DISCUSSION 893

EFRON, B. (1971). Does an observed sequence of numbers follow a simple rule? (Another look at
Bode’s law). J. Amer. Statist. Assoc. 66 552-559.

GILULA, Z. and HABERMAN, S. (1984). Canonical analysis of contingency tables by maximum
likelihood. Unpublished manuscript.

GOODMAN, L. A. (1969). On partitioning x 2 and detecting partial association in three-way contingency
tables. J. Roy. Statist. Soc. Ser. B 31 486-498.

GOODMAN, L. A. (1970). The multivariate analysis of qualitative data: Interactions among multiple
classifications. J. Amer. Statist. Assoc. 65 226-256.

GOODMAN, L. A. (1971). The analysis of multidimensional contingency tables: Stepwise procedures
and direct estimation methods for building models for multiple classifications. Techno-
metrics 13 33-61.

GOODMAN, L. A. (1978). Analyzing Qualitative/Categorical Data: Log-Linear Models and Latent-
Structure Analysis. Abt Books, Cambridge, Mass.

GOODMAN, L. A. (1979). Simple models for the analysis of association in cross-classifications having
ordered categories. J. Amer. Statist. Assoc. 74 537-552.

GOODMAN, L. A. (1981). Association models and canonical correlation in the analysis of cross-
classifications having ordered categories. J. Amer. Statist. Assoc. 76 320-334.

GOODMAN, L. A. (1984). The Analysis of Cross-Classified Data Having Ordered Categories. Harvard
University Press, Cambridge, Mass.

GOODMAN, L. A. (1985). The analysis of cross-classified data having ordered and/or unordered
categories: Association models, correlation models, and asymmetry models for contingency
tables with or without missing entries. Ann. Statist. 13 10-69.

GOODMAN, L. A. and HABERMAN, S. J. (1985). On the analysis of non-additivity in two-way analysis
of variance. Unpublished manuscript.

GREENACRE, M. J. (1984). Correspondence Analysis. Academic, New York.

HOTELLING, H. (1939). Tubes and spheres in n-spaces, and a class of statistical problems. Amer. oJ.
Math. 61 440-460.

JOHNSON, D. E. and GRAYBILL, F. A. (1972). An analysis of a two-way model with interaction and
no replication. J. Amer. Statist. Assoc. 67 862-868.

LEBART, L., MORINEAU, A. and WARWICK, K. M. (1984). Multivariate Descriptive Statistical Analysis.
Wiley, New York.

MANDEL, J. (1971). A new analysis of variance model for non-additive data. Technometrics 13 1-18.

NISHISATO, S. (1980). Analysis of Categorical Data: Dual Scaling and Its Applications. University of
Toronto Press, Toronto.

SNEE, R. (1974). Graphical display of two-way contingency tables. Amer. Statist. 28 9-12.

TUKEY, J. W. (1949). One degree of freedom for nonadditivity. Biometrics 5, 232-224.

TUKEY, J. W. (1977). Exploratory Data Analysis. Addison-Wesley, Reading, Mass.

DEPARTMENT OF STATISTICS
UNIVERSITY OF CHICAGO
CHICAGO, ILLINOIS 60637

ToMm LEONARD!
University of Wisconsin-Madison

This exciting and imaginative paper promises substantial impact upon the
practical application of contingency table methodology. It highlights the difficulty
for the user in making an overall judgement concerning a.reduced model, by
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regarding the smallness of a single p-value, e.g., after considering numbers of
dimensions, sample size, sampling scheme, scientific background, scientific ob-
jective, and so on. The broad ranging synthesis of ideas described by the authors
promises advances beyond the existing classical log-linear/chi-square methodol-
ogy and brings fresh philosophy into an area otherwise getting a bit inbred since
the simple theoretical developments of the late 1960s.

When I introduced the authors’ exponential alternative in a Bayesian context
in Leonard (1977) via derivations relying on similar classical procedures to those
described in Sections 4 and 5, I realized that the main result (that under
appropriate mixtures the asymptotic distribution of chi-square is a scale multiple
of chi-square) was well known in the frequency literature. See, for example, Paul
and Plackett (1978) and Bateman (1950). The new p-value interpretations are
an easy consequence of this and uniformity is just a limiting case. Therefore,
Diaconis and Efron’s volume test seems to be a standard test in the literature.
However, their fascinating mathematical development, particularly in later sec-
tions, is to be highly commended.

My own statistical philosophy is to permit as general an alternative model as
possible a priori, then use the data, together with the practical background, to
suggest possible modifications to the hypothesised model. The best sort of
mechanism for this type of investigation seems to be a residual/interaction
analysis which considers the adequacy of the reduced model for each individual
cell. Unfortunately, the classical log-linear approach does not permit precise
marginal inferences concerning individual residuals or interactions since the
various, e.g., normal, approximations in the literature are fairly inaccurate for
practical sample sizes. I believe that an accurate residual analysis would solve
many of the practical problems. The emphasis should be on posterior inferences
about alternative hypotheses, rather than possibly artificial prior hypotheses.
For example, uniformity seems a bit out of place for the author’s hair/eye color
example.

One possibility is an approach synthesised by Leonard and Novick (1985) but
also relating to the many Bayesian developments in this area during the 1970s.
Take the (conditional) prior mean &; of the (i, j)th cell probability to satisfy

(1) gtj=£u(ﬂ) (i=11 ""I;j=]-’ Sty J)

where the function &;(-) is specified according to the reduced form of the model,
and the # X 1 vector 8 represents the parameters within this model. Suppose
that, given « and g, the 6,; follow the Dirichlet distribution which possesses these
prior means and prior variances &;(1 — £;)/(a + 1). Then the posterior mean of
0;;, given « and B is )

(2) E(0;lyi, a, B) = (1 — 7)(yi/n) + 7£;(6)

where 7 = a/(n + a) represents a proportionate mixing between the reduced
model &;(-) and a general alternative as represented by the y;;. The procedure
can be rendered largely data analytic by assigning appropriate ignorance priors
to « and B at the lower stage of a hierarchical model. The class of alternative
models is then highly diffuse, and involves a broad mixture of multinomial-



DISCUSSION 895

Dirichlet distributions. Diaconis and Efron’s apparently weak notion of uniform-
ity is in fact a much stronger assumption and corresponds to the choice af;; = 1.
The marginal posterior density of 7 now provides a mechanism for an overall
inferential check for the adequacy of the reduced model, compensating for sample
size and dimensionality and providing much more information to the user than
given by a single p-value; the user should combine this with his or her practical
experience. The marginal posterior densities of the parametric residuals.

3) - pjj=logb; —log &B) GG=1,.-,L;j=1,---,J)

permit a detailed residual analysis investigating specific deviations from the
reduced model and suggesting meaningful alternative models.

Leonard and Novick use the conditional maximization procedure recom-
mended by Leonard (1982) to closely approximate all these marginal posterior
densities under the assumptions above described. In the special case where &;(-)
represents the independence model, p;; in (3) is just the (i, j)th interaction effect
under log-linear assumptions.

The data in Table 1 are more fully described and analysed by Leonard and
Novick. The observed frequency for the (i, j)th cell gives the number of Marine
Corps students obtaining the jth grade on a common aptitude test prior to entry
at one of 12 clerical schools. The table is a cross-section of a 12 X 8 X 5 three-
way table also classifying according to final grade obtained at each of the 12
schools.

The above hierarchical Bayesian analysis was performed with the null hypoth-
esis in (1) representing independence of rows and columns and the p;; in (3)
denoting the log-linear interaction effects. For an overall check, an approximate
posterior density of the mixing proportion 7 in (2) is given in Figure 1, with a
mean of 0.172. This gives substantial evidence that the independence model is
inappropriate. In general, a similar conclusion would seem reasonable if the
posterior probability that 7 < 0.5 were greater than 0.5. The chi-square value is

TABLE 1
The Marine Corps data
Grade
School 1 2 3 4 5 6 7 8
A 20 179 276 ' 316 123 27 10 4
B 10 80 112 112 6 5 0 1
C 25 293 390 337 126 66 32 18
D 3 32 55 51 17 7 3 2
E 2 41 46 43 12 4 0 0
F 10 81 138 242 145 32 6 2
G 9 131 270 263 100 39 39 12
H 3 35 57 64 21 7 3 2
I 2 38 69 45 15 8 1 2
J 1 28 49 81 32 28 10 4
K 1 29 51 56 37 18 6 2
L 0 48 87 162 62 71 21 7
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X? = 456.93 with 77 degrees of freedom again refuting independence. It is,
however, possible to avoid consideration of the usual p-value by instead assessing
the whole posterior curve for 7 which summarises the information in the data
regarding overall deviations from the independence model, given the reasonability
of the distributional assumptions. If required, a variety of special decision rules
could be based on this curve, but formal decision theory seems unnecessary in
this practical context.

For individual deviations from the null model consider the eight approximate
posterior densities in Figure 2, which corresponds to the interaction effects for
the eight grades obtainable by students at school L. For the highest three grades
there are clear negative interactions, and for the lowest three grades there are
strong positive interactions, suggesting a clear individual deviation from the null
hypothesis of independence of the entry performances for the 12 schools. For the
fourth and fifth grades, the interactions seem positive but the evidence is not
overwhelming. Judgement of the tail probabilities seems less important than an
overall appraisal of the curves and the detection of patterns in the interactions
when compared with other schools.

In Table 2 a summary of the complete interaction analysis is described. A
boxed +, 0, or — means that the judgement on this particular interaction is not
completely clear. The patterns in the residuals suggest to me that

(a) The first three grades are good for judging superior performances and the
last five grades for judging inferior performances.
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TABLE 2
Interaction analysis
1 2 4 5 6 7 8
B + + + [0] - - - 0
c + 0 - 5] 0 + +
E 0 + 0 0 0 0 - -
I 0 + =] 0 0 0 0
A + 0 0 0 0 - =] 0
D 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 +
H 0 0 0 0 0 0 0 0
F 0 - - + + 0 0 0
J 0 =] =] [+] + + +
K 0 0 0 | 0 + + 0
L - - - + ¥ +

(b) Four of the schools (B, C, E, I) should be grouped as possessing superior
entry levels. Four schools (A, D, G, H) are average and four (F, J, K, L)
are inferior.

This interaction analysis finally led us to a choice of alternative model where
(i) the first three columns and final five columns of the table are collapsed and
(i) there is independence of entry level within the three groups of schools in (b)
but not between groups. A further technical analysis confirmed the adequacy of
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our simplified model; the posterior mean of + was now 0.60. This enabled us to
obtain a simple analysis for the full 12 X 8 X 5 table and to investigate the
associations between entry levels and final grades.

My overall conclusion is that most observed contingency tables possess intrin-
sically individualistic structures which should not be concealed by unduly con-
straining alternative hypotheses in advance. Diaconis and Efron are, however,
taking us in a good perceptive direction which should yield fresh advances in the
future.
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Some years ago, a well-known Irish newspaper carried a series of advertise-
ments by an eccentric entrepreneur known as “The Brother,” offering correspond-
ence courses in the art of “periastral peregrinations on the aes ductile,” more
commonly, but less accurately, known as tight-rope walking. Despite the incentive
of generous course credit, the University of the Air, as it was known, had few
registered students and no known graduates. In the present paper; Diaconis and
Efron give a superb exhibition of The Brother’s singular art in its metaphorical
form, by attempting to dance on two ropes at once—and almost succeeding!

Diaconis and Efron have chosen, quite sensibly, not to argue against modelling
departures from independence, noting that such models can often give deeper
insights into the data. Instead, they emphasize the common x? statistic, here
denoted by X2, as “an effective device for preliminary data analysis, particularly
when the statistician has many two-way tables under review.” This point of view
seems difficult to comprehend because the most common and compelling objec-
tion to the use of X? in applications is that it gives no information regarding the



