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MINIMAL SUFFICIENCY AND COMPLETENESS FOR
DICHOTOMOUS QUANTAL RESPONSE MODELS

By MicHAEL A. MEssiG! AND WiLLIAM E. STRAWDERMAN 2

Pfizer Inc. and Rutgers University

Minimal sufficiency and completeness are examined for the multistage,
multihit and Weibull quantal response models. It is shown that the re-
sponse counts are minimal sufficient statistics and conditions are presented
for completeness for the families of these models. These results provide an
example of a complete sufficient statistic for a curved exponential family
which is of higher dimension than the parameter space. Uniformly mini-
mum variance unbiased (UMVU) estimators may not exist for the probabil-
ity of response at a given dose if the response counts are not complete
sufficient statistics.

1. Introduction. This paper discusses the properties of minimal suffi-
ciency and completeness for dichotomous quantal response models. Such
models have many applications. One application is in the area of risk assess-
ment of toxic substances where the experimenter is often interested in estimat-
ing the probability of some response (e.g., a tumor), as a function of dose level.
Data is often obtained from animal studies that use dose levels sufficiently
large to produce a response in a reasonable length of time, with a reasonable
sample size. These results are extrapolated from the dose levels in the experi-
ment to the anticipated exposure levels in man. For more information on the
topic of risk assessment, we refer the reader to Cornfield (1977), Crump, Hoel,
Langley and Peto (1976) and Hogan and Hoel (1989). Statistical procedures
often assign a functional form to the probability of response. These functional
forms are derived from theories regarding the mechanism of action that leads
to a response or can be viewed in the context of generalized linear models
[McCullagh and Nelder (1989)]. The Weibull model is a so-called tolerance
distribution model. The multistage and multihit models are often referred to
as stochastic or mechanistic models. We refer the reader to Hoel (1985),
Krewski and Van Ryzin (1981) and Rai and Van Ryzin (1981) for more
information on the theories behind these and other models.

Frequently, statistical applications of these models use the method of
maximum likelihood for parameter estimation and statistical inferences are
obtained by using the asymptotic properties of the maximum likelihood esti-
mator. Maximum likelihood estimation for these procedures has been studied
extensively [see Krewski and Van Ryzin'(1981), Rai and Van Ryzin (1981) and
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Guess and Crump (1978)]. Various statistical issues in bioassay have been
discussed by Haseman (1984).

For the case of the logistic model, sufficiency and completeness are a
consequence of the identification of the resulting family of distributions as a
full rank exponential family. In this paper, we discuss models that belong to
curved exponential families and restrict attention to the multistage, gamma
multihit and Weibull dose-response models. Section 2 contains a brief descrip-
tion of the models and the notation that is used. Section 3 discusses minimal
sufficiency and shows that the response counts are minimal sufficient. Com-
pleteness is discussed in Section 4. Necessary and sufficient conditions are
given for completeness of the family generated by the multistage dose-response
model. Sufficient conditions for completeness are given for the family gener-
ated by the gamma multihit model and the family of distributions generated
from the Weibull model is shown to be complete for any set of doses. When the
vector of response counts is a complete sufficient statistic, we show that it is
possible to have a complete sufficient statistic whose dimension is greater than
the dimension of the parameter space. These are believed to be the first such
examples for these types of models. A discussion of estimation for these models
is contained in Section 5. We show that if the response counts are not
complete, then a UMVU estimator may not exist for the probability of re-
sponse at certain doses.

For simplicity, the material throughout this paper covers the case of a single
explanatory variable using dose-response terminology.

2. Dose-response models. Let 0 <d, <d, < '--d,, represent the
dose levels in a study. Assign N, subjects to dose level d; and let n; be the
observed number of responses. The N,’s are fixed numbers. Let n =
(ny,ng...,n,,Y and N =(N;, N,,...,N,,) be the vectors of response counts
and numbers of subjects at each dose respectively. Let p,(d) be the probability
of response at dose d > 0, where 6 is a p X 1 (p < m) vector of parameters
that lie in a parameter space ®. The probability distribution of n is

PM(n) = ,ﬁl(N)pe(d )1 = py(d)] ¥

= exp{ X n(6)Ty(n) - 3(9)}h(n),
i=1
where M denotes a particular dose-response model. The family of distributions
S that is generated by dose-response model M is
(2) Py ={PM(n), 0 € 6}.

Sy 1s, in general, a curved exponential family [see Moolgavkar and Venzon
(1987)].
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ExaMpPLE 1. One-hit model. The one-hit model [Krewski and Van Ryzin,
(1981)] assumes that the probability of response is given by

po(d) =1 —exp(—60d), ©={6:6>0}, d>0.

Let M, denote the one-hit dose-response model and let %, denote the family
of distributions generated by M,. If m = 1, %, is a one-parameter exponen-
tial family. If m > 1, the vector

n1(0) In(e¥t — 1)
n9(6) In(e®: — 1)
nmkﬂ) ln(e"d;n -1)

forms a curve in R™ and %, is a curved exponential family.

The dose-response models we study are presented below. Each probability
distribution is obtained by substituting a particular form of p,(d) into (1). The
models are denoted M,, M, and M, and their respective families of distribu-
tions, Fyy, Fy, and Fyy,.

(M,) The multistage model:

b
po(d) =1 —exp{— Zejdf}, 0 ={0:0<6y,0,,...,0,<x}, d>0.
Jj=1

For simplicity, we shall assume that p is a fixed integer and that p > 1.
(M,) The gamma multihit model:

p.a U le

po(d) =[0 —F(——O—;du, ®={0:0<0,,0,<x}, d>0.
(Mj) The Weibull model:
po(d) =1—e ™" @={0: —0<6,,0,<o,0,#0}), d>0.

3. Minimal sufficiency. We will show for each model, that the vector n
is a minimal sufficient statistic. We begin by describing a condition for minimal
sufficiency, and then discuss each model in a different subsection.

LEmMMA 1. Let X be an m X m matrix with i, jth element
paj(di)[l - Peo(di)]
peo(di)[l - Poj(di)]

If unique vectors 6, 0,,...,0,, can be chosen such that X is invertible, then n
is a minimal sufficient statistic for the family of distributions (2).

}, 0] = (Ojl’ 0]2" ..,ij),, di > 0.



2152 M. A. MESSIG AND W. E. STRAWDERMAN

Proor. If X is invertible, the statistic (6) in Lehmann’s (1983) Theorem
1.5.8 is equivalent to n. O

The following lemma describes a special case for which X is invertible. The
proof follows by induction of m and has been omitted.

LEMMA 2. Let
(3) po(d) 1 —c,exp{—6,d,}, i=1,....,m;j=0,1,...,m,

where d;, >0 and c¢; is a fixed quantity, 0 <c; < 1. Then, there exists
001,011 . - -, 0,1 not equal, such that X is invertible.

3.1. Multistage model. Let 6,,=6,, j=0,1,...,m; k=2,3,...,p for
fixed 6,. Then poj(d ;) assumes the form of (3) w1th

;= exp{—(@zdi2 + - +0pdf’)}.

X is invertible by Lemma 2. Therefore, n is minimal sufficient for 93,,1 by
Lemma 1.

3.2. Gamma multihit model. Fix 6;,=1, j=0,1,...,m. Then po(d )
assumes the form of (3) with ¢, = 1. Apply Lemmas 1 and 2 to show that 7 is
minimal sufficient for ;.

3.3. Weibull model. Let 6, = 1. Then p,! (d;) assumes the form of (3) with
¢; = 1. Therefore, by Lemmas 1 and 2, n is minimal sufficient for I
(Mlnlmal sufficiency of n also follows from the completeness result estabhshed
later in this paper.)

In the following example, n is minimal sufficient, but is not complete.

ExampLE 2. Let p,(d) =1 — exp(—6d), 6 > 0 with m =2, N, =2, N, =
1, d; = 1 and d, = 2. The vector of response counts n is not complete. To see
thls let f(n,, n2) = Jony) — Jppfn,), where J,(x) is the indicator function
of the set A, that is,

_[/1, ifxeA,

(4) Ta(x) = {o, ifxEA
Then Ef(n,,ny) = 0, but f(n,,n,) + 0 with positive probability. Therefore, n
is not complete. Note that n is minimal sufficient since the dose-response
model is the one-hit. O ‘

4. Completeness. In this section, we discuss completeness for the fami-
lies Fy,, Sy, and F,. We begin with the multistage model.

4.1. Multistage model. Theorem 1 states conditions for completeness for
Zu,- The proof is sketched in the Appendix. We also present two corollaries to
the theorem.
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THEOREM 1. The family of distributions %, is complete with complete
sufficient statistic T, = n if and only if

(5) =0, impliesa; =0

fora;€{0,+1,+2,...,+N},i=1,2,...,m.

CoroLLARY 1. The family of distributions %, is complete with complete
sufficient statistic T, = n if there exists some k, k = 1,2, ..., p; such that

m
(6) Y a,d¥=0 impliesa,=0
i=1

fora,€{0,+1,+2,...,£N},i=1,2,...,m.

Proor. Equation (6) implies (5) of Theorem 1. O

COROLLARY 2. %, is a complete family of distributions with complete
sufficient statistic T, = n, if p = m.

Proor. Recall that d; > 0,i =1,2,...,m; by definition of %, and let

dl dz dm
d2 d2 d2
x=| ' 2 ”
dp dy - dp

It is easy to show that X is invertible. Therefore, Xa = 0,, implies ¢ = 0,,,
where a is an arbitrary m X 1 vector. Since this is condition (5) of Theorem 1,
the proof is complete. O

Examples 3 and 4 discuss some two-dose designs where n is complete for
?MI.

ExaMpLE 3. Suppose m = 2 and that doses 0 < d; < d, are chosen such
that d,/d, is an irrational number. Apply Corollary 1 to show that n is
complete for the family &, . If a; = 0, then a, = 0 and conversely. If a; and
a, are nonzero, then a, = —ay(d,/d,) is an irrational number which is
impossible since a; € {0, + 1, + 2,..., + N,}.
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ExampLE 4. Consider the two-dose design obtained by choosing d,/d; >
Nj;. Again, if a; = 0, then a, = 0 and conversely. If a; < 0, then a, > 0 and

dy
a.d; + ayd, —d{a1+a2(d
1

}>d(a1+a2N)>0
If a; > 0, then @, < 0 and

d,
ad; +a,dy,=d{a; +a, 7
1

} <da; - N;) <0.

Therefore, a,d; + a,d, = 0 only if a; =a, =0, and n is complete for Fu,
by Corollary 1.

In the next example, a complete sufficient statistic exists for a curved
exponential family and its dimension is greater than the dimension of the
parameter space.

ExampLE 5. For the fanuly of one-hit models with m = 3, N, = N, = N; =
5,d, =1,d, =15 and dg = 12, substitute for a, and a; in

a;= —(Ta,/6 +9a3/7).

The only integer solution is a, = a, = a3 = 0. Therefore, n is complete by
Corollary 1. The dimension of n equals 3 and the dimension of the parameter
space equals 1.

4.2. The multihit model. The following theorem provides a sufficient con-
dition for completeness of the family of distributions Pty

THEOREM 2. The family of distributions Fu, is complete with complete
sufficient statistic T, = n provided that

m
Y a,d;=0 impliesa,=0
i=1

fora,€{0,+1,+2,...,£N}, i = 1,2,...,m.

Proor. Let 3 be the subfannly of %, consisting of models with
0, = 1. Then %} is the family of one-hit models Therefore, n is complete for
i, by Theorem 1. Since H, € F4, and the one-hit model and gamma
multlhlt model have the same support a statistic that is complete for %;; is
also complete for 7, by Lehmann’s (1983) problem 5.27 on page 67 (note
we believe that the additional condition, &, c &,, is required in Lehmann’s
problem). O
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4.3. The Weibull model. The following theorem states that n is a complete
sufficient statistic for any collection of m doses d;, i =1,2,...,m

TueoreM 3. The family of distributions %, is complete with complete
sufficient statistic T, = n.

Proor. Let ;. be the subfamily of %, consisting of models with 6,
fixed. %} is the famlly of one-hit models. The vector n is complete for 7,
by Theorem 1if

m
Y. a;d%=0 impliesa; =0
i=1

fora, €{0,+1,+2,..., £ N},i=1,2,..., m. Since 0, is fixed but arbitrary,
the result must hold for some 6,. Since % C %, and the one-hit and
Weibull models have the same support, n is complete for Su, by problem 5.27
on page 67 of Lehmann (1983). O

5. Applications to estimation. Since E,(n,/N,) = p,(d;), the probabil-
ity of response at each dose has an unbiased estimator. The estimator n,/N; is
uniformly minimum variance unbiased (UMVU) when n is complete. The
following two examples illustrate what happens when n is not complete.

ExampPLE 2 (Continued). There exist UMVU estimators for some of the
DPo(d;)’s but not all of them as guaranteed by completeness. To see this, apply
Theorem 2.1.1 of Lehmann (1983) to find the totality of functions that possess
UMVU estimators. First, characterize the totality of unbiased estimators of
zero. (It suffices to restrict attention to estimators with finite variance.) Let A
be the class of estimators with finite variance and let % be the class of all
unbiased estimators of zero that belong to A. Then, for any estimator U(n) €
%, E(U) = 0 for all 6 > 0, if and only if

U(n) = a{ZO)(nl) - '7(.0)(”2)}

for an arbitrary finite number a and Z,(x) given by (4). This can be shown by
expanding and collecting terms in the equation E,(U) = 0. Any 6(n) € A is a
UMVU estimator for its expectation, if and only if E,(6U) = 0 for all U € %
and all # > 0. This implies that 8(0,1) = 8(1,0) = (2, 0). Therefore, for arbi-
trary finite numbers a, b, ¢, and d,

8(n) = aFg,0)(n) + 0T 0,1,a,0,@00( ") T cTq,1y(n) + dT g 1(n).
The totality of functions that possess a UMVU estimator is
E, (8) =(a—2b+2c—d)e ™ +2(d—c)e
+2(b—c)e ™ +2(c—d)e ?+d.

Slnce there does not exist a, b, ¢ and d such that E,(8) = p,(d,) =1 —
no UMVU estimator exists for p,(d,). In fact, the estimator which m1n1m1zes
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the variance is

n, 1
do(n) = 5 + m[%(nl) = To(n2)]
which depends on 6 and is therefore only locally minimum variance unbiased
(LMVU). Hence, the natural estimator n;/2 is not UMVU for p,(d,) in this

case.

There exists a UMVU estimator for p,(d,) in the previous example. We
might expect that it is given by 6*(n) = n,/N, = 1 — F}o(n,) which would be
the UMVU estimator if n were complete. The next example shows that this is
not the case.

ExamPLE 2 (Continued). It is easy to see from the previous example that a
UMVU estimator for p,(d,) =1 — e 2% is
8**(n) =1- %[*7(—0)(”1) + *7(0)(”2)]'

This estimator uses information from both doses, and var(6**) = 1 var(6*).
Therefore, we get a more precise estimate for p,(d,), but lose the ability to
estimate p,(d;) with a UMVU estimator.

APPENDIX

Proor oF THEOREM 1. Sufficiency. Show that E,5(n) =0 all 6 € 0, im-
plies that 8(n) = 0 a.e. F:

N, N, P m ‘
Ed(n)= % - ¥ ()1 exp{—onle(Ni —ji)}’
j1=0 jm=0 j=1 i=1
where
N; N, m (N k. ‘
cj)=X - X 6(k){1‘] (kf)( .f)}(_l)ﬂkl—m
k1=J1 Bm=Jm i=1 i Ji

By induction, it is not difficult to show that if E,6(n) = 0 for all 6 € ©, then
¢(j) = 0 for all j, and that if ¢(j) = 0 for all j, then 8(%) = 0 for all k.

NEecEessiTY. Suppose for some j # j*; j;, j¥ €{0,1,..., N}, that

m , m
Y dij; L d,j}
i=1 i=1

M3

m
dfj; X dfjf
1 i=1

i

Without loss of generality, we can assume that j, —ji > 0.
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Let
Nl_(jl _J;.k) N2 +j2 Nm —jm
n, ng n,
8(n) = N.
o ]
and
Ny =j3\ . [Nw—in
n2 nm
dy(Ngy. ... n,,) = N
o

Then Ey (6, — 8,) = 0. However, 5, # 8, since 8, is a function of n, and 4, is
not. Therefore, the condition for completeness is violated. O
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