oo

For any such C, there exists a C, € €, with
(3.20) C=w'(C).

For any x & C of (3.19), there exists a subsequence {m(n)} C {n} (possibly
depending on x) for which

(3.21) lim fR(x'; 0)7(db) = 0o whenever X’ > x.
m— oo
For any x € interior C, there exists an x’ € interior C such that
(3.22) lim sup [R(x;0)/R(x’;8)] =0,
k=0 g0)>F
where
(3.23) o(8)=0(8,C)= Y 67
’ ied(C)

[see (3.9)].
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Finally, take § € ®, and ¢ > 0. Letting
p

(3.24) a(8) = T1(1+62)

i=1
we have that

2

o if Zg?wl(x) > t’
2 )R(x’ %) = {0 if ¥ ¢%0,(x) < ¢,

(3.25) lim a(sE)exp(

and for some K < o0,

(3.26)

—s°t
supa(si)exp( 5 )R(x; s¢) < K forxsuch that ) £%w,(x) < t.
>0

PrOOF OF THEOREM 3.1. Marden (1982b), which will be referred to as 82b in
this proof, presents minimal complete class theorems for testing problems such as
(1.1). Two cases are considered: Case A, in which R(x; 8) grows polynomially in 8
as 8 approaches the perimeter of the parameter space for fixed x; and Case B, in
which the growth is exponential. Unfortunately, the present problem has ele-
ments of both cases. When z <0, R(z; 7,v) grows polynomially, and when
z > 0, it grows exponentially (see Lemma 5.1). However, the proof of Theorem 2.1
in 82b can be modified for the present Theorem 3.1 as follows. The proof is in two
parts.

Part I. Using the local properties above, the first two paragraphs in Part I
of the proof of Theorem 2.1 in 82b can be followed exactly. There, V = © and
o = 20,. Define C as in (3.19) with =, = 7, as in the third paragraph in 82b. We
want to show that

(3.27) 6=1 ae.[p] forxeC
and that along some subsequence {m(n)} C {n},

(3.28) f R(x; 0)m,,(d8) > f_ R(x; 0)7,(d8) < 0 for x € interior C
0, 9,

for some locally finite measure 7, on ©,.
From (3.20) and (3.8) it can be seen that C is nonincreasing. Hence

(3.29) c°= U {xeax >x).
xeC*
As in the fourth paragraph in Part I, (3.21) and (3.29) can be used to show (3.27).
The sets B, in 82b should be replaced by the sets {x’ € 2]x’ > x}.
Now consider (3.28). As in paragraph five of Part I, there is a locally finite
measure 7, on 0, and subsequence {m(n)} C {n} such that
Tpm = Tp Vaguely.

Take x € interior C and follow the fifth paragraph with the set {81 < ¢ < i}
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replaced by
A;={8€8[1 <6 <oforjeJ(C)a(b)<i)

[see (3.23)] until (3.14) of 82b. Take x’ € interior C as in (3.22). With B, = 0, —
A Ly

13

(3.30) hmsupr(x 0)7,,(d8) < sup [R(x;0)/R(x’;0)]

n— oo a(0)=>1i

- limsup /R(x'; 0)m,,(d6).
n-—oc
As below (3.15) in 82b, (3.30) and (3.22) prove (3.28).
To complete Part I we use the sixth paragraph in Part I of 82b and the fact
that

(331) w({xld(x; \, 7, 7,) = ¢}) = 0,

whenever (N, 7, m, c) # (0,0,0,0). If (\, 7., m,) # (0,0,0), then by (3.4) and
(3.12), d(x; N, 7, m,) is strictly increasing in at least one of the x,’s so that (3.31)
must hold. If ()\, 7, M) = (0,0,0), and ¢ # 0, then (3.31) holds trivially. Part I is
finished.

PArT II. We present a sequence of proper measures {7,} on 8,, which can be
used as the sequence in (3.20) of 82b is used for Part II there. A proof similar to
the one in 82b [using (3.16) and (3.26)] will complete the proof of our Theorem
3.1.

We are given ¢ as in (3.11), with its C_, \, 7, and 7. Since C, is convex and
nonincreasing, there exist countable sets {£)} € ©, and {¢)} C [0,0) fori € [
such that

.\ 2 .
(3.32) c. =N {w e #|1¥(£9) 0 (x) < t‘”}.
el
Define the function u, of 8 by
0,n o,n
u,(0) = : Jp—
n+6, +1 n+6,+1

and let ©,, = u,(0,). Note that ©,, C ©,. Let m,, be the finite measure on ©,,
defined for B C ©,, by

Ton( B) = m(u, (B)),

so that for any integrable function f,

f@ F(8)my,(dB) = /e_)f(un(e))wb(de).

Let p,(d0) be the finite measure on 0 ,:
p.(d8) = Y 2 'a(nt?)exp(—n?)8(d0; nt®)
iel

where 6(d0; v) represents the measure placing point mass 1 at 0 = 1. The
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measure m, is defined by
mo(d8) = h(8)[n5(d0; N/n) +(£6,) 7B,y oy, -1,

+m,(d8)Ig, + p(dB)|,
where h(8) = T1(1 + 62)"* Y %exp(X672/2).

4. The t case: admissibility or inadmissibility of specific tests. Using
Theorem 3.1, we have that any test of the form

1 ifxew (C,),
(4.1) ¢ = . .
0 ifxew'(C),
where C, € %, is admissible. When a < 1 — 277, Tippett’s procedure (1.4) and
the LRT (1.18) are of this form:
Tippett: C, = {w€ #|lw,<k;,i=1,...,p};
-LRT: C, = {w eW|— Y (v, + Dlog(1l — w;) < c}.

We consider the other tests individually.

FISHER’S PROCEDURE (1.3). Suppose », # 2. Fix (x3,..., xp) and look at the
boundary x,(x,) of the acceptance region in the slice defined by

(4.2) — 2log py(x,) — 2log Pz(xz(xl)) =c+ i 2log Pi(x?)-

i=3
Since as x, = —1, x,(x,) = x3 € (—1,1), we can show that
dxy(x,) 0 if v, > 2,
4.3 li =
( ) E —>nzl dxl {

If test (1.3) is admissible, then by Theorem 3.1 it must be of the form (3.11).
We show below that (4.3) cannot hold for a test of that form, hence test (1.3)
must be inadmissible for », # 2.

Suppose (3.1) is of the form (3.11). Since the statistic in (1.3) is strictly
increasing in each x; € (—1,1), the set C, has the property that

0w {(C,)NAD{d(x;\,m,,m,) < c} NA,
where A = {x|x; < 0 for some i}. Thus by (4.2) we must have that
(4.4) d((xl, x5(x,), x3,..., xg); N, 7, ﬂb) =c,—1<x, <x?
for some x{ € (—1,0]. We can extend the definition of R and d to £* = {x €

RP| —1 < x; < 1for all i} by continuity since R is increasing in x;. Also, for any
X € & *, it can be shown that

—oo ifr; =1.

e(v; +1) f JR(x; 0)/3x,»77 (d8)

d
. =\ — 4 _ 7
‘9xid(x,)\’ﬂmﬂb) M C(Vi) o, Zgi

JR(x; 0
+/ %'nb(dﬂ) < .

b l

(4.5)



COMBINING NORMAL MEAN OR ¢ TESTS 1547

Now (3d/dx,;)R(x; 8) is strictly positive [see (3.4)] unless 8, = 0, so that the
right-hand side of (4.5) is strictly positive unless A; = 0 and =, and =, place zero
measure on the set where 6; > 0. The latter possibility implies that d does not
depend at all on x,, a situation which does not apply here. Hence from (4.4),

dx2(x1) _ ad(x’ x’ Wa’ Wb)/axl

4.6 li = - —0,0),
(4.6) o T, ad(x; \, 7,,m,) /9%, x=<—1,xg,,.,,xof( %,0)
sirice each derivative is strictly between 0 and + co. (4.6) contradicts (4.3) when

v, # 2.
Next, consider the test which rejects H, when
(4.7) [T -=x)"" > k.

We will show that for any set of »;’s, (4.7) is Bayes, hence admissible. When
v, =2, p(x;) = (1 — x;)/2, hence (4.7) coincides with (1.3) when »;, = 2 for all ¢,
proving the latter test admissible.
Define the measure p(dt;») on (0,00) through 7= «'/?8 where a ~
gamma(v/2 + 1;1/2) and B ~ beta(l, »), so that
e f(Z; T, V) +1)/2
— "1+ 2\(»+1)/ 2 2 d ;
/ a0y Lt ) exn(r?/2e(dr; )
(48) (2 +1
(»+1) (_ )
— L . N1/2 2 —a/2,.v/2 _ v—1
- fo /0 R(z; o'/28,v) oy g (1-B)" 'dadg.

Use (3.5) to show that the coefficient of z* in the final expression of (4.8) is 1. It is
helpful to use the duplication formula for the gamma function:

v+1+k 1 v+1+k 19
I‘(—— + —) (——) =T(r+1+Ek)(2n) 7271tk
2 2 2
Hence
(4.9) f°°R(z; rv)e(dr;v) = (1-2)"~
0

Let 7(d0) be the measure defined by
7(db) = 1—[(1 + 0i2)(vi+1)/2exl)( 0i2/2)p(d0i; v;).
Then by (4.8), (4.9), and (3.2),

f(xi; 6;,v;)
fl_l f(xi;O’ Vi)

which proves that test (4.8) is Bayes.

m(d8) = [T(1 - x,) ",

INVERSE NORMAL PROCEDURE (1.5). We will use the following lemma here
and elsewhere.
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LEMMA 4.1.  Suppose h,,..., h, are continuous, strictly increasing functions
from (—1,1) onto R such that h,(0) = 0. Consider the test which rejects H, when
(4.10) Yh(X,) > c.

If for some (x9,..., xg) there exists x € (—1,1) such that
(4.11) hi(x)+ hy(—x)>c— f hi(x?),
i=3
then the test is inadmissible. In particular, (4.11) will hold if p > 2.
ProOF. Let A be the acceptance region of test (4.10), and suppose the test is
admissible. By Corollary 3.2, A must be convex. Since

lim A;(x)= +oc0,

x—> 1
there are points (x, x,, x3,..., xg) arbitrarily close to the points
(1, -1,%3,...,x0) and (- 1,1, x9,..., x0) which are in A. Since A is closed and
convex, it must be that (y, —y, x9,..., x7) € A for all y. Since this fact is clearly

violated by (4.11), the test must be inadmissible.

If p > 2 for any x, (x9,..., xg) can be chosen large enough so that (4.11) holds.

Lemma 4.1 with A;(x) = —® '(p,(x)) shows that test (1.5) is inadmissible
when p > 2. If a > 1, then ¢ < 0, so that by taking x = 0 in (4.11) we can again
show the test inadmissible.

We need another lemma.

LEMMA 4.2. Suppose p = 2 and h, and h, are strictly increasing functions
with continuous second derivatives. The test which rejects H, when

(4.12) h(X))+ hy(X,)>c
is inadmissible unless
2 h// x; 2
(4.13) y (%) >0 whenever Y h/x,)=c.

i=1 h;(xi)2 i=1

PROOF. As in Lemma 5.1 of Marden (1982a), if (4.13) is violated then the
acceptance region of (4.12) is not convex, hence by Corollary 3.1 the test is
inadmissible.

For test (1.5), (4.13) is

4149 = T o(0 (p(x)(ri — Dx/di1 - x7)"* + ¢ > 0
whenever
(435) - Lo (p(x)) =

Here, ¢(2) = ®'(2).
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Using I’'Hospital’s Rule,
~ 9(0(pix)) (v, ~ 2,
d(1 - x2)""*

+o0 ifr;<2 and x;—> +1,
(4.16) orv,>2 and x;—> -1,
—»{—00 ifr;<2 and x;,—> -1,
ory,>2 and x;—> +1,

O if Vi = 2.

Since as x;, —» 1, x, > —1 along (4.15), (4.16) shows that (4.14) is violated as
x, = 1if v, > 2, », <2, and at least one »; # 2. Hence Lemma 4.2 proves (1.5)
inadmissible.

INVERSE LOGISTIC PROCEDURE (1.6). With A, (x)= —log p,(x)/(1 — p;(x)),
Lemma 4.1 shows test (1.6) is inadmissible'if p > 2, or a > j and p = 2. Suppose
p = 2 and », > »,. Now

1-py(x) 1 - py(—x)
pi(x) Pz(_x)

h(x)+ hy(—x)=1

Again using I’'Hospital’s Rule,

_ 1-py(x) 1=py(—x)  dy(1— a2
lim = lim = 0.

x=1 pi(x)  p(—x) o1 (1= x2)" 2

Thus (4.11) is violated for x close to 1, proving the test inadmissible.

SuM OF p;’s TEST (1.7). If all »;’s are 2, then test (1.7) is equivalent to the
local test (1.19) Lx; since p;(x;) = (1 — x;)/2. Thus it is admissible.
Suppose v, > 2 and a <1 — 1/p! so that ¢, < p — 1in (1.7). Take x3, ..., x
so that
0<co=c,— 2 pi(x?)<1.
i=3
Consider the boundary of the acceptance region in the slice

pi(x1) + py(x5(x,)) = co.
As x; > 1, x4(x,) = x3 € (—1,1) since ¢, < 1. Now

(4.17) T CIV o1

2)(”1/2)_1

m l

- 2)-1

x,—1 dxl x,—1 dl( g)(l‘Z/ )

=0

since », > 2. But (4.17) shows that the acceptance region cannot be convex since
dx,/dx, ‘would have to be nonpositive and decreasing to zero. Thus the test is
inadmissible.
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Sum TEsT (1.11). Taking A,(x;) = /»;x,(1 — x?)”'/?, Lemma 4.1 proves the
test (1.11) inadmissible when p > 2. Take p = 2. If s, < 0, then (4.11) holds with
x = 0, so that the test is inadmissible. Otherwise, note that (4.13) is

¢
4.18 — >0 ift, +t,=s,
( ) Z v, + tl2 i 2 Sa
Set ¢, = s, — t,. It is straightforward to show that

2 Sq — b

s + 3 <0
v+t vy +(s, — t,)

for sufficiently large ¢, if either s, <0 or s, = 0 and », > »,. Hence Lemma 4.2
proves the test inadmissible in these situations.

Finally, if s, = 0 and », = »,, the test is the level ; local test (1.19), x, +
x, > 0, hence admissible.

5. The ¢ case: proof of asymptotic properties. We start with two lemmas.

LEMMA 5.1. (a) As T — o0
c(v)'T(v + 1)|2|7*D ifz<0,
R(z;7,v)~ (7"} ifz=0,
c(v) " N(27) P2 r2 Vexp(r222/2)  if z > 0.
(b) Define the p vector sgn(x) for x € & by sgn(x), = sgn(x,), i.e., 1,0, or —1
asx; >0, =0, or <0. If sgn(x) = sgn(y), then
0<i(x,y)= inf exp( ~ 16%,(x)/2) R(x; 6)
s<6, exp(— Y0%,(y)/2)R(y; 0)
exp( — X07w,(x)/2)R(x; 0) _
= seo, xp(— LO%a () /2)R(y;0)

(5.1)

s(x,y) < .

PrROOF. (a) First take z < 0, and make the substitution b = —arz in (3.4) to
obtain

o 2 0.2 2
(52) R(z;7,v) = (1+72) 20+ be(y) o +b [Tomt/2r' bbb,
0

The first line of (a) follows fairly quickly from (5.2) by letting 1 — oo. The second
line follows directly from (3.5). Make the transformation u = a/7 in (3.4) to show
that

c(r)(27) 212 lexp( — 1222 z; T,V
(5.3) (»)(27) p( /2)R(2; 7, )

—o\(»+1)/2 v
=(1+r772) E.[U’I, (U)],
where U ~ N(z, 7~2). Thus the final line in (a) follows by letting 1 — o0 in (5.3).
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(b) If sgn(x;) = sgn(;), then by (a)
exp( —07w,(x)/2)R(x; 6;, v;)
0,-220 exp( _0i2""i(y)/2)R(yi; 6;, v;)
(5.4) lv/x " ifsgn(x;) = -1,
={1 if sgn(x;) = 0,
(x/3)"  ifsgn(x,) =1,
which is finite and positive in any event. Clearly the ratio in (5.1) is 1 at § = 0,

finite and positive for any 8, and continuous in 8, so that by (5.4), (5.1) must hold.
Before presenting the next lemma we need to set some definitions. Define

(5.5) = {xeX|x;>0forall i}.

For any set D C & let

(5.6) E(D)={x€%|x,>0fori € J(D), x,=0fori & J(D)},
where J(D) is given in (3.9).

LEMMA 5.2. (a) Any set C’ as in (3.19) is convex and nonincreasing (2.2).
(b) For C as in (3.19), x € C if and only if x*€ C, where x*= (x{,...,x
(¢) If D &* (5.5) is convex, then

closure (D N E(D)) = closure (D).

(d) Let C’ be as in (3.19). There exists C, C W which is convex, nonincreas-
ing, and satisfies C/ C closure E(C’) (5.6), such that

(5.7) C'NE(C) = 0 (C) NE(C).

+
p )

ProoF. (a) From (3.4) it is clear that R(x; 8) is convex and nondecreasing in
x for each 8, hence [R(x; 0)7,(d8) is for each n. Thus (a) holds.

(b) If x*€ C, x € C since C is nonincreasing and x*> x. Suppose x € C’.
Consider

Y(x) = {x € 2sgn(y) = sgn(x) and y, = x, if x; > 0}.
Since x*=y " for y € Y(x), w(x) = w(y). By Lemma 5.1(b),
R(x;0) > i(x,y)R(y; 0) fory € Y(x).
Since x € C’, by definition (3.19) of C’, Y(x) C C’. Also, x* € closure Y(x) so
that x*e C = closure C’. It follows that if x € C, x*€ C, since the “plus”
function in (1.9) is continuous.

(c) Clearly closure (D N E(D)) C closure (D). Suppose x € D. Since D is
convex, there exists an x° € D such that

(5.8) x>0 forieJ(D).
Now
(5.9 Dy= {ax+(1 - a)x’0 <a <1} c DNE(D)

since D is convex and (ax + (1 — a)x°), > (1 — @)x? > 0 for i € J(D). Thus by
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taking the closure of both sides of (5.9) we have x € closure (D N E(D)), from
which follows closure (D) C closure (D N E(D)), proving (c).
(d) Take y, € C’. By Lemma 5.1(b),

lim sup fR(x 8)7,(d8) < co if and only if

n—oo

hmsup/exp Y 020, (x)/2)g0(0)7r (d8) < oo,

n—oo

where g¢(8) = exp(—LZ670,(¥o)/2)R(yo; 8). Now
C' = {w S Wlhmsupfexp Y 6%, (x)/2)g0(0)7r (dﬂ) < oo}

n— oo
is convex and nonincreasing. By definition (3.9), x € C’ implies that x;<0
for i & J(C’). Since x; < 0 implies that w,(x) = 0 [see (3.8)], w € C/ implies
that w; = 0 for i & J(C’). Hence C/ C closure E(C’). Also, x; > 0 implies that
w,(x) > 0, so that (5.7) holds.
The proof of Lemma 5.2 is concluded. We now turn to the asymptotic
properties in Section 3. Use Lemma 5.2(d) to obtain C/ as described. Note that as
a function from E(C’) to E(C’), » of (3.8) is a homeomorphlsm Thus from (5.7),

(5.10) closure (C") N E(C’) = w™ '(closure C}) N E(C").
Apply Lemma 5.2(c) to (5.10) to obtain

(5.11) closure (C’) N = w~!(closure C’),

or by taking C, = closure C/ € %, obtain from (3.19)

(5.12) CNZ¥=w}(C)NZ".

(5.11) holds since by Lemma 5.2(a), closure [C’ N E(C’)] is convex, and is
contained in Z* by definition (5.6) of E(C’). Since by Lemma 5.2(b), x € C if
and only if x* € C, and by (3.8), w(x) = w(x™), (5.12) yields (3.20).

Now consider (3.21). Take C as in (3.19) and x ¢ C. By definition of C, there
exists a subsequence {m(n)} C {n} such that

(5.13) lim f R(x; 0)7,(d8) = oo

Since R(z; 7,7) is nondecreasing in z, x’ > x implies that R(x’;8) > R(x; 0).
Thus (3.21) follows from (5.13). Next take x € interior C. It can be shown that x*
is also in interior C, where

(5.14) x¥=x, fieJ(C), =x¥=x} ified(C)

so that x* > x. Since x} > 0 for i € J(C) and x* is in the interior of C, we can
find x” with x; > 0 for i € J(C), x/ = x,, otherwise, x’ € interior C, and

(5.15) x> X.

Take a € (0,1) so that y = ax’ + (1 — a)x > x and y, > 0 for i € J(C). Thus
sgn(x’) = sgn(y) and w;(x’) > w,(y) for i € J(C). Now (3.22) will hold if

(5.16) lim sup [R(y;8)/R(x’;08)] =0.
k>0 50)>k
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But by Lemma 5.1(b), the left-hand side of (5.16) is bounded from above by

klim sup {s(y,x’)exp[— Y02 (w0, (x') — w,(y)) /2]
~® g0)>k

= Jim st 5o 4 i (1) = )|

=0.

Letting « be as in (3.24), Lemma 5.1. and (3.2) can be used to prove (3.25).
Furthermore, we have that

supa(st)exp( s/ R(x s8) < exp{ ~s7| Tehu,(x) ] 2)

s>0

l_[ sup (1 + tz)—(w+l/2)R(xi; t,v,)

i:x;>0 t>0

since R(z; 7,v) < 1if z < 0 [see (3.4)]. Lemma 5.1(a) shows that the terms in the
final product are finite since the supremands are clearly finite and continuous for
0 < t < co. Hence (3.26) holds.
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