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A CONSTRAINED FORMULATION OF MAXIMUM-LIKELIHOOD
ESTIMATION FOR NORMAL MIXTURE DISTRIBUTIONS!

BY RICHARD J. HATHAWAY

University of South Carolina

The method of maximum likelihood leads to an ill-posed optimization
problem in the case of a mixture of normal distributions. Estimation in the
univariate case is reformulated using simple constraints into an optimization
problem having a strongly consistent, global solution.

1. Introduction. A univariate normal density with mean u and standard
deviation ¢ is denoted by P(x; u, ). A mixture of m.univariate normal densities,
denoted by p,.(x; v), is defined by p,.(x; v) = X2, a; P(x; w;, o;) for the parameter
v in the parameter space

I‘={7=(a1’ ey, Omy M1, ...’”m’gl’ .--’am)TER3mI
Ytiai=1,020,0>0 for i=1,...,m}

In this context, the normal densities are sometimes referred to as component
densities. The log-likelihood function L(vy), corresponding to a random sample
{x1, - -+, x5}, is defined by L(y) = Xi=1 log(pm(xx; 7))-

The first problem associated with maximum-likelihood estimation arises from
the unboundedness of L(y) on I' (Day, 1969). A global maximum-likelihood
estimate always fails to exist. In addition, the unboundedness of L(y) causes
failures of optimization algorithms of both the EM (Redner and Walker, 1984)
and quasi-Newton (Fowlkes, 1979) types.

In spite of the unboundedness of L(vy), statistical theory (Kiefer, 1978)
guarantees that a particular local maximizer of L(vy) is strongly consistent and
asymptotically efficient. Several local maximizers can exist for a given sample,
and the other major maximum-likelihood difficulty is in determining when the
correct one has been found. Day (1969) noted that spurious maximizers, corre-
sponding to parameter points having some component standard deviations very
small relative to others, are generated by any small number of sample points
grouped sufficiently close together. The spurious maximizers, like the unbound-
edness of L(v), can create difficulties when using the EM or quasi-Newton
algorithms."

The constrained maximum-likelihood formulation presented in the next sec-
tion avoids the unconstrained problems of singularities and spurious maximizers
of the type noted by Day. Section 3 contains the statement and proof of a
consistency result for the corresponding constrained estimator.
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2. The constraints. Day (1969) recommended the use of ML when it is
known (and appropriate constraints added) that the variances for the component
densities are equal. The crucial ingredient is not equality of component variances;
it is knowledge of their relative sizes so that appropriate constraints of the form
o; = ¢;jo; can be added (see Quandt and Ramsey, 1978).

The constraints chosen here have the flavor of those above, but exact knowl-
edge is not required. Instead, imprecise knowledge usually available can be
imposed imprecisely through the use of the set of linear inequality constraints
i = coj, which can be written as

(21) min,-,,-(ai/aj) =c>0.

The first mention of these types of constraints is found in Dennis (1981) and
should be attributed independently to E. M. L. Beale.and J. R. Thompson. For
reasonable choices of ¢, the constraints in (2.1) rule out the spurious local
maximizers corresponding to greatly differing component standard deviations
described by Day. The following result shows that imposing the constraints in
(2.1) leads to a well-posed optimization problem having a (constrained) global
solution. For notational convenience, the set of parameter values in I satisfying
(2.1) is denoted by T'..

THEOREM 2.1. Let {x1, ---, x,} be a set of observations containing at least
m + 1 distinct points. Then for ¢ in (0, 1], there exists a constrained global
maximizer of L(v) over T..

PROOF. Let a = max{|x:|, ---, | x|} and suppose that ¥ € I, satisfies
fi; > a. Then L(¥) < L(v’), where v’ € T, is obtained from ¥ by setting the ith
mean component equal to a. If ji; < —a, then an analogous result holds by setting
the ith mean component equal to —a. Also, if {y?} € T is a sequence satisfying

lim,_.0? = 0 or o, then lim,_,L(y?) = —c.
It follows from the above that sup,er,L(y) = sup,esL(y), where S =
(YET.| |m| =a<w,0<b=sg;=sd<owfori=1,--., m}for some constants

a, b, and d. By the compactness of S and the continuity of L(vy), there exists a
parameter ¥" in T, satisfying L(¥") = sup,esL(y) = supyer, L(y). O

The constraints in (2.1) yield an optimization problem having a global solution
and a constrained parameter space with no singularities and at least a smaller
number of spurious maximizers. Consistency of the constrained estimator is
proved in the next section, but it is mentioned here that other ways of regularizing
the maximurg-likelihood problem for normal mixtures exist. Redner (1981) has
shown the consistency of constrained global maximizers of L(y) in the case that
the constraints define a compact subset of T, and Policello (1981) obtains
consistency and avoids singularities by conditioning on there being at least two
observations from each component population present in the sample. Redner’s
compactness assumption is not necessary, while Policello’s approach leads to an
iteration which is more complicated and computationally expensive than the
modified EM approach based on the constrained formulation presented here
(Hathaway, 1983). Additionally, the constrained formulation presented here
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warrants consideration because of existing computational results. Those results,
found in Hathaway (1983), indicate that the corresponding constrained algorithm
produces good estimates, even when started with poor initial guesses.

3. Conmsistency. Strong consistency of the constrained estimator is shown
by applying existing maximum-likelihood theory due to Kiefer and Wolfowitz
(1956). Some details of the proof will be omitted whenever it is possible instead
to reference their work.

Let I denote the parameter space for a family of distributions with densities
f(x; v) for v € T. It is assumed that T' is a measurable subset of Euclidean
r-space, with the true parameter ¥° € I'. The operator E will always denote
expectation under v°. In the set T, define the metric

6(y, v’') = Xi=1 | arc tan vy, — arc tan v, |

where | - | is Euclidean distance. Let T denote the set I' along with the limits of
its Cauchy sequences in the sense of 6(- , -).

Kiefer and Wolfowitz (1956) proved that their Assumptions 1-5 imply the
results found in Theorems 1 and 2 in Wald (1949). The following extensions of
these results for the case of nonidentifiable distributions are stated next. (Redner
(1981) extends Wald’s results in a similar way using the assumptions found in
Wald (1949) rather than those of Kiefer and Wolfowitz, but Redner’s theory does
not easily apply to the constrained formulation presented here.)

Let

C={7€f J:f(x;v)du=J: f(x;7°)duf0ra11y}>,

and let T' be the quotient topological space obtained from T by identifying C to a
point denoted ¥°. The proofs of Theorems 3.1 and 3.2 for nonidentifiable
distributions follow immediately from the proofs in Kiefer and Wolfowitz for the

identifiable case.
THEOREM 3.1. Let Assumptions 1, 2, 3, and 5 of Kiefer and Wolfowitz hold
and let S be any closed subset of T' not intersecting C, then
P{lim,_,wSupyes [1%1 f(xi; v)/TT% flxi; %) = 0} = 1.
THEOREM 3.2. Let Assumptions 1, 2, 3, and 5 of Kiefer and Wolfowitz hold

and let ¥" = y™(x,, - - - , x,) be any function of the observations x,, - - - , x, such
that ‘

P fs AN/ f(xi; ¥°) = p >0 forall n,
then
Pilim, 7" = 4% = 1.

The preceding theory is used below to prove consistency for the constrained
mixture problem, but first an important (and necessary) device from Section 6
of Kiefer and Wolfowitz (1956) is noted. This device, discussed in more detail in
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Perlman (1972), is simply to work with the joint density of k observations instead
of the density corresponding to a single observation; here for a mixture of m
univariate normals, this amounts to showing consistency by verifying Assump-
tions 1, 2, 3, and 5 for the joint density of m + 1 observations.

THEOREM 3.3. Let ¢ € (0, 1] be such that the true parameter v° is in T, and
let 4™ globally maximize L(v) over T, for the sample x1, - - - , x, of i.i.d. observations
of X ~ pm(x; ¥°). Then " is strongly consistent.

PrOOF. The assumptions are verified for the joint density of m + 1 obser-
vations. First, the set T, is completed (in the sense of (-, -)) to obtain

fc={’Y=(0‘,#, G)lezzlai:l’aizoymin Jy/ajZC,OSaiSOO,
—w=<sy<owfori=1, - .., ml}

The definition of p,(x; v) is extended by setting p.(x; v) = T 21 Ao P(x; i, 0;)
with A; = 1if |w| <o and0<g; <o fori=1, -.-, m, and A; = 0 otherwise.
With this definition, Assumptions 1, 2, and 3 are easily verified for the joint
density P(xy1, - -+ , Xm+1; v) = P(%; v) of m'+ 1 observations. The proof now rests
on a verification of Assumption 5.

Kiefer and Wolfowitz noted that Assumption 5 follows from

(3.1) E log f(x; v%) > —o

and

(3.2) E sup,erlog f(x; v) < .

Upon multiplying out the factors, it is easily seen that P(%; v) is itself a mixture
of m™*! components, each having the form ¢ (%; 7, v) = ¢(%; i1, b2, -+ +  Im+1, ¥)
= 1= P(x;; wy, o;) for some choices j; € {1, 2, ---, m},j=1, ---, mof

the components of ;. Now (3.1) for P(%; v°) is implied by E|log P(%; v |
< o, but using the last inequality in the proof of Redner’s (1981) Theorem 5,
this is true if

(3.3) Ellog (% T v%) | <
holds for all components ¢ (%; 7, v°). The proof of (3.1) is now finished by noting
that (3.3) follows from the easily shown fact

f |log P(x; u?, 6?) | P(x; 0}, 0f) dx <o for i,j=1,..--,m.

Now (3.2) is true for P(%; v) if
(3.4) E sup,erlog ¢(%; 7, v) <
holds for all components ¢(%; z, v). (See Theorem 5, Redner, 1981). To show
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(3.4), we note that for each component ¢(%; i, v), there exists a choice of j,
kefl,..., m+1}and7 € {1, ---, m} such that

(3.5) sup,erlog ¢(%; ¥, v) < sup,er.log(B(a,)P(xj; pry 0,)P(%k; 1y 0,))

for all (xy, - - - , Xm+1), Wwhere B(o,) = (27) "™ V2(cs,)*~™. The proof is completed
by noting that the expectation of the right-hand side of (3.5) equals

f f log(n/| % = %1 ™*)pm (%k; ¥ *)Pm (3 ¥°) dx dx; for some 0 <17 < o,
and this latter integral is easily shown to be less than +c. [

This section is concluded by noting that all the good asymptotic properties
associated with the consistent local maximizer (Kiefer, 1978) are shared by the
global maximizer 4" in the case that of # 0 for i = 1, --., m and (w, o)
# (u;, o;) for i # j. Also in this special case, the set C consists of only a finite
number of points.

4. Concluding remarks. The imposition of simple constraints of the form
(2.1) yields a maximum-likelihood problem which is well posed optimizationally.
The constrained formulation is statistically well posed in that the global solutions
are strongly consistent. Problems associated with singularities do not exist, and
those associated with spurious maximizers are at least lessened. The only restric-
tion is to choose a value of ¢ for which the true parameter satisfies (2.1).

It is worth mentioning again that many choices of constraints yield an
optimization problem having a global solution. However, the constraints in (2.1)
are among the simplest constraints to implement in a numerical algorithm. Using
a particular subset of these constraints, a constrained EM algorithm has been
developed, and preliminary numerical tests indicate the constrained approach is
effective in producing good maximum-likelihood estimates. In one numerical test
in Hathaway (1983), 10 samples, each of size 200, were generated from a mixture
of 2 normal distributions, with the true parameter defined componentwise by
o=y =5, =0, us = 2.5, and o; = g, = 1. Out of 80 trials (10 samples, 8
poor initial guesses), the constrained algorithm which forced each iterate to
satisfy o, = .1, ap = .1, 0, = .109, and g, = .10, converged to the most accurate
maximizer 65 times, while the (unconstrained) EM algorithm was successful in
only 49 cases. This type of robustness is desirable even though good initial
guesses are usually available. Even when no prior information as to the choice of
c is available, it is possible to calculate good estimates by varying ¢ dynamically
during the constrained EM iterations. A complete discussion of the constrained
algorithm can be found in Hathaway (1983).

Theorems 3.1 and 3.2 can be applied to many other families of mixture
distributions as long as constraints are imposed (if necessary) to insure that the
assumptions of Kiefer and Wolfowitz, particularly Assumption 5, hold. For
example, for a mixture of m g-variate normals, constraining all characteristic
roots of 3; ;' (1 < i # j < m) to be greater than or equal to some minimum
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value ¢ > 0 (satisfied by the true parameter) leads to a constrained (global)
maximum-likelihood formulation. Another example is the case of a mixture of m
univariate Cauchy distributions with common scale parameter. Assumption 5 is
verified using the joint density of m + g observations in the normal case and
m + 1 for the Cauchy mixture.

Finally, several questions concerning the normal mixture problem remain. Is
it possible to let ¢ decrease to zero as the sample size increases to infinity while
maintaining consistency? If the answer is yes, then at what rate can ¢ be decreased
to zero? For a fixed ¢, do all spurious maximizers of L(vy) in T, disappear as the
sample size increases to infinity? Under some restrictions, empirical studies
indicate the answer to the last question could be yes. It is not known now how
concave L(vy) ultimately gets.

Acknowledgement. The author is obliged to the Editor for many helpful
suggestions, including one of more naturally basing the proof of Theorem 3.3 on
the work of Kiefer and Wolfowitz (1956) rather than that of Wald (1949).
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