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TESTING FOR INDEPENDENCE IN A TWO-WAY TABLE:
NEW INTERPRETATIONS OF THE CHI-SQUARE STATISTIC

By PERSI DIACONIS AND BRADLEY EFRON

Stanford University

The classical chi-square test for independence in a two-way contingency
table often rejects the independence hypothesis at an extremely small signif-
icance level, particularly when the sample size is large. This paper proposes
some alternative distributions to independence, to help interpret the x?2
statistic in such situations. The uniform alternative, in which every possible
contingency table of the given dimension and sample size receives equal
probability, leads to the volume test, as originally suggested in a regression
context by H. Hotelling. Exponential family theory is used to generate a class
of intermediate alternatives between independence and uniformity, leading to
a random effects model for contingency tables.

1. Introduction. The chi-square test for independence in a two-way con-
tingency table is an important accomplishment of early twentieth-century statis-
tics. Tables 1 and 2 show the test in action, in both cases rejecting the hypothesis
of independence. The main disadvantage of the chi-square test is apparent: when
the independence hypothesis is strongly rejected, the actual significance level
obtained by x? conveys almost no additional information. For example,
x 25 = 568.57 is much more significant than x3 = 138.29, but it will turn out that
Table 2 lies much nearer to independence than does Table 1.

The objection here is really a general complaint against pure tests of signifi-
cance. Significance tests are easy to use because we need only consider the null
hypothesis family of distributions, in this situation the independence distribu-
tions for two-way tables; but, if the test strongly rejects the null hypothesis, the
statistician receives little guidance as to what distribution actually generated the
data.

This paper proposes some alternative distributions to independence, to help
interpret x? in situations like those of Tables 1 and 2. For example, Section 2
considers the distribution of x* under the uniform distribution, in which every
possible contingency table of the given dimension and sample size receives
equal probability. For dimension 4 X 4 with sample size n = 592 there are

67) = 3.59 . 10* such tables. We will show that about 10% of these tables have
x2 = 138.29. In other words, the value of x2? observed in Table 1 is not
overwhelmingly unusual assuming the uniform distribution. Why we might be
interested in the uniform distribution is discussed in Sections 2 and 5, but in an
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TABLE 1
Eye color versus hair color for n = 592 subjects, Snee (1974). The standard chi-square test for
independence gives x? = 138.29 on 9 degrees of freedom, strongly rejecting the hypothesis of
independence. There are 3.59 - 10%® 4 X 4 tables of sample size 592. Among these about 10% have
x2 < 138.29. In this case we cannot reject the alternative hypothesis that the observed table was selected
uniformly from the set of all possible tables.

Hair Color
Eye Color Total
Black Brunette Red Blond
Brown 68 119 26 7 220
Blue 20 84 17 94 215
Hazel 15 54 14 10 93
Green 5 29 14 16 64
Total 108 286 i 127 592
TABLE 2

Number of children in family versus yearly income, for n = 25263 Swedish families, Cramér (1946).
The chi-square test strongly rejects the hypothesis of independence, x* = 568.57 on 12 degrees of
freedom. Among all possible 5 X 4 tables with n = 25263 only a very small proportion, about 2.1 - 1077,
have x? < 568.57. In this case we also strongly reject the alternative hypothesis that the observed table
was selected uniformly from the set of all possible tables. Sections 4 and 5 discuss models intermediate
between independence and uniformity, allowing us to interpret x* when neither hypothesis is tenable.

Number of Yearly income, Units of 1000 Kroner

Children 0-1 1-2 2-3 3+ Total
0 2161 3577 2184 1636 9558
1 2755 5081 2292 1052 11110
2 936 1753 640 306 3635
3 225 419 9 38 778
=4 39 98 31 14 182
Total 6116 10928 5173 3046 25263

obvious sense it is an antagonistic alternative to the independence hypothesis,
for which the marginal probabilities of the table determine all the interior
probabilities. Hotelling (1939) used exactly the same idea to generate a class of
tests for nonlinear regression problems.

The procedure just described will be called a volume test: in the simplex of 16
dimensions, each point of which corresponds to a 4 X 4 table of proportions or
probabilities, the value 10% is essentially the ratio of volumes between the set of
points having x % < 138.29 and the entire simplex. The set of perfectly independent
tables is a six-dimensional curved surface inside the simplex. The usual chi-
square test says that Table 1 lies too far away from this surface to have been
generated by chance multinomial variation from a probability table lying on the
surface. The volume test says that Table 1 does not lie particularly near the
surface, under sampling from the uniform distribution.

The situation is different for Table 2. Here the observed table lies too far away
from the surface of independence, in terms of multinomial variation, but also it
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lies too near the surface to have been chosen uniformly. If we could look at the
simplex in 20 dimensions describing all 5 X 4 tables, we would see that Table 2
lies very near the seven-dimensional curved surface of independence. As a matter
of fact, the set of tables lying nearer the surface than Table 2, in terms of distance
as measured by the x *-statistic, is only about 2.1 - 10~ the volume of the entire
simplex.

The decisive rejection of both independence and uniformity for Table 2 leaves
us with little information still about what distribution actually generated the
data. Sections 4 and 5 discuss a class of intermediate models. Roughly speaking,
the class is a one-parameter exponential family passing through the independence
and uniform distributions, and having x? as its sufficient statistic.

The natural parameter of this family can be interpreted as “effective sample
size,” say ». We imagine that Table 2 has observed proportions as indicated, for
example, 2163/25263 in the upper left category, but that the sample size has been
reduced from n = 25263 to some smaller number ». Smaller sample size allows
the observed table to lie further from the surface of independence under the
hypothesis of independence. We will see that for Table 2 a 90% confidence
interval for », consonant with the independence hypothesis, is

(1.1) v € [232, 935].

Sections 4 and 5 show that these considerations relate to a random effects model
for contingency tables.

All of the significance levels and confidence intervals suggested in this paper
are functions of x? (or of its close cousin, the Kullback-Leibler distance), mostly
very simple functions which can be calculated on a hand calculator. The goal is
to extend the usefulness of x? not to dissect the table using more elaborate
structural models. Needless to say, this is not an argument against structural
models, which often can give deeper insights into the data; x2? is an effective
device for preliminary data analysis, particularly when the statistician has many
two-way tables under review. This paper tries to refine its powers of explanation.
The literature contains other such refinements, for example, the mean square
contingency, x?%/n, see Cramér (1946).

None of the statistical ideas presented here are new. Hotelling’s seminal paper
of 1939 has already been mentioned. The basic defect of pure tests of significance,
that the results may depend more on sample size than on the true state of nature,
was forcefully pointed out by Berkson in 1938. Bayesian solutions have been
proved by Jeffries, Savage, Lindley, Hald and many others (see Shafer, 1982).
What we call the “volume test,” following Hotelling’s original terminology, was
considered in the context of two-way tables by Good (1976), and at some points,
which will be indicated as they occur, we will be closely following Good’s line of
thought. The interesting series of articles by Good (1976, 1983), and Good and
Crook (1980) are particularly relevant to our Sections 2, 3, and 7.

Components of variance approaches to categorial data, as used in Sections 4
and 5, date back to Lexis in the nineteenth century. These are nicely described
in Chapter 3 of Heyde and Seneta (1977). Recent Bayesian work on the analysis
of contingency tables gives a class of random effects models. This work is surveyed
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in Chapter 12 of Bishop, Fienberg and Holland (1975). More recent work is in
papers by Dickey (1983), Laird (1978) or Leonard (1977). Section 9 gives a more
thorough discussion of related literature.

2. Volume tests for independence. This section motivates and describes
volume tests for independence in a two-way contingency table. A simple formula
is given which approximates the significance level of the volume test, for example,
10% in Table 1, as a function of the usual x 2-statistic. A more careful discussion,
including proofs and details, appears in Sections 6, 7, and 8.

Let I be the number of rows and / be the number of columns in the contingency
table. The table of observed proportions p has ijth entry

(2.1) pi=my/n, i=1,2 ..., I, j=1,2,..-,4J,

where m;; is the number of observed counts in row Z, column j, and n is the total
sample size. For example, I = 5, J = 4 in Table 2, and p3» = 419/25263.
The set of all possible I X J probability tables = is the simplex in I dimensions,

(2.2) Gy =dmw; =0, Y0 YL = 1),

The observed table of proportions p, obtained by multinomial sampling from
some true table of probabilities w, must lie in the lattice subset of .}, having
coordinates which are nonnegative integer multiples of 1/n,

(2.3) W = {p = m/n: m; integer = 0, ¥, ¥, my/n = 1}.
There are

n _ [n+ IJ -1
(2.4) NG _( [ )

distinct lattice points in 7.

Figure 1 gives a schematic representation of the volume test: (1) The
independence surface %y, which is the set of probability tables « having
m; = mimy; for all { and j (the plus indicating summation over the missing
subscript), is a manifold of dimension I + J — 2 curving through the
(IJ — 1)-dimensional flat space .%5;. The hypothesis of independence, called H,
in this paper, is the hypothesis # € .%,. (2) The x?2-statistic is n times the
Mahalanobis squared distance between the observed table p and the point = on
.0 nearest p, “nearest” meaning maximizing the likelihood. The inner product
for the Mahalanobis distance is determined by the covariance matrix of the
multinomial distribution having = = «. (3) The set of tables having chi-square
statistic equal or less than the observed value of x? is an elliptical tube &(x?)
surrounding .7 ;. (4) The achieved significance level ¢(x?) for the volume test is
the ratio of the number of lattice points inside &(x?2) to the total number of
lattice points N{7. Roughly speaking, ¢(x?) is the ratio of volumes of £(x?) to
F. A careful description of the geometry will be given later. Section 2.7 of
Bishop, Fienberg and Holland (1975) provides detailed pictures of %, and %,
for the case I = J = 2.



TESTING FOR INDEPENDENCE IN A 2-WAY TABLE 849

é’%@ﬁ?ﬁ‘mk
(VA "SAYATAYA 9
vg Vo ?‘V,ﬁ’ Al N0 LJ
"AV) &'&"VA %.v
(5 Av»'" ""’W&» o
A(A 7
f’AVAVA AVA

\

Fi1G6. 1. Schematic representation of the volume test. The independence surface .7y is a curved
manifold in the simplex ;. The shaded region &(x?) represents those tables having chi-square statistic
for independence equal or smaller than the observed value of x2. The achieved significance level for the
volume test is the number of lattice points inside &(x2) divided by the total number of lattice points. An
obvious approximation for this is the ratio of volumes of &(x?) to F.

As a first approximation for (x %), we develop the following expression:

(2.5) e(x?) = (wx?/n)**(cro/TIRS' (1 + h/n))
where

(2.6) D=(I-1)(J-1)

and

T'(IJ)T((J + 1)/2)'T(I + 1)/2)’
(D/2)'TUJ + 1)/2)T(JI + 1)/2)

2.7 CLg =

(The notation x! stands for I'(x + 1) even if x is not an integer.) A small tabulation
of c;; appears in Table 3. Stirling’s formula can be used to approximate the
product in the denominator of (2.5), leading to the slightly handier expression

(25")  e(x® = (xx*/n)P"? c; sexp{H — (n + H + Y2)log(1 + H/n)}, H=1J—1.
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TABLE 3
Values of the constant ci 4 (= cy,1) appearing in (2.5).
J
I
2 3 4 5 6 7 8

2 1.044 1.197 1.435 1.767 2.214 2.809 3.596
3 1.400 1.657 1.986 2.405 2.936 3.609
4 1.850 2.054 2.284 2.548 2.851
5 2.073 2.075 2.073 2.070
6 1.853 1.641 1.448
7 1.282 0.994
8 0.625

Formula (2.5) is based on the approximation

Number of points in £(x?)

(28) (n)

= {Volume of &(x?)}{Density of lattice points in #}7}.
Since the lattice is perfectly regular, density is unambiguously defined as the
ratio of number of points in a cube to the volume of the cube as volume goes to
infinity. It is shown in Section 6 that the density is

(2.9) n*=1/V1dJ.

The following theorem is proved in Section 6:

THEOREM 1. The (IJ — 1)-dimensional volume of €(x?) equals
(2.10) (wx2/n)P e, JVIJ/T(IJ)).

Formula (2.5) is just (2.10) X (2.9)/(2.4). Because of edge effects,
described in Section 7, (2.5) differs somewhat from the obvious approximation
[volume &(x2)]/[volume .#,] for &(x?).

It turns out, for reasons that will become apparent in Section 3, that approx-
imation (2.5) is a rough but useful upper bound for ¢(x %). Applied to Table 1, for
example, it gives ¢(x?) = .37 compared to the actual value .10. The corresponding
numbers for Table 2 are 2.6 - 1077 compared to 2.1 - 10~". Tables 4 and 5 give
some additional numerical comparisons.

Why are we interested in ¢(x?), the significance level of the volume test? As a
simple alternative to the hypothesis of independence, consider Hy, the Bayesian
hypothesis that the table x of true probabilities is chosen according to a uniform
or flat Dirichlet distribution on IJ categories,

(2.11) Hy: # ~ Dpy(1),

1;; being the IJ-dimensional vector of 1’s. That is, 7 is chosen uniformly in the
plane set m; = 0, ¥, m; < 1. Assume that given w, then p is obtained by
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multinomial sampling,
(2.12) p|w ~ Multy(n, )/n,

where the notation indicates n draws from an IJ-category multinomial distribu-
tion with true probability vector =, rescaled by factor 1/n.

As Good points out in Section 6 of [1976], (2.11) and (2.12) imply that
marginally p has a uniform distribution over %, with probability mass function

say ,
(2.13) Hy: go(p) = 1/N}3)’ pE y}:})

If we now want to test the simple hypothesis H,, (2.11) or (2.13), versus the
composite hypothesis H; of independence, using x? as the test statistic, then
e(x?) is the achieved significance level of the test. The choice of x? as a test
statistic is not totally arbitrary: in the statistically simpler context of Section 3,
where we condition on the row and column margins of the observed table, the
problem becomes one of testing simple versus simple hypotheses, and x? is
equivalent to the likelihood ratio statistic, at least to a first order of approxima-
tion.

The flat prior (2.11) is a useful alternative to H;, the hypothesis of inde-
pendence. Good and Crook (1980) consider several other alternatives. Under H;,
the marginal probabilities of the true table  completely determine the interior
of x, by multiplication. Under H,, the margins of w say very little about the
interior: given the margins, the interior of w is uniformly distributed over all
possible tables consistent with those margins (see Formula (7.3)). A different
argument for the uniform appears in Section 5. It is seen to be the approximate
end point of a one-parameter exponential family starting at H;, and having x2
as sufficient statistic.

How far separated are the hypotheses H, and H,? Is it easy or difficult to
distinguish between them by means of a significance test based on x2? This
depends on n, I, and J in a way which can be understood using (2.5). For two-by-
two tables, I = J = 2, Table 4 shows that it is difficult to distinguish H, from H,

TABLE 4
I=J =2: probability that the usual chi-square test accepts the hypothesis H, of independence, even
though the table is chosen according to the uniform distribution Hy. For example, the .05 significance
level of the chi-square test is 3.841, and with sample size 640, formula (2.5") gives £(3.841) = .14 as the
probability of accepting H, if Hy is true. For n < 160 it is quite difficult to distinguish H, from H,.
A Monte Carlo check showed that these values of ¢(x?) are accurate to within .01.

Level of Usual Chi-Square Test

5 .25 1 .05 .025 .01
n=40 17 29 42 50 57 65
n=80 13 29 32 38 43 49
n=160 .10 .16 23 28 32 36
n =320 07 12 17 20 23 26

n =640 .05 .08 12 .14 .16 .19
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TABLE 5
I =J = 4: probability that the usual chi-square test accepts the hypothesis H, of independence, even
though the table is chosen according to the uniform distribution Hy. The hypotheses H, and H, are far
separated for I = J = 4, even for sample sizes as small as n = 80. Formula (2.5") gives a good qualitative
description of the situation but, as mentioned in the text, the actual values of ¢(x?) (parentheses
denote values obtained by Monte Carlo) can be substantially smaller. This effect is discussed in
Sections 3 and 8.

Level of Usual Chi-Square Test

5 .25 .1 .05 .025 .01

n =60 .007 .029 .089 .169 287 514
(.029) (.063) (.115) (.153) (.190)

n =80 .003 012 .040 072 121 218
(.003) (.010) (.032) (.058) (.070) (.109)

n =160 .000 .001 .003 .006 .011 .019
(.003) (.005) (.007) (.014)

n =320 .000 .000 .000 .000 .001 .001
n =640 .000 .000 .000 .000 .000 .000

even for sample sizes as large as n = 640. For example, the usual chi-square test,
level a = .05, accepts H, for x? < 3.841; and if H, is true this happens with
substantial probability, ¢(3.841) = .14 even for n = 640.

The situation is different for I = J = 4. Table 5 shows that in this case H; and
H, are far separated, even for sample sizes as small as n = 80. Sections 4 and 5
describe a family of alternatives which interpolate between H; and H,.

3. Conditional volume tests. The problem of testing for independence in
a two-way table becomes easier, from an inferential point of view, if we condition
our inferences on the observed margins of the table. This section develops the
conditional volume test. Proofs and details are deferred to Sections 6, 7, and 8.
We begin with a more careful description of the chi-square test.

The row and column marginal proportions for the observed table p will be
denoted

(3.1) ri=piu = X5ipi, ¢ = py = Tk pi,

and likewise

(3.2) Pi = i, Yj= W4

for the marginal probabilities of the true table x; we also write r = (ry, 1o, - - -,

rI),’ Cc= (cla Coy + vy CJ),, p= (pl’ P2y pl),y and Y= (‘YI’ Y2, ’YJ),'
Having observed p ~ Multy;(n, 7)/n, the maximum likelihood estimate of =
assuming the hypothesis of independence H;: m; = p;v; is

(33) 7?L~,-=ric,-, i=1, 2, ---,I, j=1, 2,---,J.
The chi-square test of H;, significance level «, rejects for values of
(3.4) x*=nS, (S=3L 3L (py — 7))

larger than the upper 100 - « percentile point of a standard x3-distribution,
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D = (I — 1)(J — 1). Zero values of w; correspond to zero values of p;, and
contribute nothing to S.

It is sometimes notationally convenient to think of p as a vector in
IJ-dimensional Euclidian space %" with its elements ordered lexicographically,
P = (Pu, P12, -+, P1J, P21, *5 PaJy *+*5 Pn1, - -+, Pr)’, and likewise for = and .
Let =7! be the IJ X IJ diagonal matrix with jjth diagonal element 1/7;. Then,
we see that

(35) S=(-#) 2p - =),

the squared Mahalanobis distance between p and «, with inner product matrix
371, The advantage of considering S, rather than the equivalent statistic x2, is
that S has a clear geometric interpretation, not depending upon the sample
size n.

The table 7 has the same margins r and ¢ as the observed table p. This means
that p — = has all margins zero. In other words p — =, thought of as an
IJ-dimensional vector, lies in a certain D-dimensional linear subspace of #%,
say . described explicitly in Section 6. The orientation of . in %% is fixed, and
does not depend on p or 7 in any way.

Define

(3.6) 7(r, ¢) = Jlr: T =Ty Ty = ¢, 75 2 0, i’ 3’ ’ I}’

the set of probability tables having the same margins as the observed table. Also
let 7™ (r, c¢) be the lattice of vectors in #'(r, ¢) having coordinates which are
nonnegative integer multiples of 1/n. If #(x, ¢) is the parallel translate of the
D-dimensional space . going through the point #, then, using definitions (2.2)
and (2.3), 7 (r, ¢) equals %, N Z(r, ¢), and 7 ™(r, ¢) = ¥ N Z(x, c).

The process of slicing .%7; with Z(r, ¢) is indicated in Figure 1. Figure 2 shows
the slice 7(r, ¢) and also 7" ™(r, ¢). (In fact, Figure 2 depicts the case I = 3,
J =2 n=60r = (2 .3, .5, and ¢ = (4, .6)’, with observed table
p=1(1,.1,.2,.1,.1, 4)".) The slice intersects just one point of the independence
surface % 7, namely 7.

The big advantage of conditioning on r and ¢ is that the hypothesis of
independence becomes simple: under H;, points p in 7" ™(r, ¢) have what Good
calls the Fisher-Yates distribution,

(3.7) Hi: gi(p|r, ¢) = (an> / (r’;x:c) p E 7 "x, o).

Here

(o) = T T o) = T
np IT= [ (npy)!” \nr L (nr)t’

etc. In the case I = J = 2, (3.7) is the hypergeometric distribution.
According to (3.4), (3.5), the set of points 7 in Z(r, ¢) having Mahalanobis
squared distance from = no greater than the observed value S is a D-dimensional
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F1G. 2. The “slice” 7 (r, ¢) is the set of all tables = having the same margins r and ¢ as the observed
table. In terms of Figure 1 it is obtained by slicing Ay through the point = with a D-dimensional
hyperplane. The ellipsoid (S | r, ¢) consists of those vectors in the same hyperplane having Mahalanobis
squared distance from w no greater than the observed value S. The achieved significance level for the
conditional volume test is the number of lattice points inside &(S | r, ¢) divided by the number of lattice
points in 7 (r, ¢). An obvious aproximation for this is the ratio of volumes of (S | r, ¢) to 7 (r, c).

ellipsoid,
(3.8) ZS|r,¢) =f{m: (xr — )2 (x —7) < S, * € Z(, e)l.

The hypothesis of uniformity Hy, (2.13), is also uniform when conditioned on
(r,e),
Ho: go(p|r, c) =1/N™(r, ¢),

(3.9)
(N™(r, ¢) = number of lattice points in " ™(r, ¢).)

By definition, the achieved significance level of the conditional volume test is
the ratio

number of points of 7" *(r, ¢) inside £(S|r, ¢)
N("’(r, c)

This is just the significance level achieved by p assuming distribution (3.9),
where significance is defined by smallness of the statistic S. The choice of S to
measure significance is not arbitrary. To a first approximation, the likelihood
ratio statistic go(p | r, ¢)/g1(P | 1, ¢) is a monotonic function of S, see Section 5.

Notice that r, ¢, and S completely determine &(S | r, ¢) and 7 (r, ¢), with no
dependence on the sample size n. Essentially «(S | r, ¢) does not depend on n,
except for minor effects relating to the granularity of the lattice points. (Section
8 briefly discusses the granularity question.) Large values of n do not necessarily
produce extremely small significance levels for the volume test, as is usually the
case with the standard chi-square test.

3.10) &(S|r,e) =
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The numerator of (3.10) can be approximated by the volume-times-density
argument (2.8). The following two theorems are proved in Section 6:

THEOREM 2. The D-dimensional volume of £(S | r, ¢) equals

(8.11) (w8S)P%¢; 4(x, c)
where
(3.12) - c(r, €) = (1/(D/2)VU [Ty r)YV2(J 1Ly ¢)¥172

(Notice that 7S = wx2/n, so (3.11) is closely related to (2.10).)

THEOREM 3. The density of lattice points in 7" ™(r, ¢) is
(3.13) nP/[I-D/2JU-1/2

points per unit of D-dimensional volume.

REMARK. In Diaconis and Efron (1983), Theorem 3 is used to calculate the
generalized variance of the Fisher-Yates distribution (3.7).

Computing the denominator of (3.10) is a well-known unsolved combinatorial
problem. Good (1976), (1983) and Good and Crook (1977) give a nice review of
the available results. We will approximate N (r, ¢) by the volume-times-density
argument, using (3.13) and the following approximation for the volume of
7 (r, ¢),

IJ\? 1V-V/2Ju-021( Jp. i .
) ki) ([1Ly 77T )%,

(3.14) V= (1 + =

2n I'(J)'T(ks)?
where
L s (1w -1
3.15) r=(1—w) 7 +uwr, ¢c=01—w) 7 + we (w 1+IJ/2n)
and
(3.16) ki=(J + 1)/ > — 1/J.

The notation 1; indicates the vector of ones in I dimensions. (Formula (3.14)
includes a correction for edge effects which deliberately overestimates the volume
of 7 (r, ¢), for reasons discussed in Section 7.)

Section 7 discusses approximation (3.14) and also an exact formula for the
volume. The approximation is quite satisfactory for the cases at hand. Table 2,
for instance, has V = 5.9 . 1077 while the actual volume, obtained by laborious
Monte Carlo calculation, is 5.7 (= .2) - 107'".

The volume-times-density approximation here, using 5.7 + 2.10™'" for volume,
and (3.13) with I = 5, J = 4, D = 12, n = 25263 for density gives 2.14 (* .1) -
103 for the number of arrays with the same margins as Table 2. Formula (B2.24)
of Good (1976) gives 2.63 - 10 for this number. Good (1976, 6.6) also offers an
improved, though somewhat ad hoc, approximation 1.91 - 104, In applying (3.14),
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the choice of which factor is called “row” rather than “column” can be inter-
changed, giving a different numerical approximation. If one of the margins
includes very small proportions, for example “Number of children” in Table 2,
then this factor should be chosen to be the rows.

Assuming that V is approximating the true volume correctly, (3.14) X (3.13)
gives an excellent approximation to N™(r, ¢). For instance with I = J = 3,
n=30,and r = ¢ = (%, ¥, 14)’, the approximation is N™(r, ¢) = 2080 using
(3.14) X (3.13), and 2186 using true volume X (3.13), compared to the actual
value 2211.

As a first approximation to the significance level of the conditional volume
test, we have

. (3.11) x (3.13) _ D/2 crq(r, ¢)
=61 x 313 _ ™) v

The density (3.13) has cancelled out, so, as in the unconditional case, the
approximate significance level is just the ratio of volumes of the ellipsoid to the
slice, as shown in Figure 2.

Formula (3.13) looks unnecessary, but it turns out to be a crucial fact in
proving (3.11).

Formula (3.17), like (2.5), is usually an overestimate of ¢(S | r, ¢). The reason
is that (3.11) applies to the entire D-dimensional volume of &(S | r, ¢), including
the part of &(S|r, ¢) protruding outside of 7°(r, ¢). For Table 1, (3.17) gave
e(S|r, ¢) = .41 compared to an actual value of .09, computed by Monte Carlo.
The corresponding numbers for Table 2 were (S | r, ¢) = 4.3 - 10~° compared
to an actual value of 1.2 . 107°. Corrections for “protrusion” are discussed in
Section 8.

Notice that for Table 2, (3.17) gives a quite different answer from (2.5),
eS|r, ¢) = 4.3 - 10~ compared to e(x?) = 2.6 - 107". The reason for this
difference has to do with conditional versus unconditioned inference. The hy-
pothesis of uniformity H, implies that the margins r and ¢ will be roughly
uniform, r equalling about (1/1, 1/1, ---, 1/I) and ¢ equalling about (1/J, - - -,
1/J). In Table 2 the r margin is markedly nonuniform. The unconditional volume
test interprets this as evidence in favor of H;. By conditioning on (r, ¢), the
conditional volume test guarantees that the margins furnish no evidence for
either Hy or H;. Good and Crook (1980) discuss the question of marginal
information in 2 X 2 tables. They do not observe a large difference between
conditional and unconditional inferences. This is because they use a variant of
the uniform prior (2.11) which eliminates most of the supposed information in
the margins.

(3.17) eS|r, e)

Partial Conditioning. There is an intermediate position between using the
unconditional volume test of Section 2 and the fully conditional test we have
been discussing here. Conditioning on just one set of margins, say r, instead of
both r and ¢, leads to a partially conditioned achieved significance level ¢(S | r)
for the volume test. Without going into details, an approximate formula for
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&(S | r), analogous to (3.17), is

T(J)'T(UI + 1)/2)/([Ty r)@-072
(D/2)'T(J(I + 1)/2))(1 + IJ/2n)"Y([IL, 7PV’

with 7; as defined in (3.15).

Applied to Table 2, formula (3.18) gives (S |r) = 4.4 - 10™° and &(S|¢) =
2.6 - 107", The former nearly equals ¢(S | r, ¢) = 4.3 - 107%, from (3.17), while the
latter equals the unconditioned value obtained from (2.5). This difference has to
do with the evidence, or lack of evidence, in the margins of the table, as discussed
above.

(3.18) &(S|r) = (xS)P”?

4. Intermediate models. The independence model H; predicts small ob-
served values for the statistic S = x2/n. The uniform model H, was introduced
in order to provide a reference distribution for larger observed values of S. This
strategy worked reasonably well for Table 1, but for Table 2 the observed S was
much too small to have come from Hy, as well as much too large to have come
from H,. This section introduces a class of intermediate models, which allows us
to interpret intermediate valus of S. A more careful development, based on
exponential family theory, appears in Section 5.

What does “interpret intermediate values of S” mean? We have in mind an
analogy with the usual random effects model for a one-way layout. In the simplest
form of the one-way layout, the statistician observes a normally distributed
random vector

(4.1) x ~ Np(B, I/n)
with 8 unknown, and wishes to test the hypothesis

The covariance matrix in (4.1) is expressed as I/n in accordance with the usual
formulation where x is the average of n independent vectors y;, ys, ---,

Yn ~ N D(ﬂ ’ I)-
The random effects model adds the partial Bayesian assumption
(4.3) B ~ Np(0, o3l

to (4.1), partial referring to the unknown parameter ¢3, which is usually estimated
non-Bayesianly. This results in the marginal distribution for x

(4.4) x ~ Np(0, (¢ + 1/n)I).
The null hypothesis (4.2) is equivalent to
(4.5) H: 65 = 0.

The advantage of considering (4.4), (4.5) rather than (4.1), (4.2) is that for the
former the alternative to H; is a simple one-parameter family of distributions,
while for the latter it is a D-parameter family. Analysis of (4.4), (4.5) is based on
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the sufficient statistic
(4.6) S=|x|*~ (¢} + 1/n)x}.

The observed value of S is used to test H; and, if H; is rejected, to form a
confidence interval for o3,

The random effects model can be restated in a way which will be useful when
we pursue the analogy for two-way tables. Define

“n 6 =1/(1 + nop)
so (4.6) becomes
(4.8) S ~ x3/né.

Under H; we have 63 =0, 60 =1, and S ~ x3/n. If 03 > 0 then 6 < 1, and
S ~ x%/nf tends to be bigger than under H,. If we define

(4.9) v=né,

called the effective sample size, then the random effects model can be thought of
as the one-parameter family of distributions for S, S ~ x%/v, 0 <» < n. Definitions
(4.7), (4.9) can be expressed as

(4.10) o5 =1/v — 1/n,

leading directly to x ~ Np(0, I/v) in (4.4) and S ~ x3%/v in (4.6).

Values of S which are too large under H; are easy to interpret within the
random effects model. For example, with D = 10 and n = 100, observing S = .60
is much too large under H;, but quite plausible for » = 16.67, since then S ~
x2o/v = .60(x2,/10). (Notice that the MLE for v is # = D/S, so in this case » =
16.67.) The central 90% interval for a x I, variate, [3.94, 18.31], gives central 90%
confidence interval [6.57, 30.52], for », based on observing S = x}/vr = .60. A
central rather than one-sided interval for » is appropriate here because both
upper and lower limits for » are important, in (4.10) for example.

We return to the context of two-way tables, considered conditionally on the
margins (r, ¢) as in Section 3. Let S have its original definition (3.4), then nS
has a limiting x5 distribution under H,, say

(4.11) H;: S| (r, ¢c) — xp/n.

As a first step toward intermediate models for the two-way table situation, we
assume that to every value of 6, 0 < 6 < 1, there corresponds an hypothesis Hj
such that n8S has a limiting x 3 distribution under H,,

(4.12) Hy: S| (r, ¢) = xp/nb, 0<0<1.

These distributions are intermediate between H; and H,.

If we ignore the fact that (4.12) is an approximation, we can formally apply
the random effects model (4.8) to the analysis of two-way tables. Then » = nf
has MLE 5 = D/S and 1 — 2« central confidence interval [x}¥/S, x¥"9/8],
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where x3“ is the 100 - o percentile point for a standard x} distribution. The
more careful approximations of Section 5 show that effective sample size is an
apt name for v = nf in the two-way table context.

Consider Table 1. The MLE for v is # = 38.5, with central 90% confidence
interval

(4.13) v € [14.2, 72.4].

The interpretation of these results can be pictured in terms of Figure 2: under
the independence hypothesis H;, the observed distance of p from # for Table 1
is most typical of sample sizes around 38; the observed distance would not be
unreasonable for sample sizes in range (4.13).

We can get a more familiar interpretation of these results by referring back to
the normal situation (4.1)-(4.10). For values of w near #, the multinomial
distribution p ~ Mult;;(n, 7)/n, conditioned on (r, ¢), has an approximate normal
distribution

(4.14) p |, (r, ¢) ~ Np(x, 2/n),

where (1/n)2 is the covariance matrix of the Fisher-Yates distribution (3.7).
Here “Np” indicates that the distribution is confined to the D-dimensional space
Z(r, ¢) containing 7°(r, ¢). A rough analogy of (4.3) for two-way tables is the
partial Bayesian model

(4.15) x| (r, €) ~ Np(#, 032).
Notice that (4.14), (4.15) combine with (4.10) to give
(4.16) p|(r, ¢) ~ Np(#, 2/v).

This is just the normal approximation for the Fisher-Yates distribution (3.7),
with sample size reduced from n to ».

The confidence interval (4.13) for v transforms into a confidence interval for
o3 via relationship (4.10),

(4.17) o2 € [.0121, .0686],

and likewise for the MLE, 65 = .0243. How big are these random effects? A
measure comparing the amount of random effects variation in (4.14), 052, relative
to the size of the slice 7°(r, ¢), is

(418) Orel = aﬁ(l 2 | 1/2/V)1/D'

This is just the average standard deviation of (4.13) along a single dimension of
the D-dimensional space -#(r, ¢), compared to the side of a D-cube having the
same volume as 7 (r, ¢).

It is shown in Section 6 that

(4.19) |21 = 177 (T ) (T )
This and (3.14) give (| 2|Y2/V)"? = 1.64 for Table 1. The previous results
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translate into ¢, = .26, with 90% confidence interval
(4.20) o € [.18, .43].

We see that for Table 1, the random effects must be quite substantial.

The same analysis applied to Table 2 shows that although the random effects
cannot be zero, or else the usual chi-square test would not have rejected inde-
pendence, they are in fact very small. The MLE of the effective sample size is
v = 533, with central 90% confidence interval

(4.21) v € [232, 935].
This gives a;, = .0051, confidence interval
(4.22) 0ol € [.003, .012].

The maximum likelihood estimates and confidence intervals for », and for o,
depend on the observed table p only through the statistic S. (Even the sample
size n is not used.) The inferences they provide relate only to a corresponding
feature of the true table =, its gross overall distance from the independence
surface. Of course, a more incisive analysis of how = deviates from independence
can be based on other features of p. This is the point of log-linear modelling,
correspondence analysis, and other structural models. The methods suggested in
this paper are well-suited to quick preliminary analyses of two-way tables, but
are not intended to replace a careful structural investigation.

5. Random effects for exponential families. Most of the results of the
last section, in particular the components of variance calculations beginning at
(4.14), are familiar ideas in the theory of overdispersion of binomial proportions.
There is an immense literature on overdispersion, going back a century to Lexis.
A good review appears in Chapter 3 of Heyde and Seneta (1977).

This section is devoted to a more exact analogue of the normal-theory random
effects model (4.1)-(4.10), applying to general multiparameter exponential fam-
ilies. Our goal is to justify approximation (4.12), which was used to interpret
intermediate values of S for two-way tables. The idea of effective sample size
turns out to play a basic role in this development.

Suppose then that x is the observed sufficient vector for a D-parameter
exponential family &, and that g8 is the expected value of x. In our previous
context, x = p and 8 = w. The vector 8 indexes the family £, and we can write
the density function for a typical member of £ as

(5.1) g5 (x) = exp(nfa’x — Y(B)],

where a = «a(f) is the natural (or canonical) parameter vector and ¢¥(8) is a
normalizing constant. The constant n is the sample size, assuming as usual that
X is actually the average of n original observed vectors yi, y2, - - -, ¥n ~iid £5°-
The sufficient vector x = Y-, y./n takes its values in some sample space 27™.
Its expectation vector 8 takes values in a space .Z, both % and 27 being subsets
of #°. In the context of Section 3, where we condition on (r, ¢), we have
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% =7(r, c) and ™ = 7"(r, ¢). We will assume 2™ C & to simplify the
discussion.

Now suppose that there is some member of .%, say @;, of particular interest.
We wish to test the hypothesis

(5.2) Hi: B =8,

versus the general alternative 8 € %. In Section 3, 8; = #. A well-known result
of Hoeffding (1965) shows that the maximum likelihood ratio test statistic is

(5.3) supsex85"(x) /857 (x) = g0 (x)/gf) (x) = exp(nT(x, £1)/2),
where T is twice the Kullback-Leibler information for one original observation,
(5.4) T(Bz, B1) = 2Eg,log g5 (y)/g5)(y).

For the normal model (4.1), (4.2), T(x, 0) = || x ||% Efron (1978) gives a review
of exponential family theory, including Hoeffding’s result and the technical
details omitted from our brief discussion here.

By Wilks’ theorem, 2 log[ g% (x)/g§”(x)] will be asymptotically distributed as
x3 under H;, so we have

(5.5) Hi: nT(x, 8,) — x5.

We can test H; at approximate level a by rejecting for nT(x, 8;) > x %™, Often,
as we have seen, this test will reject at extremely small « levels, in which case it
is helpful to have an interpretive theory like the normal random effects model.
The crucial step in that theory is (4.4), which replaces the full D-parameter
family (4.1) with a one-parameter exponential family of alternatives, having
T(x, B:) as sufficient statistic. This same program will now be carried out for
general exponential families.

Let H, be the hypothesis that x is distributed according to the following
density fy(x),

(5.6) H,: fo(x) = g (x)exp[n(l — 0)T(x, £1)/2]¢(0), 0<6 <1.

Here ¢(0) is a normalizing constant. The one-parameter exponential family
F = {fs, 0 < 0 < 1} has sufficient statistic T(x, 8;). As shown at (5.13), (5.14)
below, ¢(#) can be approximated by

(5.7) o(0) = gP72,
Notice that for § = 1, fi(x) = ("’(x) so H, can also be
(5.8) H:6=1.

There is another way to express % Suppose that nf = v is an integer. By
Hoeffding’s result (5.3), g§”(x)exp[nT(x, 8:)/2] = g™ (x), so

(5.9) fo(x) = g (x)exp[-ndT(x, B:)/2]$(0).
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Multiplying and dividing (5.9) by g (x)/g%"(x), and applying (5.3) again, gives
(5.10) fo(x) = gf”(x)(g(x)/8¢"(x))¢(0).

The structure of # can be understood in terms of (5.10), which we now state
more carefully. The densities (5.1) produce the probability distributions of £ by
integration with respect to some common carrier measure on 2™, say G, and
fo(x) is also a density with respect to G™. Let H, be the hypothesis that x is
generated from fy. Then (5.10) says that the probability content of an infinitesimal
region dx around X, under H,, is

(")(X)G(")(dx)

e 0

(5.11) fo(x)G™(dx) = ("a)(x)G‘"")(d )<

For large values of n, the central limit theorem says that the distribution of x
under g§” will approach a multivariate normal distribution, say

(5.12) (") : Vn(x — 8) — Np(0, Zg).
Applying the central limit theorem locally, as in Stone (1965), with 8 = x, gives
(5.13) lim,, (g% (x)G™(dx) /g8 (x)G " (dx)) = 1/67/%

(If G™ is discrete, then dx is not allowed to become small too quickly in (5.13);
taking dx a cube of side O(n~?*) is allowable.) The convergence in (5.13) tends
to be rapid, because we are applying the CLT at the center of the limiting
distribution, 8 = x. Edgeworth calculations show that the bracketed term in
(5.13) equals 721 + 0,(1/n)].

If the bracketed term in (5.11) is approximated by §7°/2, then

(5.14) 1= Lw fol(x)G™(dx) = 67""¢(9) f g5, (X)G"(dx) = 07""¢(6),

and we see that ¢(§) = 0”7, as stated in (5.7). More importantly, (5.11) then
gives f,(x)G™(dx) = (""’(dx)G‘””’(dx) verifying that f, is approximately the same
as g;"") the hypothes1s H, amounts to setting 8 = 8;, but reducing the sample
size from n to » = nf. This interpretation of .# is exactly correct for the normal
random effects model, and gives excellent approximations in general exponential
families.

As a simple example consider the case where x is real, D = 1, and & is the
normalized binomial family x ~ Bi(n, 8)/n; that is, § is a probability, and x is an
observed proportion, with expectation 8. Take 8; = .5 and n = 20. In this case
T(x, 81) = 2[x log(x/.5) + (1 — x)log((1 — x)/.5)]. For 8 = .5, expression (5.6), with

$(0) approximated by 8'/2, gives the following values for f,(x):
x: 0 Yo %o 320 Y20 5490 %420 20 8420 Y0 1020
fo: .001 .002 .005 .012 .022 .039 .060 .083 .014 .119 .125
(5.15) Bi(10, .5)/10: .001 .010 044 117 .205 .246

(f1): (.000) (.001) (.005) (.015) (.037) (.074) (.120) (.160) (.176)

with fo(1V20) = f,(%0), etc. Notice that f, is more dispersed about the central value
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x = %y than is f; ~ Bi(20, .5)/20. Making allowance for the change in support,
fs closely matches the distribution Bi(10, .5)/10, in accord with the effective
sample size v = 10. The sum Y, fy(x) = 1.015 from (5.15) shows the accuracy of
the approximation ¢(8) = /2,

The family £ of particular interest in this paper is that of Section 3,
g.(p|r, ¢), the conditional distribution of p ~ Mult;;(n, 7)/n given (r, c). For
this example we will work backwards, from the reduced sample size interpretation
of & to the form (5.6). With the sample size reduced from n to né, (3.7) becomes

(5.16) Hy: f(p|r, c) = 0D<<n’;‘;) / ( err)( ;;‘L)) (p € 79, ¢)).

The factor 2 would not appear in (5.16) if we restricted p to be in 7 " (r, c),
since then we would have only changed the sample size in (3.7) from n to v = n#f.
However the density of lattice points in "™(r, c) is 72 times the density in
7™ (¢, ¢), formula (3.13), so the factor 7 is necessary to make (5.16) sum,
approximately, to one.

Stirling’s approximation x! = v2rxx**, applied to the formula for f(p | r, c)
in (5.16), gives, without any further approximation,

(6.17) Hy: fy(p| 1, ¢) = gi(p | r, c)exp[n(1l — 8)T(p, =)/2]0"2,
where
(5.18) T(p, 7) = 2 Y1 X1 pylog(py/wy).

This is form (5.6), (5.7) for ., except for one additional approximation: (5.18) is
twice the Kullback-Leibler distance for the unconditional multinomial family,
rather than for the multinomial family conditioned on (r, ¢). Starting from (5.16),
which doesn’t involve these last two approximations, standard asymptotic cal-
culations give (4.12), the key result in Section 4.

Going back to general exponential families, consider the approximation to
(5.6) obtained using (5.7),

(5.19) fo(x) = g§P(x)exp[n(1 — 0)T(x, 81)/2]6°".
Differentiation w.r.t. § gives the approximate maximum likelihood estimates
(5.20) 6 = D/nT, »=nd = D/T.

This is an improved version of the formula 7 = D/S used in Section 4. A standard
Taylor series expansion shows that

(5.21) T(x, 8) = S(x, 1) + O x = BlI°) (S = (x = B1)'Z3(x — B1)

so S approximates T for x near ;. In the context of Section 3, =5' = 31, so for
the two-way table situation S has the same meaning in (5.21) as in (3.5).

In Table 2 T = .0211 compared to S = .0225, so (5.20) gives » = 569, compared
to the estimate D/S = 533 of Section 4. In Table 1, T = .2470 compared to
S = .2336. Again D/T gives about the same estimate of v as D/S.

Applied in the context of Section 3, (5.19) also leads to a somewhat more exact
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confidence interval for »,

(5.22) v E [X%(a)/T’ X2/

instead of the interval [x3%/S, x3"~*/S) used in Section 4. (See formula (5.24).)
However the numerical results are usually not much different, since S closely
approximates T.

The interpretation of H, as being asymptotically equivalent to g,
(5.11)-(5.14), combines with (5.12) to give an important distributional result:
with 0 fixed, x has the limiting normal distribution, as n — o,

(5.23) Hy: Yn(x = 1) — Np(0, Z4,/0).

In other words, asymptotically 6 acts as a simple scaling factor for the distribution
of x. From (5.21) we then see that T and S are similarly scaled,

(5.24) Hy: nT(x, 81) — X%/ﬁ, nS(x, 81) — X%)/a,

as in (4.12).

We could have gotten the asymptotic scaling property (5.23) for other defini-
tions of % for example, replacing T by S in (5.6). However, definition (5.6) has
another property which helps justify calling . a random effects model for &; the
maximum likelihood ratio test statistic for H; versus the full family, considered
as a function of x, has the same contours of equal value in either & or &, namely
the contours of equal value of T'(x, 8;). In this sense, two values of x which
provide equal evidence against H, in the family £, also provide equal evidence
against H; in the family & )

It is easy to verify this property. First of all notice that §, the MLE of 6
obtained from (5.6), depends on x only through the statistic T(x, 8;), say
6=46( T), since T(x, B,) is sufficient for 6 in (5.6). The maximum likelihood ratio
test statistic in & is

(5.25) SUpseo,1 fo(X)/f1(x) = exp[n(l — 6)T(x, 8:)/2]¢(H).
Comparing (5.25) with (5.3) gives
(5.26) supse o, fo(X)/fi(x) = [supsesgs”(x)/g(x) D p(O(T)),

and shows that the maximum likelihood ratio statistic is a function only of T, in
both . and &

How does the uniform distribution go(p | r, ¢) considered in Section 3 relate
to the family & ? For values of p near 7, and large values of n, it turns out that
Zo(p| 1, ¢) is the limit as # — 0 of fy(p | r, ¢). These results are easy to verify from
(5.9), (5.12), which give

limg_o(fo(x)G™(dx)/$(6) = g5"(x)G™ (dx)
= (n/2m)P(dx/| 2 | ).

For values of x near 8; (e.g., p near =), we see that lim,_f,(x) is asymptotically
constant in x.

(5.27)
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6. Volume and density calculations. We will now prove Theorems 1, 2,
and 3 of Sections 2 and 3. These give the volume of £(x?) in Figure 1 and
&(S|r, ¢) in Figure 2, and the density of lattice points in »#'? and in 7" ™(r, ¢c).

First we need a precise description of .% the D-dimensional linear subspace of
those tables, like p — 7, having all margins 0. We use the lexicographic notation
of Section 3, as in (3.5): Let A;and Aybe I X (I — 1) and J X (J — 1) matrices
such that

6.1 - (1,/¥I, A)) and (1,/vJ, A))

are orthogonal matrices, with dimensions I X I and J X J, respectively. Let T';
be the IJ X (J — 1) matrix

(6.2) I; = (1/VD)(AS, Aj, -+, AD),
and let I'; be the IJ X (I — 1) matrix
(6.3) T = (1/VJ) (N1, A515, -+, Af1)),
where A;, - - -, A\; are the rows of A;. Finally, let I'; be the IJ X (I + J — 1) matrix
14,/V1J
(6.4) I| = I; .
I

LEMMA 1. The matrix T{ has orthonormal rows, and %, the space of tables
having all margins 0, is given by

(6.5) & ={v:T{v = 0}.
PROOF. Orthonormality follows directly from the orthogonality of the ma-

trices (6.1). For any vector v in %%, 1’/vIJ - v = v../VIJ; furthermore letting
p = v/v.4, we have, using notation (3.1),

(6.6) @ =T/p=Ajr/vJ and q=Tjp = Aje/VL
Therefore if p and = are probability tables having the same margins, then

I'{(p — w) = 0, and conversely. 00

We can complete the (I + J — 1) X IJ orthonormal matrix I'{ with a D X IJ
orthonormal matrix T, such that T' = (I, Ty) is IJ X IJ orthogonal. The
orthogonal transformation

_{(q) _ I'{
o= (&) (5

rotates %, in such a way that the (I + J — 1)-dimensional vector q; contains all
the marginal information about the table p (including the fact that p., = 1).
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This transformation is often used when I = J = 2, where it has the form

1 1 1 1
11 1 -1 1

(6.8) 4=5\1 -1 1 -1 ®
1 -1 -1 1

q. in this case being just the last coordinate of q.

For a probability table p, the first I — 1 coordinates of r, say ¥, determine the
last coordinate r; = 1 — Y21 r;, and likewise € = (cy, - - -, cs—1)’ determines c,.
Formula (6.6) defines a linear mapping from (¥, €) to (q;, q.), and we need to
know its Jacobian.

LEMMA 2. The linear mapping ¥ — q; has Jacobian dit/dq; = J2/I, and
likewise dé/dqy = IY"V72//J, so that (¥, &) — (i, as) has Jacobian

(6.9) d(E, &)/d(as, @) = [V-2/2J0-212

PrOOF. Let q; = «/qu = Ajr. Notice that as F ranges over the space %=
{ri, rey -+, r1 = 0, 35 r; < 1}, @ ranges over A}.%, a rotated and translated
version of .%. However .#; has (I — 1)-dimensional volume 1/T'(I), while .%4; and
also A7.% have volume \/i/ I'(I). (See Hotelling, 1961, formula 7.6.) Therefore
dd,/di = VI, implying dq;/d¥ = VI/JY V2.0

The density results (2.9) and Theorem 3 are obtained by Jacobian calculations.
--Consider for example the vector p = (pi1, ---, prs-1)’, which is the table of
observed proportions p without its last coordinate:

p € 7)) = (b = m/n: myinteger = 0, ¥ ¥ a0 my/n < 1}.

Notice that (" is a lattice of points in (IJ — 1)-dimensional space, with the
points set in a regular cubic array having density n”’~!. The mapping p — p
takes %4, into %, and .#\? into »#%. The Jacobian dp/dp = ‘/jc‘} used in the
proof of Lemma 2, which is the factor by which volumes multiply in mapping p
to p, shows that . must have lattice density n*’~'/vIJ, formula (2.9).

We can now prove Theorem 3. The vector (¥, ¢) takes its values in a lattice of
points in (I + J — 2)-dimensional space, with the points set in a regular cubic
array of density n/*/~2. By Lemma 2, the lattice points for (q;, q;) have density
dens(q;, q)) = nW/=2JY-2/2JU=2/2 The (IJ — 1)-dimensional vector (q;, qJ, q2),
with q, as in (6.7), has dens(q;, qs, @) = n”"1/VIJ, as in (2.9), since q is
an orthogonal rotation of p. However, if we let dens(q:) represent the density
of lattice points q. with (q;, qs) held fixed, then dens(q;, qJ, @) =
dens(q;, qs)dens(qs) by the orthogonality of the coordinates (q;, qJ) to g2, so

dens(qs, s, @2) _ n”

dens(q;, q;)  IY~V2gu-v/z

(6.10) dens(q,) =

verifying Theorem 3.0
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Theorem 2 can be verified by straightforward matrix manipulations, but it is
much easier to use a trick based on the multivariate normal distribution: if
x ~ Np(0, 2) then

(6.11) volume{x’Z7'x < x% = (x¥/2)”%/[(D/2)!g*(0)],

where g*(0) = (2r)™P/2| 2|72 is the density of x at 0. (Substituting this
last expression for g*(0) shows that (6.11) is just the usual formula
[#22/(D/2)!]| Z | Y?xP for the volume of an ellipsoid.) Formula (6.1) holds even
in singular situations, where x has more than D coordinates but ¥ is of rank D,
provided that g*(-) is interpreted as the density of x in the D-dimensional space
supporting the distribution of x. “Volume” then refers to D-dimensional volume
in the support space, and £™* can be any pseudo-inverse of ¥.

We can use (6.11) to evaluate the volume of &(S|r, ¢), by letting x =
Vn(p — #). Definition (3.8) of £(S | r, ¢) does not involve n, so we can take n to
be as large as we wish. Asymptotically, p has a conditional normal distribution
in 7 (r, ¢) under Hy, as in (4.15), vn(p — 7) | (r, ¢) — Np(0, =). The pseudo-
inverse of 2 is the matrix 27! in (3.5), see Bishop, Fienberg and Holland (1975),
Section 14.9.2. It remains only to compute the quantity g*(0).

Consider the Fisher-Yates density (3.7), with (r, ¢) fixed, p = 7, and n tending
toward infinity. Stirling’s formula gives

(6.12)  lim,_.n??g (x| r, ¢) = (1/20)P2([TL: r)? M(TILy )72

The limiting density at the center of the Fisher-Yates distribution is gi(7 | r, ¢)
times the lattice density (6.10),

(6.13) £%(0) = (n/2m)P[(I T r:)?~(J Tlc) 11>
Substituting g*(0) into (6.11) gives (3.11).0

Theorem 1 is an easy consequence of Theorem 2. We make the orthogonal
transformation (6.7), and notice that for q; fixed, equivalently for (q;, q.)
fixed, the corresponding slice of &(x?) is the ellipsoid £(S | r, ¢), with volume
(3.11). The change of coordinates (q;, q;) — (¥, €) allows us to evaluate
[ &(S|r, ¢) d(as, q.) using a standard Dirichlet integral and Jacobian (6.9). This
gives (2.10). This proof uses the fact that the ellipsoids £(S | r, ¢) are in parallel
subspaces for all (r, ¢), so that the integration is easy to perform.

7. The volume of the slice 7 (r, ¢). The volume of the slice 7 (r, ¢)
played an important role in the conditional volume test of Section 3. Here,
we will motivate approximation (3.14) and give an exact formula for the case
min(l, J) < 3.

LEMMA 3. The D-dimensional volume of 7 (r, ¢) is
I(J—l)/ZJ(I—l)/2
TJ)

where g(€ | r) is the density function evaluated at ¢ = (¢,, - - -, ¢;—1) of @ mixture,

(1.1 V(r, e) = (TTi= )’ 'g(@ | ),
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according to weights r;, of I independent Dirichlet vectors,
(7.2) E{=1 riDJ(]-’ 1’ ) 1)'

PROOF. Suppose that the vector p € %, is drawn according to the flat
Dirichlet distribution D;;(1,), which is to say that the first IJ — 1 coordinates
of p have the distribution described immediately after (2.11). The orthogonal
rotation (6.7) makes q uniformly distributed over a rotated simplex. Using the
notation of Section 6, we see that q, given (q;, qs) has a uniform distribution
over a rotated version of 7'(r, ¢), and therefore the conditioned density of q.
must be

(7.3) g(a:| (ar, @) =1/V(r, c).

The density of the uniformly distributed vector (q;, s, q2) is I'(IJ)/VIJ, one
over the volume of %, so
g a,q) _IUJ) 1

glas, q) VIJ &, )’

(7.4)

Ve g — 8 @ @) =

According to Lemma 2, g(q;, qs) = IYV™272JU22g%, §). Also g(¥, ¢) =
g(¥)g€| %) = [TUIJ)/T(J) I r:)’'g(€| ¥), the last equality following from the
fact that p ~ Dyy(1) implies r ~ Dy(J, J, ---, J). Combining this with (7.4)
gives (7.1). The interpretation (7.2) of g(€|¥) is a well-known property of the
distribution p ~ D;;(1;,), see Wilks (1962) result 7.7.5.0

The density g(é| ¥) is difficult to calculate exactly. It seems reasonable to
approximate g(€ | ¥) with a symmetric Dirichlet distribution since unconditionally
c~Dy(I1I ---,I). The approximation ¢ |r ~ Dy(k,, - - -, k) where

(7.5) k= +1)/J|r|?-1/d,

has the same mean vector and covariance matrix as the mixture ¥ r;D,(1, - - -,
1) in (7.2). Substituting in (7.1) the density of D,(k,, - - -, k,) at & for g(¢ | ¥) gives
the approximation

I(J—l)/2 JU_WZI‘(Jk,)
I'(J)'T (k)

Some numerical evidence on the accuracy of (7.6) appears in Table 6. The
worst results are for the 2 X 2 case, where we do not need to use an approximation
since there is a simple exact formula for (7.1), see (7.8). Overall, the accuracy is
quite satisfactory. (Note: Good’s, 1976, (6.5) approximation is closely related to
our (7.6). The difference amounts to using the unconditional distribution of ¢
rather than the moment-matching distribution D,(k,, ---, k,) to approximate
g@E|r)in (7.1).)

Approximation (3.14) incorporates one further improvement on (7.6) having
to do with edge effects occurring at the boundaries of 7'r, ¢). As a simple example
of edge effects, consider a line segment of length L = NA having N + 1 points

(7.6) V(r, ¢c) = (IT=1 7 M (IT )™



TESTING FOR INDEPENDENCE IN A 2-WAY TABLE 869

TABLE 6
Accuracy of approximation (7.6) for V(r, ¢).

r c formula (7.6) Vt(l::ec)
(.5, .5) (.5, .5) .849 1.000
(.1,.9) (.5, .5) 214 .200
(.1,.9) (.1, .9) 153 .200
(.05, .95) (.1,.9) .0884 .100
(.2,.3,.5) (4, .6) .1900 1905
(Y5, Va, V5) (5, Vs, V3) .0132 .0139
(Y6, Yo, -+, V&) (Y6, Yo, + -+, Y6) 2.59 . 1072 2.58 - 1072
Table 1 7.2 .107° 65+.3.10"°
Table 2 59 .107" 57+.2.1077

placed regularly along it at equal intervals A. The density of points is 1/A, so
length-times-density is L - (1/A) = N, rather than the correct number of points
N + 1. The reason, of course, is that the line segment has a lattice point at
each end, so its effective length as far as the length-times-density argument
is concerned is obtained by adding half an interval, A/2, at each end: then
(L + A) - (1/A) = N + 1, the correct number of points.

The same type of adjustment substantially improves the volume-times-density
approximation for the number of lattice points in Z'(r, ¢). Let Z(r, ¢) be
7'(r, ¢) as defined in (3.6) except with the constraint =; = 0 replaced by =; =
—1/(2n), for all i and j. This is the equivalent of adding A/2 at each end of the
line segment. It is easy to show that

(7.7) volume Z;(r, ¢) = (1 + IJ/2n)P . volume 7'(¥, ¢),

with ¥, € defined as in (3.15). Formula (3.14) is obtained from (7.6) via (7.7).
Formulas (2.5) and (3.18) incorporate similar corrections.

From formulas like A1.4 in Good (1976), it can be shown that correcting for
edge effects in this way produces the right second-order asymptotic expansion
for N™(r, ¢). The correction is often quite substantial, being about 20% in Table
1, for instance.

Exact formulas for V(r, ¢) are possible if min(I, J) = 2 or 3. The approach is
through the exact evaluation of g(é|r) in (7.1). For J = 2 (or equivalently, by
interchanging rows and columns, for I = 2), ¢ = ¢;, and an argument based on
Laplace transforms gives

(18) gle|r) = O [ei™ = Tia1=1 (e — ra)i?

+ Siai=2 (@ = r)f = - (<D - DI,

The symbol A represents any subset of {1, 2, ---, I}, | A| is the number of
elements in A, r4 = Yiea i, and (¢; — ra)+ = max(0, ¢; — r4).
Higher dimensions make the Laplace transform argument more difficult to
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apply. For J = 3, extensive computations give

’4

gé|r)= 12—,_2 {(0102)[ Tl Y ap (1) 2{;(')’< ;

=11

I—a+i—-1>

(cL+ca—ra—rg)v ' (rg — )it !

F'I—-b=iTI+b+1)

(7.9

I-b+i- 1) (c1+ ¢ = ra = rg)e= (e, — rA)I++a+f—1}

—1)\b YV—-a—-1
2 (=1)" 28 ( i II—a—i)T(I+a+i)

The symbol Y. p indicates summation over all disjoint subsets A and B of
{1,2, ---, I}; ra = Yica I, s Yiep Ii: and (§) = 1 for any value of x.

8. Granularity and protrusion effects. The volume-times-density ar-
gument used to calculate the number of points in the numerator of the volume
test significance level ignores two things: that we are dealing with a discrete
lattice of points rather than with a continuous uniform distribution (granularity);
and that the ellipsoid in Figure 2 or the elliptical tube in Figure 1 does not stay
within the boundaries of the simplex (protrusion). This section gives a brief
discussion of those two effects, in the conditional testing framework of
Section 3.

Granularity by itself has little effect on our calculations. Suppose that the
ellipsoid (S | r, ¢) of Figure 2 lies entirely within 7°(r, ¢), so that protrusion can
be ignored. A great deal of mathematical effort has gone into verifying the
accuracy of the volume-times-density approximation; see, for example, Leveque
(1971) Section 1, page 24; and Kendall and Moran (1963) Section 5. Under
reasonable conditions, the asymptotic error of the approximation will be
0p(1/ «/r_z), which is to say smaller than typical statistical variation.

From another perspective, granularity produces no error at all. Suppose that
in Figure 2 we make the continuity correction of spreading the mass 1/N™(r, ¢)
at each lattice point p uniformly over the small hexagon of planer points nearest
to p: {w: mingrey ey | P* — 7| = || p — 7 ||}. Then by definition the volume-
times-density argument gives exactly the continuity-corrected probability content
of £(S|r, ¢). (The correction for edge effects in the denominator of (3.17),
formula (7.7), can be motivated by this same argument.)

Protrusion is the most serious source of error in (3.17), often causing consid-
erable overestimates of the actual volume test significance level. This was
unimportant in Table 2, where (3.17) itself gave an extremely small number, but
was troublesome in Table 1. The following result, which will not be derived here,
improves on Theorem 2 and gives a diagnostic for the existence of large outside-
ness effects.

THEOREM 4. For a given value of i and j, the D-dimensional volume of the
portion of the ellipsoid £(S | r, ¢) having p; > —Y%n equals

1 (ric; + (1/2n)) ]
S I‘i(l - r,»)cj(l - Cj) ’

(8.1) [volume &(S | r, ¢)] - wD[
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where

sin~1(¢)
8.2) wplt] = __r_(m;n) f_ (cos 8) dt

C VrT(R/2 + V) Y-e2

fort<1,0[t]=1fort>1.

The factor wp in (8.1) reduces (3.11) to allow for the amount of £(S|r, ¢)
outside one of the boundaries of Z'(r, ¢). The reason for stating the boundary
condition as p; > —%n rather than as p; > 0 has to do with edge effects, as in
(7.7). Table 7 shows wp for every choice of (i, j) in Tables 1 and 2, correctly
indicating the large outsideness effects. The smallest of these factors times (3.17)
still tends to be an overestimate of (S | r, ¢): .25 compared to the true value .09
in Table 1; 2.5 - 10™° compared to true value 1.2 - 10~° in Table 2.

The actual values of ¢(S|r, ¢) for Tables 1 and 2 were calculated by an
inexpensive Monte Carlo method:

(1) Choose a reduced sample size v = nf near the MLE value » = D/S
(e.g., v = 40 for Table 1).

(2) Draw Monte Carlo samples p* from the Fisher-Yates distribution (3.7),
with r and c as in the observed table, but with n = ». This can be done
efficiently by sampling without replacement, in the usual hypergeometric
manner. Fractional values of vr or ve can be handled by a variety of ad
hoc devices.

(3) Calculate the Monte Carlo expectation of IND[S* = S]/g:(p* | r, ¢) where
IND is the indicator function, S* = (p* — x)’ 2’1(p — ), # and £ are
fixed at their observed values, and g,(p* | r, ¢) is the Fisher-Yates density
(3.7), with n = ».

Except for edge effects, this method gives an unbiased estimate of the numer-
ator of (3.10), with n = ». (Between 250 and 500 Monte Carlo repetitions were
sufficient to give 10% accuracy for Tables 1 and 2.) The corresponding denomi-
nator N¥(r, ¢) was approximated by (3.13) X (3.14), n = ». A simple geo-
metric analysis of the edge effects indicates that ¢,, (3.10) with n = », satisfies
&, = a — b/v, b > 0. Trying the Monte Carlo analysis for different values of »

TABLE 7
Edge effect factors wp for each choice of (i, j) in Table 1 (left) and Table 2 (right);
dashes indicate wp = 1.00.

) )
i i
1 2 3 4 1 2 3 4

1 98 — 87 — I - — — —

2 97 — .87 .99 2 - — — —

3 72 — .64 .76 3 - - — —

4 65 .95 .60 .68 4 96 — 91 .76
5 95 .81 .62 .57
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verified this for Tables 1 and 2. For example in Table 1 we computed

v= 40 60 80
e, = .036 .051 .069 °

The value &(S|r, ¢) = .093 was obtained by extrapolating in 1/» to the actual
sample size v = 592.

(8.3)

9. Review of the literature. Connections between goodness of fit, small
p-values and large sample sizes have been made many times before. Berkson
(1938) raised the issue by noting that with small sample sizes we can often find
models to give a satisfactory fit. With large samples, no model fits.

Hodges and Lehmann (1954) suggest a cure for the problem: test to see if the
data are compatible with a model that is close to the null hypothesis. In testing
for independence, they regard an observed table of counts as a point in the
simplex and accept independence if the distance between the observed point and
the surface of independence is smaller than a cutoff c¢. They do not suggest an
explicit way to choose c. To tie their test to the usual 5% level, they suggest that
if the distance is larger than c, then a 5% test of “distance = ¢” be performed. In
a sense, our paper suggests ways to choose and interpret values of c.

Martin-Léf (1974) also suggests supplementing the usual test with a quanti-
tative measure of the size of the discrepancy between the statistical model and
observed data. The aim is to see if the discrepancy, although highly significant,
is so small that the model must be considered as providing a satisfactory
approximation of the data.

In testing for independence in a two-way table, Martin-Lof’s discrepancy is
(approximately) the chi-square statistic divided by n times the sum of the
entropies of the marginal distributions of the table. Martin-Lof gives several
justifications for this choice: the discrepancy can be interpreted as the relative
decrease in the number of bits needed to specify the table, given the margins and
the value of the usual test, as compared with the number of bits necessary to
specify the margins only. An alternative interpretation comes from considering
an exponential family through the test statistic parametrized in such a way that
the null hypothesis corresponds to some of the parameters being zero. The
discrepancy is then (approximately) minus the relative entropy distance between
the maximum likelihood member of the family and the maximum likelihood
member of the family subject to the null hypothesis being true.

Martin-Lof calculates a number of examples in an effort to calibrate a
discrepancy scale. One of the examples is our Table 2. He finds that the
discrepancy falls nicely between a good fit and a bad fit on the scale he suggests.
Our analysis states the same conclusion in terms of the relative sample size. Hald
(1971) treats the testing problem decision-theoretically with both prior and loss
function specified. He suggests that an “indifference-zone” can be introduced
around the null hypothesis by having zero, or small, loss there. He investigates
the asymptotic properties of such tests in one-dimensional problems. Hald is
mainly concerned with the widely perceived intuitive feeling that significance
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levels should sometimes decrease with increasing sample size. His analysis shows
when this feeling is correct for Bayesian tests.

Our results can be put into a rough decision theoretic framework by specifying
the following program to go along with standard tests: First, carry out the
standard test. If it rejects, test to see if an alternative far from the null is
compatible with the data. If yes, reject the null. If no, carry out the components
of variance approach suggested. If the reduced sample size is not much smaller
than the observed sample size, report that the data are compatible with the null
hypothesis: If not, report the reduced sample as an indication of how far the data
are from the null hypothesis.

Work on robustness of tests also bears on our problem. Chapter 10 of Huber
(1981) contains an up-to-date review. Along these lines, Ylvisaker (1977) intro-
duces a notion of resistance which measures the smallest proportion of the data
that can be altered to force the level of the test statistic to its observed value. If
a believably small proportion of misclassifications can inflate the test statistic to
its observed value, this gives grounds for accepting the null hypothesis. Neither
of these authors explicitly discusses tests for independence.

Bayesian statisticians have carried out work related to the subject of our
paper. Lindley (1964) shows how the usual x? test can be given a Bayesian
interpretation. Ginel and Dickey (1974), Bishop, Fienberg and Holland (1975)
carry through Bayesian analysis when Dirichlet priors have been put on the
parameters involved. The most extensive contributions to the subject come from
I. J. Good. The papers most closely connected to ours are Good (1976) and Crook
and Good (1980). Points of contact are described in Sections 2, 3 and 7. A current
survey of his many related notes and papers on this subject is in Good (1983).
While our volume test arises from the Bayesian assumption of a uniform prior
on the simplex, we do not know if the other reference distributions we suggest
arise (approximately) from nonuniform distributions, such as the mixtures of
symmetric Dirichlets suggested by Good.

Hotelling (1939) proposed what we are calling the volume test for a class of
testing problems in nonlinear regression. His paper generated considerable activ-
ity in the mathematical literature, but except for scattered applications, as in
Efron (1971), its statistical content seems to have gone largely ignored.

10. Acknowledgement. The authors thank I. J. Good, Richard Melrose,
David Rogosa, Mehrdad Shahshahani, and Lawrence Shepp for many helpful
discussions during the preparation of this paper.
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