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RATES OF CONVERGENCE OF MINIMUM DISTANCE
ESTIMATORS AND KOLMOGOROV’S ENTROPY'

By YANNIS G. YATRACOS?

University of California, Berkeley

Let (2 &) be a space with a o-field, M = {P,; s € 0} be a family of
probability measures on . with © arbitrary, X;, - - -, X, i.i.d. observations on
P,. Define pn(A) = (1/n) T, I1(X,), the empirical measure indexed by A €
/. Assume 0 is totally bounded when metrized by the L, distance between
measures. Robust minimum distance estimators 6, are constructed for § and
the resulting rate of convergence is shown naturally to depend on an entropy
function for ©.

.

1. Introduction. A common problem in statistics is the following: given n
independent identically distributed observations with joint distribution P,,, try
to estimate 6, when 6 is an element of a finite dimensional space ©. There are
cases where the parameter of interest 0 is an element of an infinite dimensional
space however, such as in problems of density estimation and nonparametric
regression. It is well known that parametric methods (e.g. maximum likelihood,
method of moments) fail in this situation.

The aim of this paper is to provide uniformly consistent robust minimum
distance estimators {6,} for the true parameter § when © has no structure or is
infinite dimensional, and to show that the rate of convergence depends on the
“massiveness” of the space of measures. A particular application of the method
is considered for the problem of estimation of smooth densities. The resulting
rate of convergence is the one established by Farrell (1972), Birgé (1983) and
others.

In Section 2 we give notations, definitions and a description of the minimum
distance principle. In Section 3 we construct the estimates and give applications
to density estimation. In Section 4 we discuss robustness of the proposed
estimator. In Section 5 a few remarks are made on the validity of the model when
O is finite dimensional and on the optimality of the resulting rate of convergence.

2. Notations. Definitions. The minimum distance principle. Let M =
{P,; s € O} be a family of measures on a set 2 with o-field &. No structure is
assumed for the index set ©. Let X, - - -, X, be independent identically distributed
P, random variables, u,(A) = (1/n) % I4(X;) be the empirical measure indexed
by A € . Define P} to be the nth product measure on (2", &"). Let 6, =
6,(X1, - -+, X,) be an estimator of 6.
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Since © has no structure, its role is artificial and what really counts are the
measures. So let us metrize @ with the L, distance d between measures. That is,
d(s,t) = | P, — P;|| = 2 - sup{| P,(A) — P,(A)|; A € w}. If both P and Q are
dominated by u then

I P— Q| = 2[P({x: (dP/du)(x) > (dQ/du)(x)}) — Q({x: (dP/dp)(x) > (dQ/dp)(x)})].

Make the usual identifiability assumption.

DEFINITION. A sequence of estimators {6,(Xj, - - -, X,,)} is uniformly consist-
ent for § with rate of convergence §, with respect to d if for every ¢ > 0 there is
b(e) > 0 such that supjeoP7[(X1, -+, Xn): d(8,, 8) > b(e) - 8,] < ¢ for every
nz=1.

LEMMA 1 (Hoeffding, 1963). Let X,, - - -, X, be independent random variables
suchthat 0 < X;<1,j=1, ---,n. Let S, = Y}-1 Xj, ES, = n - p. Assume that
p < Y%. Then P[S, = np + K] < exp{—K?/2(np + K)} and P[S, <= np — K] <
exp{—K?/2np(1 — p)}.

DEFINITION. Let (Y, d) be a totally bounded metric space. For a > 0 let N(a)
be the smallest number of d-balls of radius a that cover Y. The function log, N(a)
is called the d-Kolmogorov entropy of the spaceY.

The minimum distance principle was formalized to a general principle by
Wolfowitz (1957). LeCam (1966), Beran (1977a), Pollard (1980) used the principle
to construct estimators for the case where 0 is finite dimensional. Pfanzagl (1968)
considered the problem for O infinite dimensional. Millar (1981, 1983) treated a
parametric estimation problem in a nonparametric situation. He proved that
minimum distance estimates enjoy optimality properties.

For a distance dj, defined on the set of measures the minimum distance
estimator 0, is such as

du(Pi,, un) = infodpy(Po, pn).

Without loss of generality we have assumed that the infimum is achieved. If not,
use any 6, that brings dp(Ps, n.) within v, of its infimum, with v, decreasing
rapidly to zero.

3. Construction of estimates.

LEMMA 2. Let M = {P;; s € 0} be an L,-totally bounded family of probability
measures on (2, /). Then for every a > 0 there exists a class of sets F, C & of
cardinality | F,| < N?(a) such that | P, — P;|| < 4a + 2 - sup{| P,(A) — P.(A) |;
A € F,} for every Py, P, in M.

Proor. We will use the triangle inequality and properties of the L;-norm.
Fix a > 0. By hypothesis there are N(a) L;-balls covering M. Let P;, - - -, Py
be the centers of the balls, P,, P, be in M. Assume without loss of generality
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P,(P;) belongs to the balls with center Pi(P;). Let A, = {x: (dP:/du)(x) >
(dPy/du)(x)}. Then we have:

I P = Pl < | Ps = Pi]| + | Py = Pl + | P, — P
<4a+ 2 - sup{| P(A) — P,(A)|; A €E F}}

where F, = {{x: (dP;/du)(x) > (dP;/du)(x)}, for 1 < i < j < N(a)}. Obviously
| Fo| = N(a)(N(a) — 1)/2 = N*(a).

THEOREM 1. If M is Li-totally bounded, there exists a uniformly consistent
estimator 6, for 6 whose rate of convergence a, satisfies the equation a, =
[(log N(a.))/n]*? (provided the entropy is such that a, — 0).

ProOF. Fix a sequence {a,}. Let Py, - --, Py, be the centers of L;-balls of
radius a, covering M and F, be the family of sets of cardinality | F, | < N*(a,)
as defined in Lemma 2. Define pseudo-distances dy,, by dm.(P, Q) =

- sup{| P(A) — Q(A)|; A E F,}. Let 6, be the minimum distance estimator for

dM,, chosen among the centers of the balls.
We have to prove that d(f,, ) — 0 umformly in P probability and find the

rate of convergence.
From Lemma 2,

€N d(0n, 0) = || Pi, = Pyl < 4an + 2dp,n(pn, Po).

From Lemma 1,
(2) Pdyn(pn, Po) > K;] <2 - N*¥(a,) - exp{—(nK./(2K, + 1))}.

By choosing K,, = 10(log N(a,)/n)"/? the optimal rate of convergence becomes
a, where a, satisfies the equation a, = [(log N(a,))/n]2.

We offer now the form of b(e) (defined in Section 2) for the proposed estimator.

PROPOSITION 1. Under the conditions of Theorem 1, for the derived minimum
distance estimators {6,} for 0 < e < e <1, ble) = (log(l/e))l/ 2

Proor. Following the proof of the theorem, we have that
P3{|l Ps, — Ps|l > b(e) - [(log N(an))/n]?]
<2 . N%a,) - exp{—b*(e) - log N(a,)/Ci} = C/N(a,)® /=2,

with C, C, positive constants.

We require the right-hand side of the above inequality to be less than &
uniformly in n. Observe that N(a,) increases as n increases, so it is enough to
define b(e) in such a way that C/N(a,)®*@/®)~2 < ¢, This implies that for 0 < ¢ <
e <1,b(e) =C, - (log(1/e))*2

Some applications. (i) Let & = [0, 1]%, ® = {f: [0, 1] — R*, f is a density
with p derivatives and pth derivative satisfying a Lipschitz condition | f‘*(x) —
fP| =L |x—y|®(r 5| fPx+h) —fPx)|de<L- h),q=p+b}.
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Kolmogorov and Tihomirov (1959) have shown that ® metrized with sup norm
Il * |« (which bounds the L; norm) is totally bounded, that for every a > 0, the
number N.(a) of || * || «-balls of radius a is Nw(a) ~ 22/ and gave a construction
for the centers of balls. Clements (1963) has shown that © metrized with L,
distance can be covered by Ni,(a) ~ 2/ balls of radius a. Performing minimum
distance estimation we get as rate of convergence a, = n~@/*9))_ By the Borel-
Cantelli theorem the convergence holds almost surely.

Further generalization can be considered for the case 2 = R. We will be
dealing with increasing sequences of compacts K, of length 4. For every K,,,

Ni (@) ~ 20/ 1n

By choosing 4 appropriately we can get a rate as close as we like to n~(@/(2a+1)
(but not uniformly). )

(ii) Let 2 =0, 1],0 = {f: [0, 1] » R*, f is density with a modulus of continuity
wp(6) = sup{| f(x + h) — f(x) |; x €[0, 1], | | < &} < w(5)}. By Lorentz (1966) ©
metrized with the sup norm | ¢ || » is totally bounded, N.(a) = K/i(y - a) for K,
v fixed constants and 6 = 6(a) defined as any root of the equation w(é) = a.

(iii) Let O(K, G, C) = {f: G — R*, f is a density and analytic, G is an arbitrary
region of a one-dimensional complex space, K is a simply connected continuum,
K C G, sup{f(2); z € G} < C} be metrized with the sup norm. Then log N.(a) ~
(log(1/a))?. The resulting rate of convergence is log n/n'/2.

4. Robustness properties of the proposed estimators. There are many
different definitions of robustness. A great deal of those are devoted to the
robustness of different estimates of a translation parameter in the independent
identically distributed case against some departures from the underlying distri-
bution. We should mention that Beran (1977a), Millar (1981) and Parr and
Schucany (1980) examine robustness properties of minimum distance estimators.

We will follow Sture Holm’s idea as it appears in Bickel (1976). This is the
situation where randomness is due to variations between individuals and there
is no observational error. The judgement of the estimates should then be based
not on the errors in estimating the parameters themselves but in estimating the
probability distributions.

So we suppose that the true measure P is in a neighborhood of the parametric
model M = {P,; s € 0}. Define M(¢) = {Q: | Q — P;|| < ¢ for some s € 0, Q
probability measure on «}. Note that (1 —¢t) - P, + t - H € M(e) for H a
probability measure on &/, 0 <t < ¢/2.

DEFINITION. A sequence of estimators {P; } is robust if for a fixed constant
/ and every ¢ > 0,
sup{Ep- | P;, — P||; P € M(e)} < 7 - € + 7n,

for all n, where v, tends to O at the rate at which the estimator P;, converges to
the true measure P.

Note that ¢ is allowed to depend on n and tend to 0.
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PROPOSITION 2. The proposed sequence of minimum distance estimators is
robust.

ProoF. Using the triangle inequality, the method of construction of 6, and
that P € M(e), we have:

(1) EpmlPj, — P|| = 3¢ + 4a, + 4Epsup{| ua(4) — P(A) |; A € F,}.
Let us consider now the last term of (1). Let
W, = sup{| u.(4) — P(A)|; A € F,}.
Note W,, < 1. Then
EpW, < K, + N%a,) - exp{—nK./(2K, + 1)}
by Hoeffding. So (1) becomes
(2) Ep:|P;, — P|| < 3¢ + 4a, + 4K, + 2N*(a,) - exp{—nK}/2K, + 1)}.
Assume K, = ¢ - [(log N(a,))/n]"’?, ¢ > 2 being a constant fixed for all n. By (2)
and the choice of K,

2
Epn | Pj, — P|| < 3¢ + 4a, + 4ca, + 2N (a,)

N( an)cz(an,,+l)

with ¢2/(2ca, + 1) > 2. The last term is ~(N(a,))~*"2%@/ @) < Ni(q,)™", c*
being a fixed constant. So what we really want is N(a,)™ < a,.

By the relation a, = (log N(a:)/n)"? we get that N(a,) = exp(nai) so
exp(—c*na2) < a, for n big.

5. Some more remarks.

5.1. A natural question is what kind of results one can get with the proposed
method when 0 is a subset of R*. To answer this question we should remember
that we provide estimators uniformly consistent in L, distance, so if there is a
nice continuity relation between the Euclidean distance and L,, our estimator
will behave well for the Euclidean distance.

To illustrate, we consider now a family of densities of the form fo(x) =
5 . exp(—|x —0]), x ER, 6 € [0, 1]. It is known that for this case we can
construct, with the classical methods, n~Y2 uniformly consistent estimators. Since
Ni(e) ~ 1/ for ¢ small, Theorem 1 gives a rate of convergence (log n/n)"/?, which
is not as good as the achievable n~"/% The reason is partly due to the fact that
the present method, intended for situations where little is assumed about the
structure of the family of measures, does not take into account the special
features available in the example.

By using instead LeCam’s notion of “dimension” and his estimation method
(1975), the right n~'/2 rate is achieved. As LeCam communicated to me, the use
in a method of the notion of either entropy N(a) or dimension D(a) provides
equivalent results if N(a) increases rapidly as a tends to 0.

More precisely, in all our derivations, we have used Kolmogorov’s entropy
H(a) = log;N(a). Birgé (1983) and LeCam (1975), use instead the concept of
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dimension D(a) (with respect to Hellinger distance) where 2° is the number of
sets of diameter a needed to cover a set of diameter 2a. This allows refinements
that would give the usual n~'/? rate for the double exponential used above as an
example.

The refinements may be useful in some situations. However one should note
that the a-entropy, H(a) = logsN(a) satisfies the inequality

H(a) < ¥ D(a - 29

where m is [log(1/a)] + 1. Thus the difference between using “entropy” and using
“dimension” is not going to affect the rate of convergence unless D(a) (or H(a))
increase rather slowly as a tends to 0. The preceding inequality can be used to
show that replacement of D(a) by H(a) will not change rates of convergence
unless a” - D(a) converges to 0 as a tends to 0 for every v > 0.

Although it is easy to construct families with D(a) converging to o and
a” - D(a) converging to 0 for every v > 0, none seem to have occurred in ordinary
practice. The ones where D(a) remains bounded are plentiful. Most of the usual
parametric families are of that nature. For them, other more specialized tech-
niques can always be used. ‘

We should mention also that the proposed method, using rough approxima-
tions (as one can see from (2) of Section 3 where we approximate the probability
of a union by a sum of probabilities) and not taking into account special features
of the measures, cannot compete with methods based on a finite dimensional
parametrization. In the same context, another weakness comes from the fact that
problems finite dimensional in Euclidean distance might be infinite dimensional
in Hellinger or L, distance. Such an example (Dacunha-Castelle, 1978) is given
by the translation family f(x — 6), 8 € (-1, 1), x € R with

f(x) = c(a) - exp{—x*}/| x| - |log|x||**% a>0

which is one-dimensional in Euclidean distance but infinite dimensional in
Hellinger distance A, since

2 =_1_f+m V2 — f12 — ANE gy e L
h*(, 0) 2J.. (f*(x) — f%(x — 0))° dx allog | 0])°"

In this example and similar ones, there exist estimates converging at a much
better rate than the rates obtainable through methods not relying on special
features of the parametric family.

5.2. We would like at this point to stress that the described method offers
upper bounds for the L, risk for each fixed sample size n. In the literature, people
are usually interested in proving that this upper bound is actually the same with
the minimax risk modulo a constant independent of the sample size. This is true
for the estimators obtained with the described method when the measures have
smooth densities on a compact as results from comparison of rates with other
estimates (e.g. kernel estimates) possessing this property. It is easy to prove that
the same result holds for L, totally bounded families of measures satisfying
regularity conditions, such as those of Birgé (1983), insuring the existence for
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each n of at least one density which is difficult to detect due to a number m(n)
of other densities in the family which are a perturbation of it.
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