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1. General. The paper under discussion by Diaconis and Efron (1985) (DE)
is impressive and stimulating. I would like to bring forward here a few general
questions to which it gives rise and then take a brief look at coherent inference
for the models employed by DE.

Toward the end of Section 1, DE state that their “goal is to extend the
usefulness of x2.” I would wish to ask first, how should x2 be used? On the one
hand, inferences based on tail areas, rather than probability densities or masses,
are not coherent. On the other hand, tail areas are naturally interesting facts
about the data (and about other nonoccurring data values). I do not know the
best answer to this question and I would personally prefer to keep both kinds of
tools in our kit.

Recall that the coherent inference in favor of a hypothesis H versus its
alternative H is given by the Bayes factor B(H, H) (Jeffreys, 1939; Good, 1950;
Edwards, Lindman and Savage, 1963; Dickey and Lientz, 1968). This is the
ratio of the coherent posterior odds P(H | x)/[1 — P(H|x)] to the prior odds
P(H)/[1 — P(H)] > 0. This ratio depends on the data x, but not on the prior
odds, so it serves as a sufficient report of the data for inference regarding H.
The Bayes factor also equals the ratio of predictive densities, B(H, H) =
p(x| H)/p(x | H), each a function of the respective conditional prior distribution,
p(x|J) = [ p(x|w) dP(x|J), J = H, H. The dependence on conditional
uncertainty may necessitate a tabular or graphical report of the Bayes factor
(Dickey, 1973).

Technical point. In the case of a sharp hypothesis defined by a point value of
a constraining parameter, H: n = 0, where n = n(=), it is tempting to use a single
joint density g () to specify both of the conditional prior distributions, p(x | H)
=g(x) and p(x | H) = g(w | n = 0), where g(= | 1) is a lower-dimensional density
obtained in the usual way by conditioning in g(x). For one thing, Savage’s
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density-ratio form of the Bayes factor is then available (Dickey and Lientz,
1968). But this must be done with care, because of the Borel-Kolmogorov
dependence of a conditional distribution on the choice of conditioning variable.
In such an approach, the Bayes factor would depend not only on the sharp-
hypothesis event H, but also on the choice of constraint parameter used to define
H. For example, the Bayes factor for independence in a 2 X 2 table would depend
on whether “independence,” H: n = 0, referred to

n(w) = w1 /(7r + m2) — 72 /(72 + w22)
or to

n(w) = log{[m/(m11 + m12))/[m21/ (w21 + w22) 1}

Dickey and Lientz (1968) and Lindley (1971, footnote on page 32) mislead in this
regard, a mistake for which I am responsible, and which was eventually corrected
in Guanel and Dickey (1974). (Li (1983) has attempted to avoid dependence on
choice of variable by defining the conditional distribution directly as a geomet-
rically induced lower-dimensional Hausdorff measure. However, the induced
measure depends on the choice of joint variable 7, and the different induced
versions are not then merely related by change of variable within H.)

2. Coherent test for independence using Dirichlet prior distribu-
tions. Gunel and Dickey (1974) gave the odds test for independence in two-
way frequency tables using Dirichlet conditional prior distributions. This work
preceded Good (1976), who considered only symmetric Dirichlet distributions. It
would seem even more realistic to use mixtures of Dirichlet distributions or
otherwise structured prior distributions to more accurately model real uncertainty
under the alternative to independence. This would seem to harmonize with the
spirit of statements made in DE.

It would be interesting to see DE’s approximation of discrete uniform proba-
bilities by relative volumes generalized to approximation of Dirichlet-multinomial
probabilities by Dirichlet probabilities. This can be done very simply through the
means and covariances, but DE seem to have more sophisticated tools.

The Bayes factor B is factorized by Gunel and Dickey (1974) into separate
factors based on the marginal count data and based on the conditional distribu-
tion of data within the rows and columns. Conditional inference is thus available
directly, and conditioning is not required as a device to set up a point null
hypothesis. Anticipating Good and Crock (1980), we found that the margins are
quite uninformative regarding row-column independence. We also obtained the
coherent inference for models conditioning on the margins of only one of the two
types, a very common situation in practice. See Gunel (1982) and Atkins and
Gunel (1984) for further work.

3. Normal model. DE treated the normal sampling distribution, x |8 ~
Np(8, n7'I), with unknown location 8| § ~ Np(0, ¢3I),

=yp/n=n"'/(n"'+ o}).
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This yields the marginal uncertainty conditional on the hyperparameter 6 (or »
Or o, ﬂ),

(]—) X I 0 ~ ND(O, V_II).

Dickey (1971, 1974) developed coherent inference with Bayes factors for such
models, including more extensive families of prior distributions.

Since the statistic S = xTx is sufficient for 6 in the model (1), we have, with
S16 ~ xb/v,
(2) B(Hy, Hy) = p(S10)/p(S11) = (v/n) Pexp[*(1 — »/n)nS].

This is the ratio of odds in favor of the alternative H, versus the usual null
hypothesis H,; whereas in the previous order, B(H,, Hy) = 1/B(H,, H,). If the
alternative value 6 is subject to further uncertainty, then the chosen order, H,
over H,, allows informal or formal use of a prior-uncertainty mixture conditional
on the nonoccurence of H;. For a mixing distribution P (0 | H,), we have

3 B(H, Hy) = f B(H,, H,) dP(0| H,).

In the joint model, with 6 also random, the events 8 = 0 and § = 1
are probabilistically equivalent, that is, p(x, 8|8)s=0 = p(x, 8]60)s=1 and
pl[x, B|(B # 0)] = p(x, B|0) as evaluated at 6 where 6§ # 1, and P(8 = 0) =
P(9 = 1). Hence the factor B(H,, H,) (or B(H,, H,)) can be used for inference
concerning the event 8 = 0. The following steps arise naturally in a coherent
reference.

1. Evaluate B(H,, H,), (i) for one value or (ii) for multiple values of §. The
latter allows evaluation of B(H,, H;) by (3). The corresponding decision-
theoretic criterion is to choose d = dy, if B(H,, H,) exceeds the threshold,

(4) {P(H:1)/[1 = P(H)}{Ey 1, , W1(0)/Eo 7, W2(6)},

where the utility differences, W,(8) = U(dwy,, ) — U(dg,, §) and W,(0) =
—W1(0), satisfy W,(8) > 0 for all § € H, and W,(0) > 0 for all § € H,. The
threshold will not depend on the data x if W, () is constant within H; and
W, (0) is constant within H;. (See Kadane and Dickey, 1980, for discussion.)

2. If H, is rejected (i) in an analysis using fixed 6 within H,, one can then use
the usual posterior density p(8|x, 6) obtained from the prior p(8]6) to
estimate 8. If H, is rejected (ii) by using a mixture H,, one can first obtain
the inference p(8 | x, 8) and then use

) pBlx, H) = fp(ﬂlx, 6) dP (0| x, H,).

What posterior distribution to use for 6 in (5)? DE consider confidence intervals
based on the pivot, p = »S, p|v ~ X%. (What is the logic of the “confidence”
property for a “random effects” model?) For these intervals to be posterior
credible intervals, that is, to have p | S ~ X%, would require a prior density given
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by p(v | H,) o« 1/v, or
(6) p(e3| Hy) o 1/(c3 + n™").

This density is, of course, nonintegrable and has the further objection of depend-
ing on the experiment through n. I do not know whether real uncertainty densities
tend to give approximately the same inference as (6).

The expectand B(Hy, H;) (2) in (3) offers the further advantage of being
proportional to the marginal (weighted) likelihood function of ¢4; and hence it
points out the values of ¢4 supported by the data. As oy — 0+, B — 1 (H, — H,);
and as oy increases, B has available two modes of behavior. If S < D/n, B starts
at its maximum, 1 at 3 = 0, and decreases to zero as os — . In this case, no
conceivable prior value o could give favor to H, over H,. If S > D/n, B increases
to its maximum, [D/(nS)]?Pexp[%(nS — D)] at o5 = (S/D — n™')Y?(» = D/S),
and then B decreases to zero from there. B is strictly increasing in the
statistic S.

One can obtain approximate highest-posterior-density intervals for any trans-
formation 7 of o4, based on an approximate constant prior density for 7. The
interval end points are obtained by specifying likelihood-ratio values, k = B/max
B, and then solving for 7 in the equation In(vS/D) = »S/D — [1 + (2/D)In(1/k)].

_ 4. Two-way frequency tables. Following DE, we now apply our normal-
theory analysis to the limiting form of the conditional multinomial model. Note
that the prior-uncertainty variance matrix, var(x | Hy, (r, ¢)) = o3 i.(,,c) (where
3 = diag(#)), is required in the analysis to be approximately proportional to the
sampling conditional variance matrix, var(p | =, (r, ¢)) = n™! 2-(:,@' Since, when
both 7, and w.; are small, var(p;; | «, (r, €)),=; = n~'7;;, we have the prior
variance of a coordinate ;; approximately given by the product o37;;.

Consider the arithmetic average of the prior variances over the categories. This
will involve the constant average of the probabilities: 62 = o3av(#w;) = o3(IJ) 7.
Denoting the known average probability by 7 = av(w;;) = (IJ)™", we obtain the
intuitively meaningful prior parameter,

(7 6./7 = ag(IJ)2

Note that 0 < o, /7 < IJ.

We use this hyperparameter o,/ to tabulate, in Tables 1’ and 2’, the Bayes
factor (2) for the data of DE’s Tables 1 and 2, respectively. It is apparent that
for moderate and large values of one’s conditional prior standard deviation under
H,, one would strongly reject H; with the present joint uncertainty model. No
values of prior standard deviation would yield support for H,, except values
beyond the range of the model. Just as with the standard tail-area test on these
data, one would apparently reject H; more strongly for the Table 2 data than for
the Table 1 data.

I agree with DE that it seems more promising to carry out analyses of structured
alternatives to independence than the present limiting-normal analyses or the
similar Dirichlet-prior analyses.
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TABLE 1’

Bayes factor against independence for eye color and hair color. Data from Table 1 of Diaconis and
Efron (1985) (I =4,J =4, D =9, n = 529, nS = 138.29). Approximate normal sampling model and
centered normal uncertainty model under the alternative hypothesis. B by equation (2) with
v/n=(1+ no?) ™ and o5 = (6./7)(IJ) V2

GlT vin B

0.001 0.99997 1.002

0.01 0.997 1.24

0.04 0.950 25.6

0.05 0.924 137

0.10 0.752 8.00 x 108

0.659 6.51 x 1072 5.44 X 10?2 (max)
16.0 (max) 1.18 x 107* 2.25 X 102

(800) (4.73 X 1078) (1.16 x 1073)

TABLE 2’

Bayes factor against independence for yearly income and number of children. Data from Table 2 of
Diaconis and Efron (1985) (I = 5, J =4, D = 12, n = 25,263, nS = 568.57). Approximate normal
sampling model and centered normal uncertainty model under the alternative hypothesis. B by
equation (2) with v/n = (1 + no3)™ and o5 = (6,./7)(IJ)™/2

.l vin B

0.0001 0.999990 1.004
0.001 0.9990 1.42
0.003 0.989 22.8
0.005 0.969 4.99 x 10°
0.01 0.888 3.44 x 10%
0.192 2.10 X 1072 =10 (max)

20.0 (max) 1.98 X 107 =>10'®

(6 X 10°) (2.20 X 107Y7) (=1071%)

REFERENCES
ATKINS, J. and GONEL, E. (1984). Baycat: Bayes factors for categorical data analysis. Amer. Statist.
38 156.

DiAcoNis, P. and EFRON, B. (1985). Testing for independence in a two-way table: New interpretations
of the chi-square statistic. Ann. Statist. 13 845-874.

DICKEY, J. M. (1971). The weighted likelihood ratio, linear hypotheses on normal location parameters.
Ann. Math. Statist. 42 204-223.

DICKEY, J. M. (1973). Scientific reporting and personal probabilities: Students hypothesis. /. Roy.
Statist. Soc. Ser. B 35 285-305.

DICKEY, J. M. (1974). Bayesian alternatives to the F-test and least squares estimate in the normal
linear model. In Studies in Bayesian Econometrics and Statistics. (S. E. Fienberg and A.
Zellner, eds.) pp. 515-554. North-Holland, Amsterdam.

DICKEY, J. M. and LIENTzZ, B. P. (1968). The weighted likelihood ratio, sharp hypotheses about
chances, the order of a Markov chain. Ann. Math. Statist. 41 214-226.

EDpWARDS, W., LINDMAN, H. and SAVAGE, L. J. (1963). Bayesian statistical inference for psychological
research. Psychol. Rev. 70 193-242.



882 DISCUSSION

GooD, L. J. (1950). Probability and the Weighing of Evidence. Hafner, New York.

Goop, 1. J. (1976). On the application of symmetric Dirichlet distributions and their mixtures to
contingency tables. Ann. Statist. 4 1159-1189.

Goop, I. J. and CROOK, J. F. (1980). The information in the margins of a 2 X 2 contingency table.
Unpublished report.

GUNEL, E. (1982). Bayes factors in three-way contingency tables. Comm. Statist. A—Theory Methods.
11 911-931.

GONEL, E. and DICKEY, J. (1974). Bayes factors for independence in contingency tables. Biometrika
61 545-557.

JEFFREYS, H. (1939). Theory of Probability (3rd ed. 1961) Clarendon Press, Oxford.

KADANE, J. B. and DICKEY, J. M. (1980). Bayesian decision theory and the simplification of models.
In Evaluation of Econometric Models. (J. Kmenta and J. Ramsey, eds.) pp. 245-268.
Academic, New York.

L1, L.-A. (1983). Decomposition theorems, conditional probability, and finite mixture distributions.
Ph.D. dissertation, Dept. of Mathematics and Statistics, SUNY at Albany.

LINDLEY, D. V. (1971). Bayesian Statistics, A Review. SIAM, Philadelphia.

DEPARTMENT OF MATHEMATICS
AND STATISTICS
STATE UNIVERSITY OF NEW YORK AT ALBANY
- ALBANY, NEW YORK 12222

STEPHEN E. FIENBERG!
Carnegie-Mellon University

Diaconis and Efron’s (henceforth DE) goal in this paper is a laudable one—to
help interpret the classical chi-square statistic used to test for independence in
two-way contingency tables in cases where independence clearly does not hold.
Their mathematical statistics results are impressive, their theorems are seemingly
impeccable, and their writing style is lucid. Yet, even after several readings, I
came away from the paper with a feeling of disquiet, and a belief that they had
failed to achieve their goal for most practical purposes. This comment provides
some explanations for my disquiet and raises questions about the immediate
utility of DE’s results. The claim here is not so much that DE’s results will not
be of use to someone in the future (for their elegant results and geometrical
interpretations will surely be put to good use), but rather that they will not be
useful for the purpose originally proposed.

The statistical model for the counts in a two-way contingency table has two
components: (1) a sampling model for the generation of the counts given a set of
cell probabilities or expected values; (2) a structural model (corresponding to a
curved manifold in the simplex) for the cell probabilities that is typically tied to
the relationship between the categorical variables underlying the rows and
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