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ON THE YEH-BRADLEY CONJECTURE ON LINEAR
TREND-FREE BLOCK DESIGNS

By FENG-SHUN CHAI AND DIBYEN MAJUMDAR
University of Illinois, Chicago

Yeh and Bradley conjectured that every binary connected block design
with blocks of size 2 and a constant replication number r for each
treatment can be converted to a linear trend-free design by permuting the
positions of treatments within blocks if and only if (& + 1) = 0 (mod 2).
This conjecture is studied. Results include: (i) the conjecture is true when-
ever the block size is even and (ii) the conjecture is true for BIB designs.

1. Introduction. In many experiments where several treatments are
compared in blocks, and within blocks the treatments are applied to the
experimental units sequentially over time or space, there is a possibility that a
systematic effect, or trend, influences the observations in addition to the block
and the treatment effects. The analysis of these experiments will be different
from the usual analysis of block designs, since trend effects have to be taken
into account.

The problem of designing experiments in the presence of trends was first
studied by Cox (1951, 1952). Bradley and Yeh (1980) studied block designs in
the presence of trends and characterized block designs that are ‘““trend-free.”
In essence, this means that the presence of trend does not affect the analysis of
the treatment effects. The recent paper by Lin and Dean (1991) is an excellent
source of literature in this area.

The focus of this paper is on construction of block designs in the presence of
a linear trend. Yeh and Bradley (1983) derived a simple necessary condition
for a design to be linear trend-free. This condition states that a block design in
blocks of size %k, with constant replication r for each treatment can be
rearranged to become linear trend-free only if r(k + 1) = 0 (mod 2). Yeh and
Bradley [(1983), Conjecture 5.1] conjectured that this condition was also
sufficient, that is, any block design satisfying this condition can be rearranged
as a linear trend-free block design without altering the original assignment of
treatments to blocks. We shall, for convenience, refer to the linear trend-free
design obtained from a block design as the ‘‘linear trend-free version” of the
block design. Yeh and Bradley (1983) established their conjecture for the case
k = 2 and for complete block designs with two or more blocks.

A family of counterexamples given by Stufken (1988) showed that the
conjecture is not true in general. These counterexamples are for classes of
designs with certain properties, of which one is that 2 must be odd.
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The purpose of this paper is to examine the Yeh—Bradley conjecture. We
want to determine when a design, that satisfies Yeh and Bradley’s necessary
condition, possesses a linear trend-free version. We shall prove several results
that include: (i) the conjecture is true whenever % is even and (ii) the
conjecture is true for balanced incomplete block (BIB) designs.

Indeed, (ii) will be generalized to balanced block designs (BBD’s). A conse-
quence of this result is that linear trend-free versions of BBD’s are “univer-
sally optimal” for a model that includes a trend effect in addition to block and
treatment effects, thus extending the celebrated result of Kiefer (1975) on the
universal optimality of BBD’s for models that consist of block and treatment
effects only.

Some preliminary results and tools, notation and so forth are given in
Section 2. The main results are in Section 3. Section 4 has some concluding
remarks.

2. Notation and preliminary results. We assume that, within blocks
there is a common polynomial trend of order p on the k periods, that can be
expressed by the orthogonal polynomials ¢ (I), 1 <a<p,on l=1,...,k,
where ¢, is a polynomial of degree a. The polynomials ¢(1),..., ¢,(1) satisfy

k k
2 ¢.(1) =0, Y bo(D)do(l) = 8,0,
=1 -1

where 6,, denotes the Kronecker delta, a,a’ = 1,..., p. The model for an
observation in period [ of block j, 1 <j < b, is
v ) P
(2.1) Yu=wrt Lohm + B+ X ¢,(1)0, + ¢
i=1 a=1
Here un is a general effect, 7,,...,7, the treatment effects, B,..., B8, the

block effects and 6,,..., 0, the trend effects. Moreover,

i _ |1, iftreatment i is applied in period / of block j,
g 0, otherwise,

with ¥Y_,6% = 1. If the trend is linear then p = 1 in (2.1) and we have only

one trend parameter 6, in the model. Let

T=(715-.-,7,), B=(B,---,B,) and 0 =(6,,...,0,).

A design d will be represented by a k X b array of symbols 1,...,v, with
columns denoting blocks and rows periods. Thus, if the entry in cell (I, j) of d
is 7, it means that under d treatment i has to be applied in period / of block .
Let D(v, b, k) be all connected designs in b blocks, %2 periods based on v
treatments. To avoid trivialities we consider henceforth only classes D(v, b, &)
with k > 2. For d € D(v, b, k), let n,;; denote the number of times treatment
i appears in column (block) j and s, ;; denote the number of times treatment i
appears in row (period) /. Let ry; = X;ny;; = ¥;s4,;, denote the replication of
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treatment i. We shall use the notation
D(v,b,k;ry,...,1,) ={d€D(v,b,k):rg;=r;,i=1,...,0},
D,(v,b,k;r) ={d € D(v,b,k;ry,...,1,):r;=r,i=1,...,0}.

For d € D(v, b, k), let R (7|, B,0) denote the adjusted treatment sum of
squares under model (2.1) and R (7|, B) denote R (7lu,B,6) when 6 = 0 in
(2.1). Bradley and Yeh (1980) defined a design d to be trend-free if

Rd(TllJV’ B’ 0) = Rd(Tll“L, B)

It can be shown that a design is linear trend-free if and only if

k
(2.2) Z sdil¢l(l) = 0, I = ].,.. U,
=1

This characterization holds for binary as well as non-binary designs, and also
irrespective of whether % is larger or smaller than v [Lin and Dean, (1991)].

The polynomial, ¢,(1) satisfies ¢,(I) = —¢(k — [ + 1). In addition, d(5(k +
1)) = 0 when % is odd. It follows, therefore, that (2.2) is true whenever

(2.3) sdil=sdi(k—l+1)’ l= 1,...,[(k + 1)/2], i= 1,...,0,

with [-] denoting the largest integer function. Note that, when % is odd (2.3)
does not impose any restriction on g1,/ It is not difficult to see that
condition (2.2) does not, in general, imply condition (2.3). Condition (2.3) is, in
fact, necessary and sufficient for a design d to be ‘‘odd-degree trend-free”” [Lin
and Dean, (1991), Corollary 2.1.2]. This means that the design is trend-free in
the presence of polynomial trends of the form ¢,(1)0; + ¢5(1)835 + -+ +¢,(1)8,
where e € {k — 2, k — 1} is odd.

If d € D(v, b, k;ry,...,1,), then it can be seen from the results of Yeh and
Bradley (1983), that a necessary condition for d to be linear trend-free is

(2.4) r(k+1)=0 (mod2),i=1,...,v.
If d € D,(v, b, k; r), then (2.4) reduces to
r(k+1)=0 (mod 2),

the Yeh-Bradley necessary condition mentioned in the introduction.

Our main tools are the system of distinct representatives (SDR) which was
defined by Hall (1935), the generalization of SDR due to Agrawal (1966) and
some theorems on SDR’s. For the sake of completeness, we reproduce a
definition and a basic result on the topic.

DEFINITION 2.1 [Agrawal (1966)]. If S;, S,,..., S, are subsets of a finite
set S, then (0,,0,,...,0,) will be called a (m,,m,,...,m,) SDR if (i)
0; c S;, (i) |0,| = m; and (iii) O; N O; = &, the empty set, for i #j =1,...,n.
(JA| denotes the cardinality of set A).
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THEOREM 2.1 [Agrawal (1966)]. A necessary and sufficient condition that
S84, S,y,..., 8, possess a (my, m,y,...,m,) SDR is that

t
IS, US,U---US|> Y m,,

forl1 <i, <i,< -+ <i,<n,l1<t<n.

3. Main results. Given a block design d € D(v, b, k) we wish to deter-
mine whether or not we can transform it, by permuting symbols within
columns, which are the blocks, to a design that is linear trend-free, that is, an
array that satisfies (2.2) or (2.3).

DeriNITION 3.1. An array d,., derived from a design d by permuting
symbols within columns, will be called a linear trend-free version of d if it
satisfies (2.2). The array d,, will be called a strongly linear trend-free version
of d if it satisfies (2.3).

Since (2.3) implies (2.2), a strongly linear trend-free version is also a llnear
trend-free version. Also recall that, as mentioned in Section 2, a strongly linear
trend-free version of d is odd-degree trend-free [Lin and Dean (1991)]. When k&
is even, it follows from (2.4) that a necessary condition for d,; to exist is: r; is
even for each i = 1,...,v; on the other hand when £ is odd, (2.4) imposes no
restriction on the replication numbers.

LemMmA 3.1. Each design in D,(v, b,2m;2) has a strongly linear trend-free
version.

Proor. Clearly v = mb. Let S ={1,2,..., mb}, d € D,(v,b,2m;2). Let C,
denote the jth column and S; denote the set of symbols in column j of d
J=1,...,b. The column C; coincides with the set S; for each j =1,...,b
when n,;; € {0, 1}, that is, the block design is binary. Whether binary or not
it is easy to see that d satisfies

IiSJ1 Usjzu cte USJ!' th,

for 1<j, < -+ <j,<b, 1 <t <b. Thus, by Theorem 2.1, S,,S,,...,S,

possessesa(m, m,...,m)SDR, (A, A,,..., A;),say. Let B, = C;\ A}, where
the notation M \ N denotes the collectlon of elements of M that are not in N.
Clearly m = |B;| = |1A}l, j = , 0. {A, Ay, ..., A} forms a partition of

S; so does {Bl, B,,..., Bb}. Hence, by a theorem of Koénig (1950) [cf.
Raghavarao (1971), Corollary 6.2.6.1] there is a permutation = of {1,2, ..., b}
such that A; OBW(J)a&@ Let a; €8, a;€A;NB_; for j=12,...,0b.
Obviously, al, Qg,...,a, are all d1st1nct Let us rearrange the columns of d
such that a;,a,,...,a, appears in the first and the last row of d, by putting
a; in the first row of column C; and last row of column C,_ iy J =1,2,...,b.
Call this new array d;.
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The array d, with the first and last rows deleted is in D,((m — 1)b, b,
2(m — 1);2). We can repeat the argument to this 2(m — 1) X b array. Contin-
uing in this fashion we obtain in m steps an array that satisfies the relation
(2.3). This is a strongly linear trend-free version of d. O

TuEOREM 3.1. Let k,ry,ry,...,r, be even numbers. For each design in
D(v,b, k;ry, 1y, ..., 1,) there exists a strongly linear trend-free version.

ProoF. Suppose k2 =2m and r,=2w;, i=1,2,...,v. Let d e
D(v,b,k;ry,1y...,1,). Let us derive an array d* from d in the following

fashion. Select any two cells of d that have the symbol i and replace i in these
two cells by the ordered pair (Z, 1). Choose two other cells that have the symbol
i from the 2(w; — 1) remaining cells and replace by the ordered pair (i, 2).
Continue in this fashion until all i’s have been replaced by (i, 1),
(i,2),...,3, w;). Do this for each i = 1,2,...,v. Call the resulting design d*.
Clearly d* € D(X}_,w;,b,2m;2); d* is based on symbols represented by
(G,8), g=12,...,w;i=1,2,...,v. Now, use Lemma 3.1 to obtain df;, a
strongly linear trend-free version of d*. Finally, in d};, replace each pair (i, g)
by the symbol i, to obtain the array d,,. Clearly, d, s 1s a strongly linear
trend-free version of d. O

Theorem 3.1 shows that the Yeh—Bradley conjecture is true whenever % is
even. Now let us turn our attention to the case £ odd. As has been mentioned
in the introduction, Stufken (1988) gave an infinite family of designs with odd
k, no member of which possess a linear trend-free version. Therefore, the
Yeh-Bradley conjecture is not true for Stufken’s families. There are, however,
many designs with odd %2 which are not covered by Stufken’s results. We shall
show that some of them do possess linear trend-free versions. In Theorems
3.2, 3.3 and 3.4 our method is to identify one symbol per column so that after
removing these symbols, reducing the column size by 1, we are left with a
design with even replications and even block size where we can apply Theorem
3.1; the symbols that were removed will be inserted as the [(k + 1) /2]th row of
the linear trend-free version.

THEOREM 3.2. Suppose k is odd and for 0 <t <v, r,ry,..., r, are odd,
T'yr1r+--, 1, are even. (If t = 0, then there are no odd r;’s and if t = v, there are
no even r’s). Let d € D(v,b, k;ry,rg,..., 1, ,41,...,7,) be such that the
columns of d can be partitioned into sets of columns Py, P,, ..., P,, Q, which
satisfy: (a) For each i = 1,2,...,t, the number of columns in P,, |P,, is odd
and the symbol i is common to each block in P;; and (b) |Q| is even and the
columns in Q can be divided into |Q|/2 pairs of columns such that any two
columns that form a pair have at least one symbol in common. Then d has a
strongly linear trend-free version.
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Proor. It follows from the structure of the array d that after permuting
within columns, if necessary, we can write

| P
(3.1) d= [do]
where p is a 1 X b row vector which is a permutation of
(1,...,1,2,...,2,...,¢,...,t,a1,Qq9,...,a),

where h = b — L!_,|P,, such that, for each i = 1,..., ¢, the symbol i appears
|P,| (0dd) number of times, while the symbols ¢ + 1,..., v either do not appear
or appear an even number of times each in p. Now applying Theorem 3.1 it is
clear that d, has a strongly linear trend-free version d,,, that satisfies (2.3).

Let us write
utf
o
dyr= ,
otf |:d0tf:|

where d¥ is a (k — 1)/2) X b array and so is d/,,. Then
as,
p
dos

satisfies (2.3) and is therefore a strongly linear trend-free version of d. O

CoroLLARY 3.1. Suppose kisodd, r,ry,...,r, areeven,2k > vand b = 2.
Then every binary design d in D(v, b, k;ry,ry,...,r,) has a strongly linear
trend-free version.

Proor. If 2k > v, then any two columns of d have at least one symbol in
common. Hence the result follows from Theorem 3.2. If 2k = v, then we can
divide d into two subarrays d, and d, such that d; consists of all the
columns of d that contain symbol 1 and d, consists of the remaining columns
of d. Notice that any two columns of d; i = 1,2, have at least one symbol in
common. Hence the result follows from Theorem 3.2. O

THEOREM 3.3. Suppose k is odd, ry,ry...,r, are even. Let d &
D(v, b, k; 1y, 1, ..., 1,) be a binary design such that for one symbol (say symbol
1), the union of all columns that contain symbol 1 contains at least one copy of
each of the other symbols 2,...,v. Then d has a strongly linear trend-free
version.

Proor. Suppose C,,C,, .. C,l, C, +1---,C, are the columns of the array
d of which C,,C,,...,C, conta.ln symbol 1 Let X=1{C,C,,...,C}, X, =
{C,Cy,...,C.}, XX \X be a collection of columns which can be d1V1ded

into pairs of columns such that the columns in each pair have at least one
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symbol in common. Furthermore X, has the property that no two columns
of X\ (X; U X,) have a symbol in common. Call X\ (X; U X,) = X;. Sup-
pose |X;| = q. Clearly ¢ < [(v — 1)/k]. Also, q is even, since the quantities b,

IX;| =r; and |X,| are all even. Let X, =1{C, ., ...,C, .}, X3=
{Cy_yi1s---,Cy}, and let S* be the set cons1st1ng of all symbols used in
., Cp.
b—qg+1 -2~

If S* = &, then the result follows from Theorem 3.2; hence assume S* # &.
Let Ay =0, A, =(C;NS*)\(AyuU -+ UA,_), for i =1,2,...,r,. Suppose
that {All, A .., Ay Y are all the nonempty sets in the collection
{Ag, Ay, ..., } Clearly, n>q and {A,, .., A; } forms a partition of
S*. It follows from Theorem 2 of Hall (1935) [cf Raghavarao (1971), Theorem
6.2.6] that there is a subset {j,, j,, ..., Jj,} of {i}, iy,...,1,} with the property:
A; NGy #=Dfort=1,2,...,q.

Hence C; N C,_,,, # @ for t = 1,2,...,q, where {le,...,qu} c X;. Note
that |X;| — 1{Cj1,...,qu}| =r; — q is even. Thus we can construct a (1 X b)

row vector p = (pl, e o3 Prp Pritise s Po—gs Pb—g+1s - - - » Pp) With the properties:
@ p; €C;, 12,...,b,

(i) pp_yrq = pJ, = 1,2,...,q, (recall {jy, jg,---»Jg} €{1,2,...,1)D),
(lll) pj_l 16{12 rl}\{jl’j% '~’Jq}
V) {py 115+ Py} 18 formed by selecting a common symbol in any two

columns that form one of the (b — g — r;) /2 pairs of columns in X,.

Clearly p consists of some symbols from the set {1,2,..., v}, repeated an even
number of times each. Therefore d has the structure (3.1) and the proof
follows as in the proof of Theorem 3.2. O

THEOREM 3.4. Suppose k,ry,ry,...,r, are odd. Let d € D(v, b, k;
ry, Ty, ..., 1,) be a binary design such that for one symbol (say symbol 1), the
union of all columns that contain symbol 1 contains at least one copy of each of

the other symbols 2, . ..,v. Furthermore, suppose that the collection of columns
not containing symbol 1 has a subcollection of v — 1 columns such that the ith
column among these v — 1 columns contains symbol i + 1,i=1,2,...,v — 1.

Then d has a strongly linear trend-free version.

Proor. Let X, X, be as in the proof of Theorem 3.3.

X, = the collection of the v — 1 columns from X\ X,
such that the ith column contains symbol i + 1,

X, = the collection of columns from X\ (X; U X,) which
can be divided into |X;| /2 pairs of columns such that
in each pair the two columns have at least one symbol
in common,

= X\ (X, UX,UX,).

Using the same technique as in the proof of Theorem 3.3, we can express d as
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in (8.1) with p consisting of all symbols 1,2,...,v each repeated an odd
number of times. Hence the proof follows as in the proof of Theorem 3.2. O

Observe that Theorems 3.3 and 3.4 can be extended to D(uv,b, k;
ry,Te,...,1,) with some r;’s odd and the rest even. The statement of such a
theorem, though not difficult, is quite long and involved and hence it is
omitted.

We shall use the standard notation BIB(v, b, r, k, A) to denote a balanced
incomplete block design in & blocks of size & each based on v symbols; r
denotes the replication of each symbol and A the number of blocks that
contain a pair of symbols.

THEOREM 3.5. Any BIB(v, b, r, k, M) satisfying r(k + 1) = 0 (mod 2) has a
strongly linear trend-free version.

Proor. We divide the proof into four cases:

CasE 1. k is even (hence r is even). The desired result follows from
Theorem 3.1.

Cast 2. k is odd, r is even. Since the symbols 2,...,v occur A times each
in the columns that contain 1, the result follows from Theorem 3.3.

Case 3. k isodd, r is odd and & > v + r — 1. With no loss of generality,
the design d can be viewed as the array

d= d, |’

where d,(k — 1) X r) and d,(k X (b — r)) are arrays based on the symbols
2,...,v only. The array d,, with columns as blocks, is a binary equireplicate
design in v — 1 symbols. On applying Theorem 3.1 or 3.2 of Agrawal (1966) to
d,, and rearranging the order of the columns of d,, it follows that column ¢ of
d, contains symbol i+ 1, i=1,...,v — 1. The result now follows from
Theorem 3.4.

CasE 4. kisodd, r is odd and v <b <v + r — 2. We can write, using
Theorem 3.1 or 3.2 of Agrawal (1966},

1 2 e+ v—1 v

d,
where d; is a (K — 1) X v) array and d, is a (k X (b — v)) array. Note that
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b — v is even. Let c;, denote the number of symbols common to columns j
and u of d,. From Corollary 3.1 of Connor (1952) it follows that for all j # u,

c.,=2k+A—r.

Ju =
Using b <v + r — 2 it is easy to show that 2 + A — r > 0. Hence the integer
¢;, = 1. Therefore the columns of d, can be divided into (b — v)/2 pairs of
columns such that each pair has at least one symbol in common. The result
now follows from Theorem 3.2, if we set ¢t = v. O

Finally we turn our attention to balanced block designs (BBD’s). It is known
that if d € D,(v, b, k; r) is a BBD, then

Fdl

where for each i = 1,2,..., h, d; is a complete block design (CBD) and d, is a
BIB(v, b, r', k', A) where & = hv + k' and bk’ = vr’. When %’ = 0, there is no
design d,. When k' =1, d, will be a row consisting of symbols {1,2,...,v}
each replicated b/v times.

THEOREM 3.6. Let d € D,(v, b, k;r) be a BBD with r(k + 1) = 0 (mod 2)
and b > 3. Then d has a linear trend-free version.

Proor. The linear trend-free version is obtained by combining a strongly
linear trend-free version of the BIB design d, with suitably structured
versions of the CBD’s d4,...,d,. O

REMARK. With the possible exception of the case k£ odd, k'(= k(mod v))
even and b odd, strongly linear trend-free versions of BBD’s can be con-
structed.

Theorems 3.5 and 3.6 show that the Yeh—Bradley conjecture is true for two
important families of designs—BIB’s and BBD’s. This fact leads us to a strong
optimality result. For a definition of universal optimality—the criterion that
we shall use—the reader is referred to Kiefer (1975).

THEOREM 3.7. Trend-free versions of balanced incomplete block designs
and balanced block designs are universally optimal within their respective
classes D(v, b, k) under model (2.1) with p = 1.

Proor. The result follows on applying Proposition 1 of Kiefer (1975) to the
C-matrix of a d € D(v, b, k). The C-matrix is given in equation (3) of Yeh,
Bradley and Notz (1985). O
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We conclude this section by an example of a strongly linear trend-free
version of a BIB(9,18,8,4,3) expressed as a 4 X 18 array with columns
representing blocks and rows periods:

DN = W
N = O -3
QU i~ O
© N
© 300 N
o I S NVUING) |
Wk O
© Otw 3
[o2 3~ ) Jile)
O

2
1
9
4

NWOHJ

4. Concluding remarks. The initial results of Yeh and Bradley (1983),
the results of Stufken (1988) and the results of this paper have settled the
Yeh-Bradley conjecture for a large number of classes of designs. The remain-
ing cases are currently under investigation.

We can drop the requirement that the designs are connected, if we adopt
(2.2) as the definition of a linear trend-free block design.

In this paper we gave existence results. The next step is to devise algorithms
to construct linear trend-free versions of designs. Bradley and Odeh (1988) has
one such algorithm. Hall (1956) and Ash (1981) have algorithms to find SDR’s.
Recently Stufken (personal communication) has sharpened Bradley and Odeh’s
algorithm. Chai (1992) has a computer program to derive strongly linear
trend-free versions of designs with % even and r; even.
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