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SPLINE SMOOTHING IN REGRESSION MODELS AND
ASYMPTOTIC EFFICIENCY IN L,

BY MICHAEL NUSSBAUM
Akademie der Wissenschaften der DDR, Berlin

For nonparametric regression estimation on a bounded interval, optimal
rates of decrease for integrated mean square error are known but not the best
possible constants. A sharp result on such a constant, i.e., an analog of
Fisher’s bound for asymptotic variances is obtained for minimax risk over a
Sobolev smoothness class. Normality of errors is assumed. The method is
based on applying a recent result on minimax filtering in Hilbert space. A
variant of spline smoothing is developed to deal with noncircular models.

1. Introduction and main result. There is an important class of non-
parametric curve estimation problems where asymptotic efficiency is usually
formulated in terms of “optimal rates of convergence.” Typically, an estimator is
called asymptotically optimal if its risk decreases with rate n™° as sample size n
tends to infinity, and if a better rate cannot be achieved by any estimator.
More precisely, one shows that the risk of the given estimator does not exceed
Cin*(1 + 0(1)), and that no estimator can be better than C,n~°(1 + 0(1)), where
C,, C, are some constants. On the other hand, in regular parametric estimation
problems a much stronger result is available: not only it is known that n™" is an
optimal rate of convergence for quadratic loss, but one knows both constants to
be equal to Fisher’s bound for asymptotic variances. In both situations a minimax
risk over a parameter set is considered; for curve estimation this is mostly a class
of smooth functions.

Let us remark that for an appropriate choice of the loss, this class of curve
estimation problems can also be treated in a limit experiment framework where
results are analogous to the parametric case. However this amounts to estimating
the distribution function or its regression analog (cp. Millar, 1982). We are
concerned here with a squared L,-loss where the rate n™! is not attained.

Certainly it is desirable to strengthen the optimal rate results by finding
constants C; = C,, and to obtain thus an analog of Fisher’s bound (or of the
Hajek-LeCam asymptotic minimax theorem). Until recently, for problems like
density estimation under smoothness information, such a possibility seemed
remote. However a solution was found by Pinsker (1980) for a filtering problem
in Hilbert space. It is essential there that loss is squared Hilbertian distance, and
that the parameter space is an ellipsoid. Note that smoothness classes of the
Sobolev type can be described as ellipsoids. The essence of Pinsker’s method
consists in showing that minimax linear estimators over an ellipsoid are asymp-
totically minimax in the class of all estimators. Such an exact asymptotic
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EFFICIENT SPLINE SMOOTHING 985

minimax bound, as distinct from the weaker rate optimality, has subsequently
been established for other models, including probability density estimation
(Ibragimov and Hasminski, 1981; Efroimovich and Pinsker, 1982).

The first result of this type in a regression context is due to Golubev (1984).
However it concerns a somewhat nonstandard model with an asymptotics for an
expanding interval of observation. The purpose of this paper is to establish such
a bound for a nonparametric regression model on a fixed interval.

Consider observations

Yin =f(%jn) + &, %, €[0,1], j=1, .-, n,

where {£;} are independent random variables with distribution N(0, 1), and the
function f is to be estimated. The design is assumed to be equidistant:

tn=(—-1/(n-1), j=1,---,n.

Let L, = L,([0, 1]) be the Hilbert space of square-integrable functions on [0, 1],
and let | - | denote the usual norm therein. We shall also use the seminorm
[l - ||, defined for real-valued functions f by

112 =n"" X f2(%jn).

Let, for natural m and f € L,, D™f denote the derivative of order m in the
distributional sense, and let

be the corresponding Sobolev space on the unit interval. The nonparametric class
of functions to which f is assumed to belong is

Wg(P) = {f € Wg; | D™f||* < P}

for given m and P > 0. Let %, be the class of all estimators of f for given n, i.e.,
measurable mappings f: R" X [0, 1] - R.

THEOREM 1. Let © = W7 (P) and
y(m, P) = (P(2m + 1))Y@™*V(m/x(m + 1))>™/@m+D,

Then .
(i) lim,inffes supreen®™®™* VE;| f — |2 = v (m, P).
(ii) Relation (i) holds also with the seminorm || - ||, replaced by the Ly;-norm
-1

To comment, observe that the rate of decay of the unnormed minimax risk, for
a priori smoothness m, is known to be n=?™/@m+1)_ The theorem specifies the
constants C;, C, in the optimal rate result as C; = C, = y(m, P). In Section 4 an
estimator will be exhibited which attains the above bound, and which is hence
optimal in a stronger sense than the usual rate-optimal ones. These results are
based on applying the optimal filtering method of Pinsker (1980) to the regression
model. We introduce a variant of spline smoothing to attain the new risk bound
in the context of discrete measurements and noncircularity.



986 M. NUSSBAUM

This paper is organized as follows. In Section 2 we review the basic optimal
filtering result. In Section 3 the tools necessary for the regression case are
developed, in particular some eigenvalue estimates in spline theory. Section 4
uses these to achieve the proof of the main theorem 1. Some discussion then
follows.

Throughout the paper we shall use the convention that C denotes a positive
constant independent of n whose value may change at each occurrence, even on
the same line.

For any number x let [x] denote its entire part and (x). its nonnegative part.
The symbol || - | denotes both standard vector and L, norms. Frequently but not
as a rule the dependence subscript n will be dropped from notation.

2. Minimax filtering in Gaussian white noise. Let us summarize the
basic result of Pinsker (1980). Suppose observations

n =19 + n_1/2£,-, J € zZ,

where {£;} is discrete Gaussian white noise with unit intensity and ¢ = {¥;} is an
unknown parameter. Assume that ¢ € 0, where 0 is an ellipsoid:

0= {0 (S @Z; ZJ' ajﬂf = P}.
If ® C [, then the model is equivalent to a stochastic differential
dn(t) = 0(t) dt + n™V2dW(t), t €0, 1],

9 being a function from L, with coordinates in @, W (t) being the standard Wiener
process. The problem of nonparametric estimation of ¢ in this model, with a low
noise asymptotics n — o, has many traits in common with nonparametric density
and regression estimation. For optimal rates of convergence, see Ibragimov and
Hasminski (1981), Chapter 7. If a; = (27j)®>™ and ¢; are the classical Fourier
coefficients of ¥, then O can be identified with a periodic Sobolev class in L, i.e.,

® = Wy (P) := {f € W (P); D'f(0) = Df(1),1=0, ---, m = 1},

in which m periodic boundary conditions are present. For this parameter space,
Pinsker (1980) proved

lim,infjsupseen® @™ VE, || § — 9 ||2 = y(m, P)

(infimum over all estimators). This is a special case of a result for general
ellipsoids. We find it convenient to state it for the following model with a finite
number of observations:

(2’]‘) n= 0] + n_1/2£j’ ] = ]-’ s, N

Let a double array {a;,, j = 1, - - -, n}nen be given such that 0 < a;, < a5, < - - -
=< @pn, and also a number P > 0. Define an ellipsoid in R" by

2.2) 0, = {x ER" T, anx? < P}.

Consider the estimation problem for ¥, assuming ¢ € 0,, for quadratic loss in
R", and the minimax risk over all estimators. We present a proof of the optimal
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filtering result which is inspired by Golubev (1982). The conditions are adapted
to our case where the a;, are close to but not equal to (7)™
Define a function g and a number u by

g(x) = (1 = (7x)™)4 (sgn X)4, x E R,
(2.3)
p?p = fg(x)(l - g(x)) dx.

We calculate

(24) v(m, P) = p7! f g(x) dx.
Henceforth in the paper we put k = n/@™+V k= [k log k].
THEOREM 2.1. Suppose there is a sequence {5;}, not depending on n, such that
lim;é; = 1 and
SUpP1<j<idi@n(7j) "™ = 1 + 0(1), n — .
Then
r := lim inf, infssupgee k*"Es|| 4 — ¢ ||% = y(m, P).

PROOF. Let 7 and ¢ be real numbers from (0, 1), and define i by

(2.5) B P = fg(x)(l — &(x)) dx.
Consider functions h, p, g on R

h(x) = p~"g(xp)(1 — g(xi)),

p(x) = max(e, (7x)*™), q(x) =p~x)h(x).
By virtue of (2.5), we have

(2.6) f h(x) dx = 7P.
Define also
O, =(xER, XL, pUE )2 <1P, %=0,j=k+1, ---, n}.
Now the condition of the theorem implies that for n > C
an < vRp(GRTY, j=1, .-,k k0, C6,.

Define t = k™ ¢, and consider the estimation problem for ¢, under an assumption
t € 0, from observations

(2.7) = k™ =t + k_1/2£j, j=1, ..., n.
Then
(2.8) r = lim inf, inf;supes E:|| £ — t]%

Let 6 € (0, 1) and Q, be the distribution of the random n-vector u having
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independent components

uj ~ N(0, ok™'q(jE™), j=1,---,k u=0, j=E+1,..-, n
Let us demonstrate that for the complement of 0,
(2.9) Q.(85) = o(1), n— .

Let p be the measure having mass k™' in points jk!, j = 1, ---, k. Since h is
continuous with compact support, we obtain from (2.6)

fhdp—>fh(x)dx=TP, fhzdpafh2(x)dx<oo.

Hence, for 8; ~ N(0, 1), independent,
Q.(85) = Pr(k™ T, h(jk™)68? > P)

= Pr(k™ T h(jR™)(B} — 1) > 7P57" — f hdp)

< 2k7! f h? dp(rP(57* — 1))7%(1 + o(1)) = o(1).
Furthermore let us demonstrate that
(2.10) E|ul*=0(Q1), n— .
Indeed, since g is continuous with compact support,
Ellul*=EEkL u})’ < S Euf + (E T ud)?

2
= 3k7! f q%dp + <f q dp>“-= 0Q).

Observe now that the right-hand side of (2.8) is not changed if only estimators
with values in O, are included, since 0, is closed and convex. For any such
estimator t*

supes E. || t* — ¢ 2

(2.11) .
= inf; f E/t - t]*Qn(dt)— 2 fe E(t*11” + 1 £11*)Qn(d2).

Here .
I¢* )12 < e $E, p(jRY)EF < ¢717P.
Hence by (2.9)

(2.12) f E.|| t*)?Q.(dt) < e'PQ,(8S) = o(1).
CH
Furthermore (2.9) and (2.10) imply

(2.13) fe IE1%Qa(dt) < (Elu]*Q.(85))"* = o(1).
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The first summand on the right-hand side of (2.11) is the Bayes risk in model
(2.7) for a prior Q,; this is easily found as

(2.14) T, k%q(jk )RR + kTq(jETY)) T = 6 f q(1 + g)~" dp.
Now we have
g(x)(1 + g(x))™' = g(xp) if (7x)*™ =e.

Hence (2.14) implies for ¢’ = ¢/2mg 1

infsttIIf—tIIQQn(dt)zéf g(xp)p(dx)
(2.15) ‘

= op ! f g(x) dx (1 + o(1)).

Collecting (2.8), (2.11) — (2.15) we find
r=oén! f g(x) dx.

pA
Nowlet 6 > 1,¢ — 0,7 — 1 (hence & — u) and recall (2.4). 0

We now describe the asymptotically minimax estimate. Define k* = [k/log k]
and
(2.16) gn=1, j=1,---, k* gn=g(wk™), j=k*+1, - ---,n.
Consider the estimator

3, = (&nmj)j=1,. - -

THEOREM 2.2. Suppose there is a sequence {;}, not depending on n, such that

lim;é; = 1 and
aup1=j=i0i@in () 7" = 1 + 0(1), n — oo,
Then
lim sup, supsee, k?"Es| 6, — 9|2 < v(m, P).

PrROOF. The condition implies that djn >0 for k* <j <k, n>C.Then
(1 = gin)?ajn = (1 + 0(1))suppe<jzi(1 — gjn)*(mj) 2"
= (1 + 0(1))(uk™)*supe>o(1 — g(x))*(mx) "
= (kk™)*"(1 + o(1))
uniformly for k* < j < k. For £ <j < n, we have &i» = 0 and hence
(1 - gn)’a; < af = (7k)2"C < (uk™)"

forn> C.
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Recalling (2.3), we obtain uniformly for ¢ € 0,
IEsdn = 0117 = it (1 — gin)*0}
< (k™21 + 0(1)) Yihies1 @jnd?
= (uk™)*"P(1 + 0(1))

= k72! fg(x)(l — &(x)) dx(1 + o(1)).
Furthermore
k2mE0 " Jn - Eol§n "2 = Z]z;l gjgnk_l-

In this term, the first k* summands are negligible; hence it is

fg“’(ux)p(dx)(l +0(1)) = p™* fgz(x) dx(1 + o(1)).
The last three relations and (2.4) yield
Es||8n — 9112 = Es|| §n — EgSall® + | Esdn — 8|2

< k72my 1 fg(x) dx(1 + o(1))
= k™"y(m, P)(1 + 0(1))
uniformly for 4 € 0,. 0

3. Splines and noncircularity. The result available for the continuous
observation case concerned the periodic Sobolev class W5 (P), with boundary
conditions. We are concerned with the discrete regression model, and also with
the larger class W75 (P).

The optimal convergence rate does not depend on the presence of boundary
conditions. Indeed, the lower risk bound is established for subclasses of
wp (P)(Ibragimov and Hasminski, 1980; Stone, 1982). It then remains to show
that there is an estimator which attains the rate n=2"/@m+1 glgo over WZ*(P). It
is well known that estimators of standard kernel type are not suitable. For our
particular model, attainment has been shown for smoothing splines (Wahba,
1978; Utreras, 1983; Cox, 1983) and for a boundary modified kernel method
(Gasser and Miiller, 1979).

To deal with the problem of the asymptotic minimax constant, we ask what
kind of restriction the smoothness assumption f € W5'(P) implies for the function
values f™ = (f(xjn));=1,...... The answer to this is provided by spline theory.
Consider the minimization problem

min{| D"g||*| g € WE, g(xjn) = f(%n), j =1, ---, n}.

The solution is known to be unique for n = m, and is the natural polynomial
interpolation spline, denoted S(f™). Then

ID™S(f™)II* = | D™f)|* < P.
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Now S(f™) is known to be linear in f™. Hence | D™S(f™) || is a quadratic
form, with matrix I',,, say, and we have
(3.1) fo'T.f™ < P.

Thus we know in fact that the parameter space for the vector f™ is an ellipsoid
in R". We are then in the framework of Section 2, and it remains to specify the
behaviour of the main axes of this ellipsoid for n — . The matrix T,,, associated
with spline interpolation, and its eigenvalues have been studied by Craven and
Wahba (1979) and Utreras (1980, 1983). Although it has been found that these
eigenvalues, if multiplied by n, tend to behave like {(7j)*™}, no estimates suffi-
ciently sharp for our purpose seem to be available. We shall obtain an improved
estimate which is the key auxiliary result in this paper.

Multiplying the regression data by n~'/2, we obtain a model (2.1), (2.2), up to
an orthogonal transformation. With the a; determined, application of minimax
filtering is straightforward and will be carried out in the next section.

We shall rely on the theory of interpolation and smoothing splines as outlined
by Craven and Wahba (1979)(hereafter abbreviated by CW). From the known
structure of the matrix I" we shall deduce our spectrum estimate.

Consider functions on [0, 1]

ko(t) =1, ki(t) =t —

k(t) = =Y jezjxo (27ij) "exp(27ijt), r=2,8, ---,
which are the rth degree Bernoulli polynomials, up to a factor r!. Let

Ky=(D)""kom(x; — x;), j,l=1,---,n,
where {x;, - - -, x,} is our regression design. Define real symmetric matrices
K= Kzt KO = (Kol
and numbers
A=m-1) Jez Cxa(j+Iln =), j=1,---,n—2
A1 = (n = 1) Fiezxo Crl(n — 1))7%"

LEMMA 3.1. We have
(1) >\j=}\n—j—17 ]= ]-7 "')n_2
(ll) M=o = )\[(n—l)/2]
(1) N—1y21 = Ap—s-
PROOF. (i) is obvious. For (ii), note that for [ =0, 1, - - - the functions
ot)=@t+Iln-1))2"+ (@t -1+ 1)(n-1)2"
are nonincreasing in ¢ for ¢t € [0, (n — 1)/2], and write

}\j = (n - 1)(27‘,)—2m 27’=0 ‘ol(])y J= 1) e, N — 2.
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For (iii), note that for [ =0, 1, - - - the functions
G(t) =(t+1Un—1)7"+ (t — (L + 2)(n — 1))
are nonincreasing in ¢ for ¢t € [0, n — 1], and write
N=(@-DCO)™™(—n+ )7+ 32 AG), j=1,--,n-2
which implies \; = \,—1,j=1, ---,n—2.0
For any real symmetric [ X l-matrix A, let \;(4),j =1, - --, [, be the [ eigenvalues
of A, ordered as A\;(A) < --- < N(A). In their Lemma 2.1, CW show that the

numbers \;,j =1, -- -, n — 1, are eigenvalues of K°. In conjunction with Lemma
3.1 this implies

(3.2) >\n—j(K0) = Ng+ve, J=1,---,n—2

We now describe the structure of the matrix T'.

LEMMA 3.2. For each n = m there is

(i) an n X (n — m) matrix E such that E'E = I,,_,, and
(ii) a vector e € R" such that rank(E’'(K+ ee’)E)=n—-m

such that for all z € R"
I D™S(2)|* = 2Tz
where
I'=E(E'(K + ee’)E)'E".

ProOF. It is well known that S(z) has a representation
S(z)(t) = 2;20 0lkl(t) + (-l)m_l 2;;1 Oljkz,,,(t - xj),

see CW, formula (2.8a). Although CW treat smoothing splines, it is valid also
for the interpolation case. According to formula (2.11) in CW we have, with

o= (Olj)j=1,...,m

(3.3) ID™S(2) |I* = a’Ka + 0%
Define
T = (ki(x)=2mY e = (R (%))jmr,..oms
0= (6))j=o,... m—1-
The restrictions of interpolation for S(z) can now be written
(3.4) Ko + e, + TO = 2.

S(z) is obtained by minimizing (3.3) subject to (3.4). Since k, is a polynomial of
degree ! and n = m, we have rank(T') = m. Let E be a n X (n — m) matrix such
that E'T = O¢,—myxm, E'E = I,_,,. Eliminating  from (3.4), we obtain

E'(Ka + ef,,) = E’z.
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Let K'/2 be the unique symmetric square root matrix of the symmetric matrix K,
and let

KY2q
0. |

K= (K"|e), a= <
Then the problem transforms to
(8.5) min{| &||?| & € R™, E’Ka = E'z}.

We~know that a solution of (3.4) exists for all z € R"; hence ~this also holds for
E’Ka = E’z2. As rank (E) = n — m, it follows that rank(E’K) = n — m. Then
the value of (3.5) is

2’E(E'KK’E)'E’z = 2’Tz. 0O
Now we can bound the eigenvalues of T' by successive application of separation
theorems.
LEMMA 3.3. For n=m + 5 we have
>\[_(}—m—1)/2] = AJ(F) = A[_(}+1)/2]7 ] =m+ 37 RPN (e 2.

PrOOF. Since K° is a submatrix of K we can apply the Sturmian or the
Poincaré separation theorem (see Rao, 1973, page 64) to obtain

(3.6) N-1(K%) = N(K) = \(K9), j=2,--,n— 1
Let K be as above; then

a7 MNE'RK)=Na(K+ee), j=2 ---,n+1
But analogously to (3.6) we have

(3.8) ANa(K) = MKE'K) = MK), j=2,---,n

The Poincaré separation theorem yields
(39) N(K+ee')=ME(K+ee')E) < Num(K+ee’), j=1,---,n—m.
Collecting (3.6)-(3.9) we obtain
N-1(K% = M(E'(K + ee’)E) < Nym+1(K®), j=2, .-, n—m— 2.
K?° is nonsingular since \,_; is its smallest eigenvalue. Hence
N2 (K%Y < N((E'(K + ee’)E)™ < Nym(K®Y), j=38, --,n—m— 1
consequently
N-m—2(K°™) = Ni(T) = (K™Y, j=m+3,---,n—1

Finally note that (3.2) implies

NEK™) =Ny, J=1,--,n—2. 0

The next lemma states our final result on the eigenvalues of I'. Define
(3.10) ajp, = n)\j(l‘n), J = ]_’ <o, N
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LEMMA 3.4. There is a sequence {6;}, not depending on n, §; = o(1), such that
forn>C,j=m+3,.--,n—2
(i) gp(m)?® =1 +§)(1-n"H)"
(ii) ajn(mj) "= (1 - §)(A + C(jn™")*™) 7L
PROOF. According to Lemma 3.3 we have forj=m+3, --.,n — 2
(1 = nMa(m) ™ < ((n = 1) Ngrnya (@) ®™)
and furthermore
(n = D7 Ngansa(m)®™ = Tiex QI + 1)/2)j7 + 2Un — 1)j7) 7"
= (j/2[( + 1)/2D*"
which proves (i). Analogously
(1 = nMa(rj)?" = ((n — 1) Nom-ny2 ()™
and furthermore
(n = D)™ NGom-na (@) *" = Tiez QG — m — 1)/2]j7" + 2(n — 1)j7) 7"
= (21 — m = 1)/2)*" + (jn™H)*"C
which implies (ii). O
The result may be compared to the one of Utreras (1983), who established C <

@, (7j) ~*™ < C uniformly for j, j = m, and showed convergence of each {aj,}nen to
an eigenvalue of a differential operator (Utreras, 1980).

4. Minimax spline smoothing. We now prove the main results by apply-
ing the optimal filtering scheme of Section 2. Let d;, j = 1, ..., n, be an
orthonormal eigensystem of T' so that

nl' = Y%, a;d;d;.
Define
G =Y gdidf, Y= (¥)j=1,..n
where g; are the coefficients of the optimal smoother from (2.16), and
f® = GY.
7™ is the estimate of the function values in the design points x;,. Let
fn = S(F™).
fn is the smoothing spline for which we claim optimality. For the rest of the
paper set © = W3 (P).
PROOF OF THEOREM 1(i). Define
M= (n"Y%d,, ---, d,))".
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Then, because of (3.1), Mf™ varies in an ellipsoid (2.2) where the qg; are given by
(3.10). Moreover MY has a distribution N (Mf™, n™I,); hence MY follows a
model of type (2.1). For any estimator f € .#,, we have

17 = flI2=n"" 7" = f™)2 = | MF™ — Mf™]2

We are therefore in the framework of Section 2. For the lower risk bound, refer
to Theorem 2.1 and note that its condition is fulfilled by virtue of Lemma 3.4(i).
The estimator Mf, coincides with J, of Theorem 2.2; the condition there is
implied by Lemma 3.4(ii). Hence

(4.1) supsee Ef|| fn — fI2 < k*™y(m, P)(1 + o(1)). O
To obtain the corresponding statement for the L, norm, we need first an
approximation-theoretic result. In the sequel, C shall denote constants which, in
addition, do not depend on functions f € W3'.
LEMMA 4.1. For any function f € W%
LA = IFURL < n7'CAfIE + ID™FI®), n=z=C.

ProOOF. The inequality
LIAIZ = WAL = nT*CUFIZ + I D™FI1®)
is well known. It implies that
17?2 < CUfIZ + ID™fII?), n=C

from which the lemma follows. [0
For the following lower risk bound, let it be understood that loss is infinite if the
estimate is not in L,.

THEOREM 4.1.

infies, supreo Byl f — f1I* = k*™y (m, P)(1 + o(1).
PROOF. Let f € &, be an estimator with realizations in L. Since 0 is a closed

convex subset of L,, a projection argument justifies an assumption that 7 takes
values in 0. Then by Lemma 4.1

ElNf—f1? = E|f— (120 = n7'C) = n”'CE/| D™(f = ) II*.

The second summand is bounded in modulus by n~*CP. Now refer to the already
established result for the norm || - ||,. O

LEMMA 4.2. supseoEf|| D™f, |12 < C.

PROOF. Define
s=[k/ur]l +1, T =n"13%L, add].
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Thengi=0,j=s, ---,n,and
Ef| D"f,|I* = Ef™'Tf"™ = Ef™Ff®
< 2Ef( f(n) _ f(n))li"\(f(n) _ f(n)) + 2f(n)rrf(n)
< 2n7'a,Ef|| ™ — f™ % + 2P.

Lemma 3.4(i) implies that a, = Ck®". Invoking relation (4.1) completes the
proof. [0

THEOREM 4.2. supcoE/|l fo — f11% < E2™y (m, P)(1 + 0(1)).

PrOOF. By Lemma 4.1
El fo = FI? < Efl fa — fI2(1 + n7'C) + n7'CE{| D™(f. — f) I~

Now use Lemma 4.2 and relation (4.1). 0
Note that part (ii) of Theorem 1 follows from Theorems 4.1 and 4.2.

REMARKS.

(1) The optimal estimator f, is linear in the data and may be viewed as a
smoothing spline. It seems that the conventional smoothing spline, i.e., the g
which minimizes

n7t Y (v — 8(x))* + X D"g ||

is not asymptotically minimax in the present sense, whatever the choice of the
smoothing parameter A. Indeed it corresponds to a filter {(1 + A(mj)?™)7Y
(approximately) rather than to the optimal one (2.16).

(2) Rice and Rosenblatt (1983) analyze the behaviour of smoothing splines in
the noncircular model of the present paper. They state that the integrated mean
square error is dominated by contributions from the boundary, so that the rate
of convergence is affected. However this does not contradict the rate optimality
of smoothing splines; only the order of the spline has to be selected sufficiently
large. The interplay between smoothness, boundary conditions and rates of
convergence is clarified by Cox (1984).

(3) Sacks and Strawderman (1982) 'consider estimation of f(x) for a given
point x. They show that for some cases when f is from a smoothness class, linear
estimators achieve the optimal rate for mean square error E( f (x) — f(x))? but
not the best constant in the minimax sense. The crucial difference in the present
paper is the global Ly-loss. For a loss (f(x) — f (x))2 in our model, the conventional
smoothing spline is minimax among linear estimators if A = (nP)™! (see Li,
1982). It attains the optimal rate n=®m~1/2m (see Speckman, 1981).

(4) Cox (1984) established L,-rate optimality of the smoothing spline for
bounded domains of R? Using some of the methods of this paper, our result can
be generalized to such domains and to nonequidistant designs.
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