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A SIEVE METHOD FOR THE SPECTRAL DENSITY'

By YUN-SHYONG CHOW AND ULF GRENANDER

Academia Sinica and Brown University

We suggest a sieve for the estimation of the spectral density of a Gaussian
stationary stochastic process. In contrast to the standard periodogram-based
estimates this one aims at exploiting the full Gaussian nature of the process.

1. Introduction. Consider a real stationary Gaussian stochastic process
{x;; t € Z} on (Q, &, P) with mean value zero and covariances

™

(1.1) re = E(XXe4:) = J: e"‘*fO\) d\

corresponding to an absolutely continuous spectrum with the spectral density f.
Given a realization x = (x,, X2, * * *, X,,), we shall study the estimation of f.
Introducing the well-known periodogram

(1-2) In()\) = (1/27”7') | 2?=1 xte-it)‘lzy AE (—‘Il', W)’

consider an estimate of standard form

f;:(x) = ‘[1 wn(>\ - /“')In(l-‘) d”'

where w, is a nonnegative weight function. To make £ consistent, one must let
w, contract to a é-function at 0 as n — o, and this must be done slowly enough.
Such estimates are in wide use and their properties are well understood; in
particular, one knows much about their asymptotic behavior as n — o (see
Parzen, 1967).

As a function of x such an estimate is a quadratic form. To study its variance,
for example to establish consistency, it is enough to know the moments up to
order 4 for the process. This knowledge is of course available in the Gaussian
case as soon as f is specified. When we use an estimate of this type, we do not
take full advantage of the assumed Gaussianness, but we shall try to do this now
by a very different method.

A natural approach would be to derive an estimate by appealing to the method
of maximum likelihood, but this leads to two serious difficulties. Indeed, the
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likelihood can be written as
1

L,=L.(x,f) = exp[—Y2x"R;! (f)x]
(27)"2vdet R.(f)
in terms of the covariance matrix
(1.3) Ri(f) = (re—t; s, t=1,2, -+, n).

Note the complicated dependence of L, in terms of the unknown parameter f due
to the appearance both of the determinant of R,(f) and of its inverse. Therefore,
the analytic treatment of L, appears formidable.

To overcome this first of two obstacles, we shall appeal to Toeplitz theory (see
Grenander and Szegd, 1984, Section 7.4) and use the approximation

log L, ~ —ﬁ J: [log(27)%f(\) + L,(\)/f(\)] d\ = log L,.

It is known (see Dzhaparidze and Yaglom, 1983) that for moving average
processes of finite order

lim,(1/n)(log L, — log L,) =0, n — o, in probability

But this is not enough, since if we just solve the maximum problem for any f
in LY(—x, 7)
maxfﬁn(x; f)’

we get the estimate f(\) = I,()\). It is well known that this is not even consistent
and cannot be accepted. We must exercise more care in choosing the function
space over which we maximize.

We want to maximize the functional

(1.4) F.(g) = J: [log g(A) — I.(\)g(N)] dA

where we have introduced g = 1/f, and shall do this over a sieve of the form

S, = {g = 0: J: (gP(N\))2d\ < %}

Here p is the mesh size which will be made-to tend to zero as n — o at some rate
that will be determined later. The values of p that we have in mind are p = 1 and
2, but our method of analysis is designed to be applicable to other values and to
other variations of the sieve.

To put the above in a general perspective, one can view the periodogram-based
estimator as an instance of regularization in abstract parameter space (see Gren-
ander, 1981, Section 7.3), while the type of estimate to be studied in this paper
belongs to the sieve type estimate (ibid., Chapter 8). We are not aware of any
study of our estimate in the time-series literature; the closest one that we have
seen is in Wahba (1980).
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Since our functional F,( g) is not of linear-quadratic type, we shall encounter
analytical difficulties that do not arise otherwise due to the fact that the Euler
equations will not be linear. We shall see that they can be dealt with successfully,
which may open the way for other applications of the same idea to other estimates.

2. Results. We shall assume throughout this paper that the spectral density
f of the real stationary Gaussian process (x;: t € Z) satisfies

(2.1) ‘ Yoo | ury| < o,
where the covariances r, of the process are defined in (1.1).
(2.2) f(A)>0 forall €& (—m, w).

Note that (2.1) and the realness of (x;) imply that f can be regarded as a
symmetric, continuously differentiable function on the unit circle. Therefore,
there exist by (2.2) constants m, M such that

(2.3) O<m=<f(\) <M, foral \E€E/[—-m, 7]

It is probable that (2.1) and (2.2) can be weakened, but we shall not discuss
this here.

Under the assumptions (2.1) and (2.2), it is known (Hannan and Nicholls,
1977; Taniguchi, 1979, 1980) that

THEOREM 2.1. Let h(\) be a continuous symmetric function on [—=, w]. Then
with probability 1,

(2.4) J: h(N)(In(N) — f(X)) A\ —, 0
(2.5) J:" AONIZ(N) — 2f2(\)) dX —, 0
(2.6) J: h(\)[log(I,(\)e”) — log f(A\)] A\ =, 0

where v is the Euler’s constant. Moreover v'n [, h(A\)(I,(\) — f(\)) d\ converges
weakly to the normal distribution N (0, 4w [~ h2(A\) f2(\) d)).

(2.5) implies that with probability 1 the sequence [*, IZ(\) d\ is bounded.
Since L!(—, w) is separable, we easily have the following

COROLLARY 2.2. Let W be the set of all w € Q satisfying (2.5), (2.6) with
h(\) = 1, and satisfying (2.4) for every continuous symmetric function h on
[==, w]. Then P(W) = 1.

From now on we shall consider, which is also sufficient, only w € W.
By using the theory of Lagrange multipliers, we are led to the following
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equivalent form of problem (1.4)

™

2.7 maximizan,e(g)=£ (logg(k)—ln(k)g(k))dk—ei (&P (\))?dr

where p = 1, e > 0 are constants and the maximum is taken over
A={g=0:g9€ L*-r, x),0<i<Dp).

Note that each g € A is continuous.
The right-hand side of (2.7) can be rewritten as

F,.,c(g)=f [log(ZI.(\) g(\)) — I.(A\) g (N\)] dA
2.7 o

—e f (8P (\))* dx - f log I,(\) d\.
The following lemma is easy.

LEMMA 2.3. The function y(x) = log x — x is strictly concave on (0, ) and
attains its unique maximum at x = 1.

Hence, by Corollary 2.2, F,,.(g) is bounded above with probability 1. Then by
using convexity and the calculus of variations it is not difficult to show the
following.

PROPOSITION 2.4. Assume ¢ > 0. Then with probability 1 problem (2.7) has a
unique solution g,. which satisfies

(i) gn,. is positive, symmetric and C*-continuous.
(ii) g.. is the unique positive solution to the following differential equation

(g)) = L(\) —(=1)*2eg%P(\) =0

with g (+r)=0,0<i<p-—1.
(i) fZr (8n(N) AN = [I, I.(N) dA
(iv) 27 = [T [,(A)&n.(N) A\ + 2¢ [, (gF)(N\))? d\. In particular,
. (8P (N)? d\ = x/e.
(v) Mean value property: minyI,(\) < (gn.(A\))™* < max,I, ().
(vi) For any approximating sequence g, to the problem (2.7), i.e., lim,F, .(g8n) =
max F,.(g), we have lim, || gn — g ll= = 0.

The second integral on the right-hand side of (2.7) can be regarded as a penalty
term aiming at making g,. smooth. The constant ¢ will converge as n — o to 0,
so that (g,.(A\))™* will be close to I,(A\) and thus become consistent in some
sense. The convergence rate to 0 of ¢ will be determined later.

Since I,,(\) converges weakly to f(\) for each w € W, the following problem
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is apparently related to problem (2.7)

(2.8) maximize F.(g) = f (log g(\) — f(A\)g(A)) dX — ¢ J: (&P (\))? dx

where the maximum is taken over A if ¢ > 0 and over
A’ ' ={g=0:g € L(—, 7)}

in case ¢ = 0. By the same argument we have

PROPOSITION 2.5. For ¢ > 0 the problem (2.8) has a unique solution g, which
satisfies

(i) g. is positive, symmetric and C*-continuous.
(ii) g, is the unique positive solution to the following differential equation

(g =f) = (=1)? 2% (\) = 0

withg®*(+7r)=0,0<i<p-—1.

(i) [, (&) dh= [T f(X) d\

(iv) 2= 7, f(N)g&(\) d\ + 2¢ =, (8P (N\))? dX. In particular,
= (gP(N\)? d\ < /e

(v) Mean value property: m < (g.(\))™' = M.

(vi) For any approximating sequence g, to the problem (2.8), we have
limm " 8m — 8 ||°° =0.

In case ¢ = 0, the problem (2.8) has a unique solution go(\) = (f(\))™* and any
approximating sequence g, satisfies

limy, I | gn(A)f(A) = 1| dX = 0.

Note that the equation above is still true if we assume only that f,
log f € L*(—m, 7). In some sense Fy(g) measures the distance between 1/g and f,
i.e., Fy(g) is sort of an entropy function.

In view of the previous two propositions, we would expect that in some sense
1/g.. is close to 1/g., and then close to f if ¢ = ¢(n) is properly chosen. This vague
idea will be implemented in the following.

Because of Corollary 2.2 and Proposition 2.4(iii),(iv), with probability 1,
{gnoin=1,2, -} is relatively compact in L?(—, w) and in C[—, 7] also. Then
by applying Fatou’s lemma it is not hard to see

(2.9) lim inf,F,(g,.) = max F,(g) with probability 1.
Hence by Proposition 2.5(vi), for each fixed ¢ > 0
(210) P(" 8ne — & "°° —>n O) =1

On the other hand, since A is a dense subset of A’ with respect to L' norm and
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foreach g € A, F,(g.) = F.(g) —. Fy(g); therefore
(2.11) lim inf,Fy(g,) = lim inf,F,(g,) = max, - Fy(g)
and then by Proposition 2.5

limcf &) f(A) — 1] dx = 0.

From (2.10) and Borel-Cantelli’s lemma, it is theoretically possible to choose
e(n) such-that

(2.12) P(f | gnemyN)f(N) = 1] dX —, 0) =1
In particular, (gn,..»)(A))~! converges in measure to f()\) even in the product space

[-m, 7] X Q.
Since with probability 1

[ o o= [ Loy ar ., [T an

EJ: I,(\) d>\=£ f(\) d\

by Scheffé’s theorem

and

P(f [ (8nemyN))™ = FN)| X >, 0) =1 and
(2.13) -

E<£ |(g",t(")(x))—l - f(x)l d)\) —>n 0,

50 (&n.e(n)) " will be strongly consistent in L' sense.

Because Corollary 2.2 shows that I,,(\) converges only weakly to f(\) with
probability 1, it seems difficult to estimate the rate of convergence in (2.10).
Namely, P(|| g, — &. ||« > 6) in terms of ¢, n, 6. So we shall use another approach.

If we can show that there exists a sequence ¢(n) such that

(214) P(limnFO(gn,c(n)) = IlnaxA'FO(g)) = 1’

then, by Proposition 2.5, (2.12) holds, and so does (2.13). That is, (gn.)) " is a
strongly L'-consistent estimator to f.
In order to verify (2.14), let us introduce

Dn,c = maxl Fn,c(g) - Fc(g)l

where the maximum is taken over

B, = {g = 0: g symmetric and f @ M\))dN<n/e, || €lle =< 8/\/;}.
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By using the Fourier series expansion of g, .(\) = ¥, a,exp(ik\) and Proposition
2.4(iii),(iv), it is not hard to show that

J: (8neMW))2dN=273 | kap|®> < 27 Y | kPay|?

= f (822 (N)*dA < n/e,

Yawo | @il < (X | Rar|? - Drwo k)2 < 2/ Ve,

277(00_Zk;é0|ak|)_lzji (gn,c(k))_ldk—*nf_ f(\) ax.

Hence for n large

a0 < 2/Ve + 47r<f fn) d>\>_ ,

x -1
lgncle =3 lasl < 4/ + 41r(f_, O dx) .
Thus for ¢ > 0 and small
(2.15) P(g,. € B, for n large) = 1.
Similarly g. € B,. Therefore by the definition of g,., g.
Fo(gn.) = Fo(8ne) = Fuo(8ne) — D,
2 F,.(g) — D,. = F.(g) — 2D,,.
Define £,(\) = [§ [[,(t) — E(I,(t))] dt. Then integrating by parts
F.(g) — F,.(8)

(2.16)

- f () = FO))g(\) d
(2.17) u 4
=2 f (In(\) = EL(\)g(\).d\ + f (EL(\) = f(\)g(\) dA

= 2,(m)g(m) — 2 j; £En(N)g"(A) d\ + J: (EL:(N) = f(A))&(N) dA.

By computing the moments of £,(\), it can be shown that

LEMMA 2.6. Fors=1,2, -+, E(D%,) < C;M?*/(ne)®, where C, is a constant
depending only on s and M is defined in (2.3).
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Let ¢, 6 be two constants with 0 < 6 < 1, and
(2.18) e(n) =cn® L.
If s is large enough, E(Y ., D%,,) < . Then
P(Dpeey —n 0) = 1
and (2.14) follows from (2.16) and (2.11). Hence we have

THEOREM 2.7. Lete(n) be given in (2.18). Then (2.13) is true. That is (&))"
is a strongly L'-consistent estimator to the spectral density f.

It can also be shown that

THEOREM 2.8. Let ¢(n) = cn®3, where c, 6 are constants with 0 < § < Y.
Then

P(I(&nem)™ = fllo =2 0) =1
if we assume besides (2.1) and (2.2) that 1/f € A.

Note that in case p = 1 the additional condition 1/f € A automatically holds
under the assumptions (2.1) and (2.2).

Finally, as a consequence of Theorem 2.7, we have the following result for the
original maximization problem (1.4).

THEOREM 2.9. (i) Problem (1.4) has a unique solution h,, which is positive,
continuous, symmetric and satisfies

f_ (hne W) dA = f L,(\) d\

(ii) Let u(n) = cn’®7, where c, 8 are two constants with 0 < § < 1. Then (2.13)
holds with g, . replaced by hy, . That is (By.m)™" is a strongly L'-consistent
estimator to the spectral density f.

REMARK. To study the computational aspects of the suggested estimator, a
preliminary computer experiment was performed. The algorithm was based on
direct maximization of the functional using a gradient method. This requires
only modest computing effort. The reason why we did not instead base the
algorithm on the differential equation in Proposition 2.4(ii) was that the chaotic
behavior of the periodogram would make quadrature for ODE difficult.

In retrospect, this seems less convincing and we plan to supplement the earlier
algorithm by solving the stochastic differential equation directly and apply a
shooting method to satisfy the constraints on the solution.

3. Proof of Proposition 2.4. First we shall prove the existence and
uniqueness of the solution g, .. Since F,.(g) is bounded above it is easy to see
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from (2.7)’ that if g, is a maximizing sequence, i.e., F,.(g») —mn sup F,.(g),
then

SUpm, f (8PN))Pdr< o and supmll gmlle < .

The second inequality is due to the fact that lim,_,.(log x — x) = — o and can be
verified by considering the Fourier coefficients of g,. Otherwise, we may assume
for brevity that lim, || gx || = ®. Let g,(\) = Y& anrexp(iAk). From the proof
of (2.14),. we can see that Y .z | @n,| is bounded in m. Because g,, = 0, lim a,, ¢
= o0 and thus lim g,,(\) = c uniformly in . But then by using (2.7)’, lim,, F;, .(g.)
= —oo and this is a contradiction. By Ascoli-Arzela’s theorem {g,} is relatively
compact with respect to supnorm. For brevity we may assume g,, converges in
supnorm to a certain function g, ., which belongs to A by Fatou’s lemma.

Write log gn, = log*gn — log™gm. Since |log*gn — log" gnc| < | gn — &n,|, it is
then fairly easy to show by using Fatou’s lemma that

F,.(gn.) = lim sup,F,.(gn) = sup F,.(g)

so that g, is a solution to problem (2.7). The uniqueness of the solution follows
from Lemma 2.3 and the fact that y(x) = x? is a strictly convex function. Note
that because of the uniqueness of the solution any maximizing sequence converges
in supnorm to g, ., not merely having a convergent subsequence. This proves (vi).

(1),(ii),(v). That g, is symmetric follows from the uniqueness of the solution,
because I,()\) is a symmetric function. Now we shall show that g, .(\) > 0 for all
AE [—m, 7).

From Lemma 2.3 and (2.7)" we know that, pointwise, I,(\) g,..(\) should be
as close as possible to 1. Suppose g, .(A\;) = 0 for some \,. Then there exists a
neighborhood [a, 8] of A\ in which g,.(\) is so small that I,,(A)h()\) is more close
to 1 than I,(\)g,.(\), where the function h is defined by

hO\) = {g,,,.,(x), it A€o ]
2ne(@) = eV, if X € [, B1(gne(@) = gne(8)):

Since | AP (\)| = | gP?(\)|, Fy.(h) > F,.(g,.). This is a contradiction and thus
&n.. 18 positive. Note that the same argument can be used to prove (v).

By applying Euler’s equation in the calculus of variations (Gelfand and Fomin,
1963), it remains only to show that the differential equation in (ii) has only one
solution. Suppose there are two solutions g, and g,. By using the boundary
conditions and integrating by parts, we can easily get

J: (& — &)2N) (& (N\)g(N) dX + 2¢ J: (81— &)P(N\)2dx=0.

Thus g, = g, and the solution is unique.

(iii) and (iv) follow from integrating from —x to 7 the differential equation in
(ii), after multiplying it first by 1 and g, respectively.

This completes the proof of the proposition.
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4. Proof of Proposition 2.5. Only the case ¢ = 0 needs to be considered.
But this is easy. Because in general the convergence to 0 of [Z, (h,(x) —
log hm(x) — 1) dx implies that of [Z, | hm(x) — 1| dx. Note that the integrand of
the former integral is nonnegative by Lemma 2.3.

5. Proof of Lemma 2.6. The proof is based on Ibragimov (1963). Denote
by I,, I, and I3, respectively, those three terms on the right-hand side of (2.17).
Since

J: L,(t) dt = 27n)™" X0 ,=1 XuXy J;’\ (cos(u — v)t) dt
is a quadratic form of normal variables, it is known from Lemma 8.4 of (Ibragi-
mov, 1963) that fors=1,2, - -
E|£&.(N)|* = CM*/n®,
where C, is a constant depending only on s. Hence for each g € B,,
(5.1) E|L|* = C,(16M)*/(ne)’,
and by the generalized Holder’s inequality

Euu%sfwrff @%Mﬁﬁ>-E([(&QD”ﬁ)
(5.2) 0 0

< C,(27M)*/(ne)".

As to the nonrandom term I3, it follows from (1.7) of Ibragimov (1963) that
there exists a constant C such that

(5.3) |I3] = (CM log n) f lg’(\)| d\/n < (27 CM log n)/(nve)
< 47CM/Vne.
Now combine (5.1), (56.2) and (5.3) together and the lemma follows with a

different constant C;.

6. Proof of Theorem 2.8. Under the assumption 1/f € A, F.(g.) =
F,(1/f). A simple computation shows

Inmeﬁsﬁuwmea

so that { g} is relatively compact in the supnorm by Proposition 2.5(v) and Ascoli-
Arzela’s theorem. Then

because we know already that || g.,f — 1] —. 0.
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By Propositions 2.4 and 2.5
(8ne (M) = I(A) = (=1)P2g32(N) = 0
(&)1 = f(\) = (=1)P2eg ' (\) = 0.

Multiplying the difference of the above two equations by (g,. — &.)(\) and then
integrating, we shall have with probability 1

f_ (8ne — 8)2(N)/(8ne(N) (X)) AN + 2¢ J: ((8ne — &)P(N))? d\

(6.2) = f_ (8ne(N) — &) (f(A) = Ln(X)) dX

= (Fp.(8n.) — F.(8n.)) — (Fn.(8) — F.(&)) < 2D,,..

Since Lemma 2.6 and Borel-Cantelli’s lemma imply
P(Dyemy/e(n) —, 0) = 1,

it follows from (2.15) and (6.2) that

P(ll gnet) = &mllz =n 0, || 8% — 88112 =0 0) = 1.
Then by considering the Fourier coefficients of g, .(u), &:n)

P(ll 8nem) — 8oty |l =0 0) = 1.

Now use Proposition 2.5(v) and (6.1). The conclusion follows easily.

7. Proof of Theorem 2.9. Part (i) can be proved by using the same
method as in Proposition 2.4. For part (ii) let us first note that similar to (2.15)
P(h,,, € B, for n large) = 1.

Define e(n) = wu(n). Since gn,.n) € Suny and P(Dy, uny == 0) = 1, Theorem 2.7
implies
Fo(hnum) = Fro(hnuim) = Doy
= Fu(8ne) = Dnuiny
= Fo(8n,en)) — 2D u(n) —n Maxgea Fo(g)

Now the conclusion follows from Proposition 2.5 and Scheffé’s theorem.
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Appendix to the proof of Lemma 2.6
By Johnson and Kotz (1970)

(1) E exp(itg,(N)) = [I7 (1 — 2ien(™)72,

where A are the eigenvalues of the product matrix R,A,. Here r, is the n X n
covariance matrix defined in (1.3) and A,, = (au,)nxr With

A
ay, = (2wn)7? f cos(u — v)t dt.
0

Since (Ibragimov, 1963)

| R.ll = supyyy=1 X YuYolu-v = SUPjyj=1 J: | Xhe1 yee®™ |2f(N) dA = M

A
Il Anll = supyyy=1 X YuYolu = (27n) 7 supy =1 fo | X721 yee™ |2 d\

L3

(27n) 7 supyyy=1 J: | 27 yee®™ > d\ = n7%,

IA

we have
max;| A\ | < | Rl Anll < M/n.
Let x; be the cumulants of £,()), i.e.,

log E exp(it{,(N)) = X6 x,(it)°/s!.
Then by (1)

1278 (s = D 2 (A)°)
= 27 — D! T A)? - (max; | AP |)*?

< 227Ys — 1)!x2(M/n)*2.

|Xs|
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Since xs = E£,(\), by Lemma 2.1 of (Ibragimov, 1963)

A A
EE?.O\)=J; fo Gn(u, v) du dv/(2wn)?,

where

| [ sin(ntz = w)/2) sin(niz —v)/2) T
Gnlu, v) = U. in((/ —w/2)  sn( -2 ¥ ]

N [ f "sin(n(Z — u)/2) sin(n(Z + v)/2) d/T
— sin((Z# — w)/2)  sin((Z + v)/2) )

Therefore,

Eti(r) < Eti(x) = 4-1Var( f I,(\) d)\)

< 47'Var(X? x?/27n) = (4xn)2 . 2 301 12,

< Y% rz/(2wn) < J: f2(\) d\/n = M?/n

and then
| xs| = 2°71(s — 1)!M°/n*" L,

By using the relation between cumulants and moments and noting that x; = 0,
we shall obtain

E(¢.(\)* = CM™/n?

where the constant C, depends only on s.
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