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MINIMAX VARIANCE M-ESTIMATORS IN -CONTAMINATION
MODELS?

By JOHN R. CoLLINS AND DouGLAS P. WIENS

University of Calgary and Dalhousie University

In the framework of Huber’s theory of robust estimation of a location
parameter, minimax variance M-estimators are studied for error distributions
with densities of the form f(x) = (1 — ¢)h(x) + eg(x), where g is unknown. A

- well-known result of Huber (1964) is that when h is strongly unimodal, the
least informative density fo = (1 — ¢)h + ego has exponential tails. We study
the minimax variance solutions when the known density h is not necessarily
strongly unimodal, and definitive results are obtained under mild regularity
conditions on h. Examples are given where the support of the least informative
contaminating density go is a set of form: (i) (—b, —a) U (a, b) for some
0<a<b<x;(ii) (—a, a) for some 0 < a < ; and (iii) a countable collection
of disjoint sets. Minimax variance problems for multivariate location and
scale parameters are also studied, with examples given of least informative
distributions that are substochastic.

1. Introduction and summary. In Huber’s (1964) theory of robust esti-
mation of a location parameter, the minimax variance M-estimator has score
function Yo = —f¢ /fo corresponding to the least informative density f, in a convex
class # An important model for the class .# of unknown error distributions is
the e-contamination model: let ¢, 0 < ¢ < 1, be known and let h be a fixed known
density function symmetric about 0. Then the model is that # is the class of
densities of form

(1.1) f(x) = (1 = e)h(x) + eg(x)

where g is an unknown density symmetric about 0.

It is a well-known result of Huber (1964) that when the density h in the
e-contamination model is strongly unimodal, then the least favorable f, has
exponential tails and the corresponding ¥, = —f¢ /fo is given by

Yo(x) = min{—h’(x)/h(x), k} for x =0,

= —yo(—x) for x <0,

(1.2)

where k depends on e. In this paper we study the form of the minimax solution
for general e-contamination models, i.e., for cases where h is not necessar-
ily strongly unimodal. For example, when h is the Cauchy density h(x) =
[ (1 + x%)]7%, then the least informative f, cannot possibly have exponential tails
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MINIMAX VARIANCE M-ESTIMATORS 1079

because the tails of the uncontaminated Cauchy h are heavier than exponential.
The investigation of general ¢-contamination models was motivated by a conjec-
ture of Joiner and Hall (1980). The results reported here form part of the Ph.D.
dissertation of Wiens (1982).

Huber’s necessary and sufficient condition for f; to be the least informative
density in 7 is that

(1.3) f [(=200(f" — fd) = ¥8(f = fo)] dx = 0

for all absolutely continuous f in & Writing f= (1 —e)h + egand fo = (1 — e)h
+ g0, an integration by parts (provided that y, is suitably regular) yields
[ [2¢¢ — ¥3](g — &) dx = 0 for all g. From this it follows that the support of g
must be the set of values of x on which 2¢{(x) — Y2(x) attains its minimum
value. Further necessary and sufficient conditions can be deduced which allow
one to find the minimax solution under very mild regularity conditions on h.

The general results are given in Section 2. Examples are given in Section 3,
including the case where h is Cauchy and some other somewhat surprising
examples. In Section 4, the theory is extended to the case of redescending
M-estimators.

2. The general theory. We present an asymptotic minimax variance
theory general enough to include as special cases both the one-dimensional and
m-dimensional location and scale (or scatter) models with contaminating distri-
butions restricted to be symmetric. The theory is not general enough to include
other closely related asymptotic optimality criteria such as the “change-of-
variance curve” approach of Hampel, Rousseeuw and Ronchetti (1981) (which
also yields solutions for which 2y/§ — 2 is constant on some intervals). Nor does
the theory include some important minimax problems arising in robust regression
(see, e.g., Bickel, 1984; and Huber, 1983).

Throughout this section, let » and » denote fixed functions satisfying the
following conditions:

(C.1) »:[0, ) — [0, ®) and 5: [0, %) — [0, =) are absolutely continuous functions,
which are positive and continuously differentiable on (0, ©);

(C.2) |v'(x)/v(x)]| is bounded as x — o0; and

(C.3) n(x) is bounded away from 0 as x — .

Let the function ¢: [0, ©) — [0, ) be defined by ¢ = nv. Let £ be the class of
functions defined by

= {G‘ f v(y) dG(y) is a (possibly substochastic)
0

distribution function on R* with f v(y) dG(y) 1(

/
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For each G in ¥, define G, on [0, «) by

Gu(x)=j; v(y) dG(y),

and define %, by %, = {G,| G € &}. Also denote by £’ the subclass of G’s in &
which have an absolutely continuous derivative g, and let &, = {G,|G € £"}.

Let e, 0 < e< 1, be fixed, and let H be a fixed member of &', having additional
properties to be specified later. Define & by

2.1) F ={F|F = (1 —¢)H + ¢G for some G € Z}.

Also define %, by &%, = {F,| F € ¥} (where F,(x) = [§v(y) dF(y)) and define
F'=FNg and ¥, =F NZ,) .

Let ¥ denote the class of functions ¢: [0, ©) — R which are continuous and
have a piecewise continuous derivative. For each y € ¥ and F € &', with
absolutely continuous density f, define the functional V (¢, f) by

VY, f)

(2.2) b ® 2
=( . Y2 (x) f (x)v(x) dx)/<2[ \ Y(x)n(x)f (x)v(x) dx )

Then the general minimax problem is to find a ¢ in ¥ which minimizes
sup{V(, f): FETF '}

ExXAMPLE 2.1. Huber (1964) considers the estimation of § € R when
X,, +-+, X, is a random sample from an (approximately specified) distribution
F(. — 0) using M-estimators, i.e., solutions of ¥, ¢(X; — 8) = 0. One way to
force the M-estimator to be a consistent estimator of f is to impose the side
conditions that the distribution F be symmetric about 0 and that the function y
be skew-symmetric about 0. Then, under regularity conditions, Huber (1964)
shows that the (consistent) M-estimator of  is asymptotically normal with
asymptotic variance

(Iw V2(x) f(x) dx>/<[J:co Y(x)f'(x) dx])

when F has absolutely continuous density /. By symmetry, the variance functional
can be written as V(y, f) (formula (2.2)) when »(x) = v(x) = 1. With this choice
of n and » (which trivially satisfy (C.1), (C.2) and (C.3)), the general minimax
problem reduces to finding the ¥ which minimizes sup{ [ ¥*f/( [ ¢f’)?} as f varies
over all absolutely continuous symmetric densities f of the form f = (1 — ¢)h +
&g, where h = H' is a fixed density symmetric about 0. The solution was obtained
by Huber (1964) for all cases in which A is twice differentiable and —log h(x) is
convex on the support of H. (Note that if y: R — IR is a skew-symmetric function
which has a piecewise continuous derivative and which is continuous except
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perhaps at x = 0, then the restriction of ¢ to [0, ») is in the class ¥ defined
above.)

EXAMPLE 2.2. Huber (1977) and Maronna (1976) considered the following
problem (see also Chapter 8 of Huber, 1981). Let the random vector Y € R™
have a spherically symmetric density g(y) = g(|y|). Let

(2.3) v(x) = 16mCp| x|,

where C,, denotes the volume of the unit sphere in R™. Then with G(x) =
5 8(y) dy and G,(x) = [§ v(y) dG(y) for x = 0, one can see that the random
variable X = | Y | has distribution function 2G,. Now assume that a nondegener-
ate affine transformation y — Vy + t has been applied, and that the problem is
to estimate the unknown location vector t € R™ and the unknown scatter (scale)
matrix V. Huber (1977) and Maronna (1976) proposed estimating t and V by
solving a system of equations which are shown to result in consistent asymptot-
ically normal estimators. Furthermore, the location and scatter coordinates of
the limiting covariance matrix are seen to be asymptotically independent and are
determined up to scalar-valued (because of spherical symmetry) functions of u,
and f (for location) and u; and f (for scale), where u; and u, are “influence
functions” for location and scale, respectively. In particular, if » is given by (2.3)
and 7; is defined by

ni(x) = (2/(m + 2))'(x*/m) for i=0,1,

then the minimax problem (2.2) can be seen (up to some differences in parame-
terization) to be equivalent to the minimax variance problems of Huber (1977)
with i = 0 and i = 1 corresponding to location and scale, respectively. (Note that
v, no and 7, clearly satisfy conditions (C.1), (C.2) and (C.3).)

We remark that the restriction to spherically symmetric contaminating dis-
tributions, which reduces a multivariate problem to a univariate one, is quite
severe. But the restriction is necessary to make the minimax variance criterion
meaningful (by eliminating bias). For a modification of the theory which allows
contamination which is symmetric in a central region but asymmetric further
out, see Section 4. For a different approach to the robust estimation problem
that places no restrictions on the distribution of outliers, see Donoho and Huber
(1983).

Returning to the general problem of finding the ¢ which minimizes
sup{V(y, f): F € &'} with V(y, f) given by (2.2), we give a modification of
Huber’s definition of Fisher information which is appropriate to our problem.
For fixed », n and ¢ = vy satisfying (C.1), (C.2) and (C.3), and for all F, € &,,
define the functional I(-) by

3 2 )
I(F,) = sup‘,,[2<J; (Yo)’ dF) /f Vi dF],
0

where the sup is over the set C} of all continuously differentiable functions with
compact support satisfying [§ y%o dF > 0.
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Simple modifications to the proofs of Theorem 4.2, and Propositions 4.3, 4.5
of Huber (1981) give:

THEOREM 1.

(A) The following are equivalent:
(i) I(F,) < oo.
(ii) F has an absolutely continuous derivative f satisfying [5(f'/f)? fo dx

< oo,

In either case, I(F,) =2 [§ (f’/f)? fo dx.

(B) There is an F° € % minimizing I(F,). Define Fo by F(x) =
[5v(y) dFo(y).

(C) If 0 < I(F?) < o, and the set where fo = F{ is strictly positive is convex,
then F? is unique.

Motivated by Theorem 1, we impose some further conditions on the function
H in our model (2.1):

(H.1) 0<I(H,) < o;

(H.2) h(=H") is strictly positive on [0, «);

(H.3) lim,_«(hv)(x) =0;

(H.4) the function ¢, defined by ¢ = —h’/h is absolutely continuous and
continuously differentiable; and

(H.5) lim,jo({o)(x) = 0.

The conditions imposed on H ensure that there is a unique FY € ¥, minimizing
I(F,) over %,. Since I(F,) is a convex functional of F, (see Lemma 4.4, Huber,
1981), F° minimizes I(F,)

iff (d/dt)I(Fi)|=0 = 0 forall F.=(1-¢)F)+tF, with Fle g,/ .

Performing the differentiation and setting Yo = —f¢ /fo gives the necessary and
sufficient condition

(2.4) 0= J; [2(fd = f")¥o + (fo — f)¥ilo dx

forall f=F' with F, e &,/ .
We can now relate the information and variance functionals via Theorem 2 of
Huber (1964).

THEOREM 2. Under the assumptions (H.1) and (H.2), there is a unique
F° e &, minimizing 1(F,).

(1) If Yo = —fd /fo is contained in V¥, then (Yo, fo) is a saddlepoint of V({, f) in
¥ XF,

(2.5) VY, f) < 1/I(F?) = V(o, fo) = V¥, fo),
forally EVYand F, €5, .
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(ii) Conversely, if (Yo, fo) is a saddlepoint, and ¥ contains a nonzero multiple
of —fd /fo, then I(F?) < I(F,) for all F, € %,, F° is uniquely determined,
and Y, is [F%]-equivalent to a multiple of —f4 /fo.

(iii) Necessary and sufficient for F? to minimize I(F,) is that (2.4) above be
satisfied.

Note that by writing fo = (1 — ¢)h + g, the necessary and sufficient condition
(2.4) can be rewritten as

(26) 0= J; Jl2[(gov)’ — (gv) Ion + (gov — gv)[—2\lxon~yy— + w%n]} dx

for all G € £’. Our main theorem (see Theorem 3) gives a further set of necessary
and sufficient conditions which make possible the explicit determination of the
minimax Y, corresponding to a given H satisfying (H.1)-(H.5). For convenient
use in the statement and proof of the theorem, we define the functional ¢, for all
differentiable y: [0, ©) — R, by:

JW) = 2" —¢* + 2¢(c’/o))n.

It turns out that the minimax y, agrees with { = —h’/h except on a (finite or
countable) collection of disjoint open intervals {B, ;} where ¥, agrees with a
solution £ of J(£) = —A. Since on each B, ; the solution typically has the same
parametric form but with parameter values depending on B, ;, we introduce an
index {w;} to keep track of the version of the solution on B, ;, and we write
J(E(x; wj, N\)) = =\ for x € B, ;.

THEOREM 3. Under assumptions (C.1) through (C.3), and (H.1)-(H.5), there
is a unique F? € &, minimizing I(F,) over Z,.
(A) In order that F? minimize I(F,), the following are necessary and sufficient:

(P.1) The function Yon = —(fo/fo)n is bounded, absolutely continuous, and
plecewise continuously differentiable on (0, ©).

(P.2) for(x) >0 as x-— oo,

There exists A = 0, and a set B, = UXY B, ; C (0, ), where N(\) < » and
the B, ; are nonoverlapping open intervals, such that:

_ Ji), x € BS
(P.3)  volx) = {f(x; wj, \), € B:,j,

where J (£(+; wj, N)) = —\ on B, ; for any fixed wj;

_[a - on), x € B
(P4)  folx) = {u — o) (supp, (h(x)/k(x; @y, M)k(x; wy, N), x € By,

where each k satisfies £ = —k’/k and supg, ;(h/k)(x) is attained at each
nonzero, finite endpoint of B, ;;
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(P.5) [, vgo dx < 'k, with equality if X > 0, where go = (fo — (1 — ¢)h)/e;
(P.6) Ay={x€ (0,0)|J({) <—A} C By;
(P.7) ¢on(0*)rge(0) = 0 < Yon(0*)

(B) If the pair (Yo, fo) satisfies (P.1)-(P.7), and if as well Y, € V¥, then the
saddlepoint property (2.5) holds in ¥ X &, .

(C) If the conditions in (B) are satisfied, and (Yoo/v)’ is either continuous or
nonnegative upper semicontinuous, and vanishes at infinity, then (Yo, fo) is
not only a saddlepoint with respect to &, , but with respect to %, as well.

PROOF. The existence and uniqueness of F? follow from Theorem 2, as does
part (B). Part (C) may be proven as in Theorem 5 of Huber (1964), by writing

VY, f) as
© 00 2
J; ¥?a/v) dFy/2(J; ((Ya)'/v) dFy>.

To show the sufficiency of (P.1)-(P.7), it suffices to verify (2.6) for the dense
subclass of £’ for which lim,_.gv(x) = 0. For this subclass, an integration by
parts, using (P.2) and (H.3), establishes the equivalence of (2.6) with

(2.7) J; J(Yo)v(8 — 8o) dx + 2(vg — v80)(0)(Yon)(0%) = 0.

The second term in (2.7) is nonnegative by (P.7). Considering the ranges B, and
§ separately, and using (P.3), (P.6) shows that the integral is bounded below by
—\[f 3 v(g — go) dx], which is nonnegative by (P.5).
It remains to show that (P.1)-(P.7) are necessary. For this, define

(2.8) -;‘- = f [2¥08¢ + Y300 dx,
By
where B, is the support, in (0, »), of go. Represent B, as the disjoint union of its
maximal components, as in the statement of the theorem. Put {(x) =
Yo(x)1p,(x), so that ¥, agrees with £ on B,, and with { on BS. Condition (P.4) is
now an immediate consequence of these definitions and the continuity of f,.
It follows from (2.4), the convexity of I(F%), and (2.8) that

(2.9) 0=<2 A —f [281¢0 + glkb%jﬂ dx@ = iI(Fi)uo < o,

2 0 dt ¢
whenever I(F!) < «. This is easily seen to imply that A < o. The choice
& = &o/2 in (2.9) entails X = 0, and the choice g, = go/(2 [, Sv dx) then

establishes the necessity of (P.5). On the other hand, if g; has finite -support
contained in BS, the first inequality in (2.9) becomes

A
—5=- f 12818 + 1?0 dx = f I dx,

after an integration by parts. Thus J({) = —\ on BS, and (P.6) is established.
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Before showing that (P.1)-(P.3) are necessary, we note that they imply that
(2.7) holds, hence that (P.7) is necessary as well. To prove that (P.3) is necessary,
we first claim that the function

o (t) = 2(&n)(¢) — fo [—2(£n)(x) Vj(x) + (Ezn)(x)] dx + N\, t€ By

is constant on B,. It then follows, using (C.1), that £ is absolutely continuous
there and satisfies 0 = ¢’ (t) = J(£) + . To establish the claim, let G, be any
fully stochastic member of &, with support [a, b] C B,. Using integration by
parts to evaluate the second and third terms in | b o (t)(gv)'(t) dt, see that this
becomes [ [2¢g’ + £°g)o dt — /2, which is nonpositive by (2.9). Since [a, b] is
arbitrary,

(2.10) J; o(gv) dt=<0

for all fully stochastic G, € &,/ with support in B,. The claim will follow
immediately, once it is shown that equality holds in (2.10) for all such G,. That
equality holds if g = go is (2.8). Here we must approximate g, by functions with
compact support, and use the fact that A = 0 if gov is substochastic.

Suppose, for contradiction, that [§ ¢(gv)’ dt < 0 for some [a, b] C B, and
some g,» with mass % on [a, b]. Assume that go» has been normed, if necessary,
so that it is fully stochastic. Choose a € (0, 1) sufficiently small that the function
g2 = (g — ag1)/(1 — a) is nonnegative on B,. Then by (2.10),

b
0= f ¢(gov) dt = —af o(gv) dt >0,
B, l1—ada

a contradiction. Thus equality holds in (2.10) and (P.3) is established.

In the presence of piecewise smoothness of yon ((P.3) and (H.4)), (P.1) is
equivalent to continuity and boundedness of yon. But were these to fail, one
could construct sequences {f,v} with sup V(yo, f») = ©, a contradiction.

Finally, note that by virtue of (C.2), (C.3) and (P.1), the function w(x)
= —log for(x) has a continuous derivative which is bounded as x — o, and
[5 exp(—w(x)) dx < Y. This implies that w(x) — « as x — o, which is (P.2). 0

Condition (P.6) of Theorem 3 states that those regions in which J({) drops
below —\ must be contained in the support of g. In Lemma 5 below, we show
that every region of support of g, contains a subinterval on which J ({) < —\. We
require a preliminary result.

LEMMA 4. Let K(x) be any differentiable function defined for all x > a, “a”
arbitrary. Then
infi, ) 2K’ (x) — K*(x) < 0.
The inequality is strict unless K = 0.

PROOF. Suppose that the inequality fails, and that K # 0. Then K increases
at least exponentially quickly, and we may assume that K(x) > 0 on [a, «). It
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follows that the function u(x) = exp(—% [ K(z) dz) is positive, decreasing, and
concave on (a, ©), which is a contradiction. 0

REMARK 2.1. From condition (P.6) of Theorem 3, By = & implies that J ({) (x)
= 0 for all x = 0. In the univariate location estimation problem (Example 2.1),
v=n=c¢=1land J({) = 2{’ — ¢ so that J({) = 0 on [0, ) is impossible by
Lemma 4. Hence we always have By # @ when » = { = ¢ = 1. But in the next
section, we will give a special case of the multivariate location estimation problem
(Example 3.5) in which g, = 0.

LEMMA 5. If B, # O, then A\N B,;# D forallj < N(\).

PRrROOF. Let (¢, d) C B, = (a, b) be arbitrary. If Ay, N B, ; = &, then

d d d
0= f [J() — J(E)]ofo dx = 2(§ — E)ofo| — f (§ = &)afy dx;

so that by the Cauchy-Schwarz inequality,

d

d 2 d
(211) 0= [f (&= &ofo dx] = f (§ = £)%afo dx = 2(§ — £)ofo

c

Let d — b in (2.11). If b < oo, then (¢ — £)(b) = 0 and (2.11) implies that { < £
throughout By, ;. If b = =, this is implied by Lemma 4, with K(d) = [ ({ — £)dfo
dx. Now integrate “{ < £” over (a, ¢) to obtain the contradiction that gy(c) < 0,
if go(a) = 0. If go(a) > 0, then a = 0 and (H.5) is contradicted, using (P.7). 0

Suppose that under the conditions of Theorem 3, the pair (Yo, fo) satisfies
conditions (P.1)-(P.7), where the set B, (the support of g;) is nonempty and
where A\ = {x € (0, ©)|J({) < —\} is a single interval (c), d)). By condition
(P.6) and Lemma 5, B, must be a single interval (a,, b)) 2 (cx, dy). If @y # 0
(by # ), it must be the largest (smallest) zero of £ — { to the left (right) of ¢, (d,),
since extending the support of g, beyond this point would contradict Lemma 5.
Thus in the special case where A, is a single interval, the solution must have the
form stated in Theorem 6 below. The problem is then reduced to a numerical
one of determining four constants (w, X, as, bx). We have:

THEOREM 6. Suppose tha_t for all X\ > 0, A, is a single intgrval (cx, dy). Then
there exists a unique pair (w, X\), where w € [—o, ©] and 0 < X < inf{\ | A\ = &},
such that the pair (Yo, fo), defined below, satisfies the given conditions.

. _ J$x), x € (0, az] U [b3, ),
) Vo(x) = Jlf(x; w, X), x € [a5, l;x]; '
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where J (£) = —X,
a5 = sup{x < ¢x| (£ — {)(x) = 0}, (where sup @ = 0),
bs = inf{x = d5| (¢ — §)(x) = 0}, (where inf & = ).

) = [A=h@, 2 €0 a1V [bs, @)
0 (1 — ¢)sk(x), x € [as, bsl;

where £ = —k’ [k and
S = SUP(a;, 651 (h/R) (%)

(ii)

(h/R)(ax) if bx = o,
= (h/Rk)(bx) if ax=0,
(h/R)(as) = (h/R)(b3) if 0 <ax <bs <.

by
(iii) 1-e f v(x)[sk(x) — h(x)] dx < %, with equality if X > 0.
€ ay

If Yo € ¥, then (Yo, fo) possesses the saddlepoint property:
Vo, f) = Q/I(F?)) = VYo, fo) = VY, fo)
forally € Vand F € F

3. Examples. We first consider special cases of Example 2.1 of the previous
section, that is, the case n = v = ¢ = 1 corresponding to the one-dimensional
location parameter estimation problem. We first note that the solution to J(£)
= 2¢’ — £2 = —), where A\ = 0, must have one of the following three forms on
each of its intervals of support:

(3.1) Ex; w, ) = NHY tanh[—(\/X/2)(x — w)] (decreasing in x); or
(3.2) E(x; w, \) = N5 (constant); or
3.3) E(x; w, A) = V)Y coth[—(«/—):/2)(x — w)] (increasing in x).

The next four examples will give the minimax solution (Yo, fo), where fo =
(1 — e)h + &gy and o = —f4 /fo, corresponding to four choices of h. In each case
only the restriction of the solution to the set [0, ») will be given (extension
to the context of Example 2.1 is given by symmetry: fo(—x) = fo(x) for all
x, Yo(—x) = —yo(x) for all x # 0). In Example 3.1 the support of g is [a, ®]
for some a > 0; in Example 3.2, supp{go} = [a, b] for some 0 < a < b < o;
in Example 3.3, supp{g} = [0, b] for some b > 0; and in Example 3.4,
supp{ go} = UL, [a;, b;] where the [a;, b;] are a countable collection of nonempty
disjoint sets.

EXAMPLE 3.1. Let » = y = ¢ = 1 and assume that ¢{ is increasing (i.e., h is
strongly unimodal). Then it follows easily from Theorem 6 that B, must be a
single half-infinite interval. Since it is easily seen that solutions to J({) = —\
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of form (3.1) or (3.3) are impossible on such By, only the constant solution (3.2)
is left, yielding Huber’s (1964) result that ¥, = —f{/f, is given by (1.2). We
note that this example contains as special cases densities of the form h(x) =
const - e *" o > 0. In the limiting case that h is the Laplace density
Y2 7'*1, the solution is Yo(x) = (1 — &) for x > 0, and fo(x) = %(1 — ¢)e~0-*
for x > 0.

EXAMPLE 3.2. Let v =17 = ¢ =1 and let h be the Cauchy density
h(x) = (1/7)(1/(1 + x?)).
In this case,
§) = 22/(1 + 2%), J(§) = 4(1 — 2x*)/(1 + x%)?,

and

4

Av=(r€ (0, ®)|J() < -\ = {g NS

where ¢ = (4 — X\ — 2v4 — 3\)/\, d? = (4 — X + 2v/4 — 3\)/\. In this case,
Theorem 6 applies, so that the support of g, is a set (a5, bs) (as defined in the
statement of Theorem 6) on which J(£) = —X. Now if ¢ were the constant
solution (3.2) to J(£) = —X on (as, bs), the continuity of ¥, would force b5 > 1 so
that ¢¢(b+) < 0 = ¢ (b—), which violates (P.6). Similarly the “coth” solution
(3.3) to J (£) = —X also violates (P.6). This leaves only the “tanh” solution (3.1).
For A > 0, £ — { has three zeros a,, ey, by; with a,(>0), b,(<®) € A§ and e, € A,
(to satisfy (P.6)). Thus, for A € (0, 43) and e} € ((4 — N\ — 2vV4 — 3\)/),
(4 = X + 2V4 = 3)\)/)), set w = ey + (2/vV\)tanh™(2e,/VA(1 + e2)), so that
((ex; A, w) = {(ex). Let a, and b, be the other two zeros of ¢ — {.-Put
k(x; w, \) = cosh?((— «/X/2)(x — w)) so that —k’/k = ¢£. Then by Theorem 6 there
exists a unique pair (}, e5) in the indicated region satisfying

s = (h/k)(ax) = (h/k)(bs) = SUpP(;,b;) (h/R)(x),

and

1—e¢ b
- J; [sk(x) — h(x)] dx = =;

2}

and the optimal pair is given by

Yo(x) = 2x/(1 + x?) ' x €& [az, bs]
= VX tanh(—(VX/2)(x — w)), x € [as, bs;

and
folx) = (1 = &)/(x(1 + x?)) x €& [as, bs),

= (1 — ¢)s - cosh®((—VX/2)(x — w)), x € [as, bs].

Here the five constants (\, w, s, a, b) are determined by the five side conditions
that both ¥, and f; are continuous at both a and b and that [§ fo(x) dx = %.
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Figures 1, 2, 3 give plots of h, { and J({) (dotted curves) along with plots of
fo, Yo and J (¥o), respectively (solid curves) when A is the Cauchy density. For a
large class of densities for which the minimax solution is qualitatively similar to
the solution in the Cauchy case, consider the class of t-densities

hy(x) = (const) - (1 + x2)~+k72,

FiG. 1. Cauchy density (1 — ¢)ho (——-) and least favorable fo ( ).

10 | //\\
/ AN
AS
/ N
\\
\\
~
05 |- \\\
~—
1 1 | 1
(o] OX ex bx w

FI16. 2. ¢{=—h'/h (---) and Yo = —fo /fo ( ).

e e e —
—

Fi6.3. J({) (-—-) and J (o) (

).
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Then we have that {(x) = (k + 1)x/(1 + x?) and
J(O)x) = ((k+ 1)/ + 2*)*)(2 — (k + 3)x?),
so it is clear that the minimax solution is similar to that of the Cauchy case
(which is the special case k = 1).
EXAMPLE 3.3. Let» =% = ¢ =1 and let h be the density
h(x) = c.e” =™,

where 0 < a < % and ¢, is chosen so that [§ h(x) dx = %. (Note that if a = %,
then I(H,) = «.) Then we have that {(x) = —h’'(x)/h(x) = (1 — a)x™* and

J(§)(x) = 207 (x) — {2(x) = —((1 — @)/x™*)[2a + (1 — @)x'™7] <0

for all x > 0. Note that ({)(x) is strictly monotone increasing from — at 0* to
0 at . So we have

Ay = {x|J(H)(x) < =)}
= (0,d), where —(1 — a)d™™*[2a + (1 — a)d*™*] = —=\.

It follows from Theorem 6 that B, = supp(g.) is of the form (0, b) for some
b > d. It is easy to see that both the constant solution (3.2) and the “coth”
solution (3.3) to the equation J(£) = —\ on (0, b) would violate the necessary
condition that A, C B,, and so these solutions are impossible. So the solution
has the form

Yo(x) = A\2tanh((—VA/2)(x — w)), 0<x<b
=¢x)=010 — a)/x* x > b;
and
cosh®((—vA/2)(x — w))
cosh?((VA/2) (b — ))
= (1 — ¢)h(x) x = b.

The constants are determined by (i) continuity of ¥, at b, (ii) the condition
80(0) = 0 (by condition (P.7) since ¥0(0*) > 0), and (iii) ¢ fo dx = %.

fo(x) = (1 — e)h(b)

IA

EXAMPLE 3.4. Let» =7 = o =1 and let h be the density with corresponding
= —h’/h given by
{(x) = x, 0<x=<2
=2+ sin(x — 2), x> 2.
Then it is easy to see that the set of points at which J({) = 2{’ — {® attains its
minimum over R* is {x: x = xo + 27k, k=0, 1, 2, ---}, where x, is a point in

[0, 2 + 2x]. Since B, is nonempty by Remark 2.1 and A4, N B,; # & for all
j < N()\) by Lemma 5, it follows that A, contains an interval in the neighborhood
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of each of the points of {xo + 2wk, k=0, 1, - . -}. For sufficiently small values of
¢, one can easily verify that Yo = —f¢ /fo has the following form:
Yo(x) = ¢(x), x€[0,2 + 27 ]\[a, b]
= V\tanh[(VA/2)(w —x)], xE]a,b]
=yo(x — 2km), XE[2+2kT,24+2(k+1)7], k=1,2,...,

where 2 < a < xp < b < a + 2w. Here the constants (a, b, w, \) are deter-
mined by the side conditions that both ¥, and f, are continuous and that
g = [fo — (1 — ¢e)h]/e (which must necessarily be positive on its support
B, = Ui (a + 27k, b + 2wk)) satisfies [§ go dx = Y.

The ¢ of Example 3.4, chosen for its mathematical convenience, is of no
practical interest. A qualitatively similar result is obtained for any choice of { for
which J({(x)) attains its minimum infinitely often as x — .

The next two examples are special cases of Example 2.2 where »(x) =
YemC,x™ ! and n;(x) = (2/(m + 2)) (x*/m) corresponding to asymptotic variance
functionals for M-estimators of location (i = 0) and scale (i = 1) in affinely
invariant m-dimensional models (see Huber 1977, 1981). Unlike the case n =» =
1 (where Remark 2.1 applies), one can find choices of h for which the least
informative fo = (1 — e)h + ego is substochastic. This is illustrated for
m-dimensional location (i = 0) and scale (i = 1) in Examples 3.5 and 3.6,
respectively.

EXAMPLE 3.5. Let m = 2, v(x) = ¥amC,,x™ ! and n(x) = 1/m. Then ¢ =
satisfies (¢’/o)(x) = (m — 1)/x. Now let

h(x) = const - (1 4 x2)~m+h/2, >0
so that we have
(hv)(x) = const - x™ (1 + x2)""*R2 x>,

The minimax problem is the multivariate location estimation problem with hv
an m-dimensional “Student” t-density. Then we have {(x) = (m + k)x/(1 + x2),
¢'(x) = (m + k)(1 - x%)/[(1 + x*)*], and

J()(x) = (28" = £ + 28(a’/a))n(x)
= ((m + k)/m(1 + x2)?)[2m + (m — 4 — k)x?].

Now suppose that m = k + 4. Then J({)(x) > 0 for all x > 0, and so the choices
A =0, By, = and g, = 0 yield the minimax solution by Theorem 3 and Lemma
5. That is, the least informative distribution has the substochastic density f, =
(1 — ¢)h, and the minimax ¥, = ¢.

Note that the case m =1 yields the univariate ¢t-densities which were considered
in Example 3.2.

EXAMPLE 3.6. Let m = 2, v(x) = YamC,x™ !, and n(x) = 2x?/[m(m + 2)].
Then ¢ = yv satisfies (¢’/c)(x) = (m + 1)/x. Consider the case of the normal
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density; i.e., set
h(x) = (2r) ™ 2exp(—x2/2).

Then in the minimax solution, the support of go = [fo — (1 — ¢)h]/e must be the
set B, on which

J(E)(x) = 2¢" — £ + 2£(a"/0))n(x)
= [2x%E"(x) — x2£2(x) + 2(m + Dxt(x)](2/m(m + 1)) = —\.

Recall from the proof of Theorem 3 that we must have A = 0 and that g, can be
substochastic only if A = 0. One can then easily see that the minimax solution
always has the form

Yo(x) = x, c<b
4
(3 ) = b2/x’ x> b;
and
(3.5) fox) = (1 = O)h(x), x=b

= (1 — e)h(b)(B/x)"", x=b

Note that A = 2b? (b2 — 2m)/[m(m + 2)]. Define e(m) by (1 — ¢(m))™ =
4x%(2m) + X2%(2m), where xZ and X2 denote the density and distribution
function, respectively, of a chi-squared random variable with m degrees of
freedom. Note that £(2) = (1 + e2)™! = .119 and ¢(m) — 0 as m — . In the case
where ¢ < ¢(m), the equation [§ go(x) dx = %, or equivalently

(3.6) 1/ = &) = (2b°x7(6%)/(b* — m)) + X7.(b%),

can be seen to have a solution b > v2m so that A > 0. In the case ¢ > e(m), we
must have \ = 0, so that b = v2m and the resulting f, is substochastic.

Huber (1977, 1981) considers the same minimax problem with a side condition
restricting the distributions under consideration to be proper. The solution to
Huber’s problem has form (3.4), (3.5) when ¢ < ¢(m) but not when ¢ > ¢(m). In
the latter case, the least informative proper density of form (1 — ¢)h + ¢g places
contaminating mass on sets of form [0, a] as well as [b, ) (see pages 232-236 of
Huber, 1981, for details). We remark that if a restriction to proper distributions
is added to the hypothesis of our Theorem 3, then the theorem goes through with
the only change being that A need not satisfy A = 0. In Huber’s solution, it is
easily checked that A < 0 when & > ¢(m).

4. Theory for redescending M-estimators. In Section 2 a theory was
presented for finding minimax pairs (Yo, fo) in ¥ X % Let r, 0 < r < o, be fixed
and define ¥, to be the subclass of continuous ¥’s in ¥ which satisfy ¢ (x) = 0
for all x = r. The class ¥, of “redescenders” is useful for obtaining consistent
M-estimators when the unknown error distributions are assumed to be symmetric
in a central region and asymmetric in the tail regions. For proofs of consistency
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and asymptotic normality, see Collins (1976, 1982) for the scale-known location
case, and see Wiens (1982) and Wiens and Zheng (1983) for the case of estimating
both location and scale.

The theory of Section 2 essentially goes through with ¥ replaced by ¥, with
one important exception: the side condition ¥,(r) = 0 forces fq (r) = 0 so that
B,, the support of g;, must contain a neighborhood of r. But one can find
examples in which no pair (Y, fo) satisfying the necessary condition (P.6) of
Theorem 3 (that A, = {x | J({)(x) < —\} C B,) can possibly satisfy the condition
r € B,. Such an example—for which the variance functional fails to have a
saddlepoint in ¥, X .7 —is given in Wiens (1982). To make sure that there is a
minimax v, in ¥,, we will restrict our attention to densities h for which the
condition A, C B, forces r € B,.

We assume

(B1) ¢ is continuously differentiable and positive on (0, r), and bounded on
[0, r]. Let £(x; w, \) = £(x, X) be the solution to J(¢) = —\ € [0, ],
passing through (r, 0). Assume that ¢ and 5 are such that the following
condition is satisfied.

(B2) For fixed A > 0, £(x, \) is strictly decreasing in x € (0, r).

The following lemma gives an easily checked condition ensuring that (B2) is
satisfied, and gives some further properties of £ (x, \).

LEMMA 7. For fixed x € (0, r), £(x, \) is a continuously differentiable function
of \, with

1) £(x, \) >0 (A>0), ii) (d/d\)E(x, N) >0,
iil) limy_0f(x, A) =0, iv) limp,of(x, A) = oo,
Furthermore, assumption (B2) is implied by the following condition.

(B2") For fixed \>0, (¢'/a)(x) + ((c" /o) (x) + (N/n(x)))? is strictly decreasing
inx€(,r).

In particular, if (¢’ /o) (x) is nonnegative and decreasing, and 5 (x) is nondecreasing,
then (B2) holds.
PROOF. See the proof of Lemma 4.5 of Wiens (1982). O
Define, for A = 0, '
A)\ = {x € (07 r)' J({) < _)\}7
By ={x € (0, r)| £(x, \) < {(x)},

and note that {A,} is nonincreasing, and that {B,} is strictly decreasing from
(0, r) to D as X increases from 0 to oo.

Under certain condition on ¢, condition (P.6) of Theorem 3 is satisfied by any
pair (A,, By).
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LEMMA 8. If either of the following conditions holds:

(a) ¢ is nondecreasing on (0, r),
(b) J() is nonincreasing on Ay;

then A, C B, for all A\ = 0 and B, is a single interval (ay, r).

Proor. By (iii) of Lemma 7, B, contains an interval (a,, r) for all A, and
ax | 0as X ] 0. Let {(a}, b3), 0 =j < N(\)} be the remaining components of B,.
Put A\, = inf{\ | A\\B, # QJ}. It suffices to show that N(A\) = 0 for A < ), and
that Ao = o0,

To prove the first statement, assume without loss of generality that Ao > 0, let

A € (0, A¢), and choose j < N()\) if N(\) > 0. Then £(b3, \) = ¢(bl), but
(4.1) by & Ay = {x|2((§ — §)o)’ > (£* = )}
Thus (¢ — ¢)’ (b)) < 0. Strict inequality contradicts & # (al, b)) C By, so we
have that (¢ — $)(b) = (£ — ¢)’(b3) = 0 for all X < A\. The implicit function
theorem then implies that N (b)) = 0 for X € (0, \o), contradicting the fact that
b} is an invertible function of A.

Now assume that condition (b) holds, so that A, is a single interval (c,, r) for
all A\. Suppose that Ay < A\ < o, and let x € A\\B,. As at (4.1), (¢ — {)o is
increasing and positive at x, and hence must possess a stationary point y € (x, r)
at which it is positive. But then y & A,, a contradiction.

Under condition (a), N(A) = 0 for all X\. If Ay < x, it is easy to see that for
some A, a, is a boundary point of both A, and B,. But this contradicts (a), using
(4.1) again. O

The statistical problem of minimaxing V (¢, f) over ¥, X F is meaningless
unless the least informative member Fy has positive information. Suppose that

L(F?) =2 J; <§i> foo dx = 0.

Then on [0, r], fo = 0, so that fo(x) = (1 — ¢)h(0), and

f vgo dx = 1-e f v(x)[R(0) — h(x)] dx.
0 & 0

If ¢ is sufficiently small, then this last term exceeds ¥, contradicting g, € & This
bound on ¢, say ¢*, is clearly also necessary, and so I.(F?) > 0 iff ¢ < ¢*. Although
Yo = —fq /fo will not, in general, belong to V,, it is easy to construct a sequence
{¥n} C ¥,, with ¢, — ¥, pointwise on (—r, r) such that

V(#’rw fO) g V(\bO: fO) = l/Ir(Fs) < o,
We thus have
LEMMA 9. Inorder that infy sups V (Y, f) be finite, it is necessary and sufficient
that ¢ satisfy e < ¢*, where

= f v(©)[h(0) — h(x)] dx =
€ 0

DN | =
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Note that ¢* — 1 as r — . Now assume that either condition of Lemma 8 holds.
Let k(x, \) satisfy £ = —k’/k. Define

(4.2) Y(x, A) = {{(x), £(x, A), O}
(4.3) f(x, ) = {(1 — e)h(x), (1 — e)h(ar)k(x, N)/(k(ar, 7), 0}

on [0, a,\], [ax, r], [r, ), respectively. Then conditions (P.1), (P.2), (P.3), (P.6)
and (P.7) of Theorem 3 are satisfied. Condition (P.4) follows from the fact that
£ — ¢=(log h/k)’ is decreasing through zero at a,. For (P.5), define

1- h(a)) 1

=— u( )[k( o V) k(x, \) — h(x)| dx 5
Using (B.1) and Lemma 7, verify that if ¢ <¢*, then () is strictly decreasing,

from positive to negative values, and hence has a unique zero \. This is (P.5).
The conditions of Theorem 3 having been met, we now have:

THEOREM 10. Assume that ¢ < ¢*, and that (B1), (B2) and either condition
of £emma 8 hold._Let X, az) € (0, ©) X (0, r) lle the unique paiL satisfying
a(X) = 0, £(ax, X\) = {(as). Put Yo(x) = ¢(x, X), fo(x) = f(x, X\) in (4.2)
and (4.3). Then

VYo, f) = 1/L(F}) = VYo, fo) = V¥, fo)
forally € V. and fE F

It can be verified that under the conditions of Theorem 10, the minimax
solutions to the multivariate location and scale problems of Example 2.2 are of
the form (4.2), (4.3). Details of the solutions and examples are found in Wiens
and Zheng (1983).
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