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Professor Huber’s stimulating paper has greatly advanced our knowledge of
the projection pursuit methodology. Our discussion will be confined to the
convergence of the projection pursuit density approximation method (PPDA). In
Proposition 14.3 he proved the uniform and L;-convergence of the PPDA by
assuming that the density f can be deconvoluted with a Gaussian component.
This is a very strong smoothness condition on f. Our original attempt was to
prove his conjecture that the convergence still holds under more general smooth-
ness condition on f. Failing this, we have instead found a smoothed version of
the PPDA that converges uniformly and in L, to f with no smoothness condition
required on f. Our modification is described as follows.

Let {g®} be the sequence of approximating densities defined in Proposition
14.3. Define the smoothed approximating density £’ by convoluting g® with a
normal density

1 g% = g% « N(0, il),
where ¢, satisfies

(2) 7672 -0 and ¢,—0 as k—
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and

() fon(®)
TR = S‘~11-"I|¢1II=1Ef<lOg ggk)fx)) - Ef<log gt(zl;)(x)> '

Since g” is the normal density with the same mean and covariance as f,

E/(f, 8) < , which implies 7, — 0 from the discussion at the beginning of
Section 14.

THEOREM. In general,

flé"“’(x) —f(x)| dx —> 0 as k—> o

If f(x) is uniformly continuous,

sup, | 8% (x) — f(x)]| > 0 as k— o,

ProOF. We treat the convergence of ¥ — f® and f» — f separately,
where

f® =f+ N, oiL).

’

The characteristic functions (ch.f.) of g% and f®, y®(t)exp(—os?| ¢t]|%/2) and
Y(t)exp(—oi | t]|%/2), where ¢® and ¢ are the ch.f. of g® and f, are absolutely
integrable. From the inversion theorem,

sup | §¥(x) — FP() | = (2m)™ f |9 ®(t) — ¥(t) | exp(—af |l £]1%/2) dt

(3) = (27r)_d(21'k)1/2feXP(—02 I t11%/2) dt
= (27)"%(ox) ™ = 0

from (2). The last inequality follows from the proof of Huber’s Proposition 14.2
and Lemma 12.3. _
To prove the L;-convergence of §* — f® to zero, consider

f 18®(x) — F®(x)| dx

= f |8%(x) = F®(x) | dx + f g% (x) dx + f F®(x) dx
lxll=R IxI>R lxI>R

= L,(k) + I,(k) + I;(k).
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From (3), I;(k) — 0 as k — co.

2
I(k) = (27)~%263° f g®¥(x— t)exp(— "—t"2—> dt dx
IxI>R ¢ 20%

= (27r)—d/2 ff g‘k’(y) dye—||t||2/2 dt
t |l y+ot|>R
< (21r)—d/2{f e—||t||2/2 dtf g(k)(y) dy+f e_“‘"zﬂ dt}
el =Ty I y+optI>R IeN>Ty

= f g®(y) dy + (2m)~ 2 f e™12 gp.
IyI>R-M SIST,

if T} is chosen to be Moj;' and M < R. The first term of (4) converges to
Jiyi>r-um f(y) dy as k — o from the weak convergence of g to f (Proposition
14.2). The second term converges to zero as k — o since o' — . Therefore

4)

(5) lim supe_.lo(k) < f f(y) dy.

IyI>R-M

Similarly it can be shown that lim sup I3(k) is bounded above by the same
expression. The upper bound in (5) can be made arbitrarily small by choosing R
large. This establishes

(6) f |g®(x) — F®(x)| dx — 0.

Next we consider

f | F®P(x) — f(x) | dx < (27)™%* f Ap(y)e V2 dy,

where

Ak(y)=fIf(x—aky)—f(x)ldx—>0 as k— o

follows from a standard covergence result in measure theory (Problem 17b,
Royden, 1968) since o, — 0. Since A.(y) < 2,

(7 f | F¥(x) — f(x)| dx — O.

The L,-convergence of &® to f follows from (6) and (7). To prove the uniform
convergence of f® to f, we need to assume that f is uniformly continuous. We
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have

| fx) = FR(x) | < (2m)~2 f | f(x) = f(x — any) | e "2 dy

(8) = (21r)"d/2{2 sup,f(x) e~ I2 gy

IlyI>R

+ f If(x) - f(x - O'ky) Ie'||y||2/2 dy} ,
lyll=R

whose first term ¢an be made arbitrarily small by choosing a large R since sup,f(x)
< o follows from the uniform continuity of f, and whose second term, for fixed
R, can be made arbitrarily small (uniformly in x) by choosing a small o, (k large)
again from the uniform continuity of f. This and (3) imply the uniform conver-
gence of g to .0

The uniform continuity condition on f is much weaker than the condition in
Proposition 14.3 that f can be deconvoluted with a normal density.

Our last remark concerns the choice of ¢, in the smoother (1), which depends
on the knowledge of 7. An optimal choice of ¢, can be obtained by equating the
convergence rates of §¥ — f® and f*® — f. Let us further assume that f satisfies
the Lipschitz condition of order A

| f(x1) = f(xa) | < Clxy — %2 ],

where C is independent of x;, xo. Then | f(x) — f*®(x) | in (8) is bounded above
by C’s}. This and the rate 7}/26;? in (3) are of the same order if

op = cr}/2,
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Dr. Huber’s scholarly paper invests the impressive techniques of projection
pursuit with a halo of mathematical formalism. Key questions clearly concern
the choice of properties that it is scientifically fruitful to pursue. My judgment,
based on totally inadequate experience, is that, except in fairly extreme cases,
peculiarities of univariate distributional form are often of fairly fleeting interest



