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THE EXPECTED NUMBER OF LOCAL MAXIMA
OF A RANDOM FIELD AND THE VOLUME OF TUBES

By Davip SIEGMUND! AND HEPING ZHANG

Stanford University and Yale University

Using an expression for the expected number of local maxima of a
random field, we derive an upper bound for the volume of a tube about a
manifold in the unit sphere and show that under certain conditions our
bound agrees with the evaluation of the tube volume in Weyl’s formula.
Applications to tests and confidence regions in nonlinear regression are
discussed.

1. Introduction. Hotelling (1939) posed the statistical problem of testing
for the presence of a nonlinear term in a linear model. In the case that the
nonlinear term contained a single nonlinear parameter, he showed that the
significance level of the likelihood ratio test involves the volume of a tube
about a curve (actually two tubes about two curves) imbedded in the unit
sphere in m-dimensional Euclidean space, where m is the sample size minus
the number of linear terms in the model. He then gave a geometric evaluation
of the volume of the tube under the assumption that the tube radius, hence
the significance level, is small. Hotelling’s result states that if the curve is
closed the tube volume is essentially the cross-sectional area of the tube
multiplied by the arc length of the curve. In a companion paper Weyl (1939)
treated the case of an arbitrary number of nonlinear parameters, where the
geometric problem involves the volume of a tube about a manifold of dimen-
sion equal to the number of nonlinear parameters, say q. An important
difference between the one-dimensional and multidimensional results is that
Hotelling’s formula does not explicitly involve the curvature of the manifold
(curve), whereas Weyl’s does. Weyl’s paper is regarded as classical in differen-
tial geometry [cf. Gray (1982)], but until recently neither Hotelling’s nor
Weyl’s paper has had much impact in statistics. See Naiman (1986, 1987,
1990), Johansen and Johnstone (1990), Johnstone and Siegmund (1989),
Knowles (1987), Knowles and Siegmund (1989), Sun (1989) and Knowles,
Siegmund and Zhang (1991) for recent related statistical research. A com-
pletely different application is discussed by Smale (1981), who apparently was
under the erroneous impression that in the case of arbitrary radii the
Hotelling—Weyl formulas give upper bounds for the tube volume.
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LOCAL MAXIMA AND VOLUME 1949

Naiman (1986) noted that the same geometric problem arises in finding
simultaneous confidence bands in curvilinear regression, and showed that with
the proper interpretation Hotelling’s formula, which gives the exact volume
for tubes of sufficiently small radii, gives an upper bound for all radii and
hence a conservative approximation to the desired probability. A simple geo-
metric description of the situation in one dimension is the following. For a
curve which is not closed, the expression given by Hotelling must be trivially
modified by adding to it the volume of a sphere, to account for the two
hemispherical caps at the ends of the curve. Naiman’s result is that if one
always adds to Hotelling’s evaluation this spherical volume, which is obviously
necessary when the curve is not closed, the result provides an upper bound for
the volume of the tube for any curve and any tube radius. See also Estermann
(1926), where Naiman’s result was anticipated from an entirely different
viewpoint for tubes about curves in Euclidean space. Johnstone and Siegmund
(1989) gave two unified derivations of the Hotelling—Naiman results. One of
these involved a probabilistic argument using the concept of upcrossings
borrowed from the theory of Gaussian processes [cf. Leadbetter, Lindgren and
Rootgen (1983), Chapter 7].

In this paper we give a similar analysis of the volume of a tube about a
g-dimensional manifold. In principle, our method is a direct application of a
formula for the expected number of local maxima of a random field. However,
the situation is much more subtle than in one dimension. Although our
expression agrees with Weyl’s under certain conditions, in particular whenever
Weyl’s result is exact, in more than one dimension there does not appear to be
any simple, geometrically based modification of Weyl’s formula which will yield
our upper bound. We give simple examples where Weyl’s formula grossly
underestimates the tube volume and where it exceeds our upper bound. In one
dimension our bound can be better and can be worse than Naiman’s.

In Section 2 we derive our upper bound and show that under certain
conditions it agrees with Weyl’s formula. Section 3 contains two simple
examples which indicate some of the geometric subtlety of the multidimen-
sional case. In Section 4 we discuss numerical evaluation of our bound, and
numerical examples involving some two-dimensional manifolds are given in
Section 5.

Section 6 is concerned with the related problem of confidence regions in
nonlinear regression along the lines of Knowles, Siegmund and Zhang (1991),
who discussed models involving only one nonlinear parameter.

REMARK. We are using the expression “Weyl’s formula” to refer to dis-
plays (10) and (16) of Weyl (1939). Weyl himself (with understatement)
regarded these as ‘“hardly . . . more than what could have been accomplished by
any student in a course of calculus,” and went on to show that (16) could be
expressed intrinsically, that is, entirely in terms of the metric tensor of the
manifold. Our result is not intrinsic, and our methods make no contribution to
understanding this last, much deeper result, which from a geometric point of
view is more properly deserving the designation ‘“Weyl’s formula.”
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2. An upper bound for the tube volume. Let S™~! denote the unit
sphere in m-dimensional Euclidean space. For 1<qg<m —1 let M be a
smooth g-dimensional manifold imbedded in S™~!. We suppose that M is
given locally as the image of a smooth function y = y(¢) defined on a suitable
subset T of g-dimensional Euclidean space. For most statistical applications
the manifold is defined globally by v, and we shall not concern ourselves with
technicalities associated with manifolds requiring more than one coordinate
patch for their definition. The tube about y of geodesic radius ¢, 0 < ¢ < =, is
the set of all points € S™~! such that (y, u) > cos(¢) for some y € M. We
shall be interested in the volume of the tube of geodesic radius ¢ = cos™Nw)
about vy, or equivalently

(1) P{ su1134<7,U> > w}
ye

where U is uniformly distributed on S™1.

Since boundary points of the manifold require special treatment, we assume
initially that M has no boundary, or what is equivalent for our purposes that
the event in (1) is intersected with those points z € S™~! for which the
closest point on the manifold M is an interior point. Let Z(¢) = (y(¢),U),
teT, and let N, denote the number of local maxima of Z(t) at which
Z(t) > w. Then (1) is equal to P{N,, > 1}. Note that

P(N, > 1} < E(N,).
Our upper bound for (1) is provided by the following evaluation of E(N,).

ProposITION 1. For a manifold M without boundary,
(2) E(Nw)=[E{|—z"|;z>w,z’=0,z"<0}dt,
T

where Z and Z are respectively the gradient and Hessian of Z, | — Z| is the
determinant of —Z and the notation Z < 0 means that Z is negative definite.

Proposition 1 is well known when Z is a well-behaved smooth Gaussian
process. See, for example, Adler (1981), pages 123-124, or Belyayev (1972).
For the process Z(t) = (y(#),U) of interest here, there are some additional
technicalities, which are already apparent in Johnstone and Siegmund’s (1989)
derivation of the expected number of upcrossings of the level w in the
comparatively simple case that g = 1. Since these details would lead to a
lengthy technical digression and add no important insight to what follows, we
shall not discuss them further.

Under the assumption that the tube radius is sufficiently small that no
overlap occurs, Weyl (1939) gave several expressions for the volume of the tube
about M, which obviously equals the product of the probability (1) and

(3) volume(S™~ 1) = 27™/2/T(m/2).
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We now show that under assumption (11) below which includes all cases
where Weyl’s formula is exact, Weyl’s formula equals the product of (3) and
the right-hand side of (2).

At y(¢) € M consider the basis for R™ given by y;, the partial derivative of
y with respect to ¢, i =1,...,q, and n(v), v = 1,..., m — q, where the n(v)
are mutually orthogonal unit vectors which are all orthogonal to the tangent
space of M. Without loss of generality we assume n(1) =y. Let (g;;) =
({¥;,7,;7) denote the metric tensor of the manifold M and ds = lg; jll/ 2 dt the
volume element. Weyl (1939), display (10), showed that for all sufficiently
small ¢ the volume V(¢) of the tube of geodesic radius ¢ about the manifold
M without boundary is given by

V(¢') = fM{f o fzén—q-rfstan2¢

m—q
& - L nLi(v)
2

(4)

% d72 cet d'Tm_q ,
(1 +Tp-er2)"”

where (8/) is the identity matrix and (L{(v)) is the matrix of the Weingarten
map relative to the direction of n(v) [cf. Millman and Parker (1977), page 125].
We also recall that the derivatives ¥,;; = a%y /ot ot ; satisfy Gauss’s formulas

q m-q
(5) 'i;ij = Z Ftlj‘Yk + 2 Lij(V)n(V)’ l!.] = 1’2"“,Qa
k=1 v=1

where T'% are Christoffel symbols and L,;(v) are coefficients of the second
fundamental form relative to the direction n(v), which are related to the

Weingarten map by

q
(6) Lij(V) =X gika(V)
k=1
[ef. Millman and Parker (1977), pages 104 and 125]. We can decompose U as
q m-—q
(7) U= Yay+ X &n(v).
i=1 v=1
From vy = n(1), (7) and (5) we see that
Z=¢
and
.o q . m_q
Z;; = > Filj‘Zk + Y L;(v)é,.
k=1 v=1

At a local maximum of Z we have Z = 0, so by (6),
m-q q

Zij= Z > gika(V)fu

v=1 k=1
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and hence

. m_q .
(8) | — Zijl = |gij| = Z L;(V)fv .
v=1

From (y,y,> =0,i=1,...,q, and (5) follow
Lij(1) = gy = =¥ V) = —&i;
and hence by (6) Li(1) = -8}, i,j = 1,..., q. Hence by (8) and (2) we have

(9) E(N,) = /TE{

where the expectation on the right is with respect to the joint distribution of
the coefficients in (7).

If we express U as U = (uy,...,u,,) in terms of an orthonormal basis of
R™, we can without loss of generality assume ¢, =u,, v =1,...,m—gq.
Moreover, a calculation shows that the joint density of (Z,, ..., Z,)at(,...,0)
is Igijl_l/2 times the joint density of (v ,,_,,,...,%,,) at (0,...,0). Since the
conditional distribution of (u,,...,u,,_,) given u,,_ ., = - =u, =0is
uniform on S™797%, recalling that Z = u, and ds = |g;;|"/* dt, we obtain
from (9) and some calculation the following result.

m—q
8;%1 - Z L;(V)gu
v=2

2> w, Z= 0, Z< O}Igij|dt,

1/2
ProposITION 2. For a manifold M without boundary,

'(3)
_ 2
(10) o mr( %) fME{

)

m—q
Siu{m 0 — 3 Li(v)uim~?
v=2

um O > w, Z < O} ds,

where now expectation refers to the uniform distribution of
Um-a — (u(l"‘_‘”, . u(m—q))

b m—q

on 8™ 971 gnd

Z=ZU"0) = - Lguofuf0 - TLEw)u o).
k v

Now assume that for all ¢,
(11) {(Z>w,Z=0}c{Z<0},

so the constraint on Z in (10) is redundant. It is easy to see that the resulting
expression is consistent with (4) as follows.
As is well known,

(@875 UG IP) = (Y155 Img) /Y,
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where y;’s,i = 1,..., m — g, are independent N(0, 1) variables and =, stands
for equality in distribution. Hence
. m_q .
E{ SummO — Y Li(v)u" P w0 > w}
v=2

m-—gq
3y /llyll = ) L;(V)yy/llyllr;yl/llyll > w}
v=2

=E{
=E{ |

= “—(2#)(m—q)/2 ‘[Ul>||y||w}

(12)

m—q

v=2

(y1/lly )5 1 /llyll > w}

m—q
8 = L Li(»)3./y:|(5./lyl)” exp{~liyll*/2} dy.
v=2

Consider the transformation
TL=Y1 T2 =Y2/Y15- ) Tm—q = Ym—-q/Y1
with
dy =7{""9"Vdr,

Let [|I7]® = 272, so |lyl® = 41 + ||711%). After some manipulation the inte-
gral in (12) becomes

m —q
o(m —q—2)/21"( _)
2 ‘/;I|1'I|2<a2)

where a® = w2 — 1. Therefore, under condition (11), E(N,) equals

m
r(3)
27™m/2 [M{'/;IITII2<a2)
1

X ————dr, - dr,,_, | ds,
@+ 2" "}

which agrees with (3) and (4).

A+ 1712 " dry - dr

m—q?

. m_q .
8 — Y Li(v)r,
v=2

m—gq
3} — gz L;(V)‘TV

(13)

Display (13) says that under condition (11) the expected number of local
maxima of Z at a height greater than w is the ratio of the volume of the tube
about the manifold M of geodesic radius cos ' w to the volume of the unit
sphere. Condition (11) is satisfied whenever there is no overlap in the tube. In
the case of no overlap, Weyl’s formula gives the true volume. In particular,
this is true whenever w is sufficiently close to 1, so the radius of the tube is
sufficiently small.

For manifolds M with boundary dM, we must also consider those points of
the tube for which the minimum distance to the manifold is attained at a point
on the boundary. In general, the boundary of a g-dimensional manifold is a
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g — 1-dimensional manifold which may itself have a ¢ — 2-dimensional bound-
ary. The general situation is quite complicated although essentially only one
new remark is required to supplement the preceding calculations.

Suppose that M has a smooth oriented boundary, dM. That is, at each
point y € M there exists a unit normal n(2) to the tangent space of M
which lies in the tangent space of M and which points in the direction of the
interior of M. If a point « in the tube around dM has a positive projection on
the normal n(2) at the nearest point y € dM, its contribution to the probabil-
ity (1) has already been evaluated in Proposition 2. The new contribution to (1)
is

(14) P{{y,U) > w and {n(2),U) < 0 for some y € dM }.

A result similar to Proposition 2 is easily obtained, but there is an additional
constraint under the expectation sign in (10) corresponding to the condition
(n(2),U) < 0in (14).

3. Comparisons with Weyl’s result. This section contains two simple
examples to illustrate that when the tube radius is large Weyl’s formula can
give a poor approximation to the desired tube volume in cases where the
expected number of local maxima yields the correct result.

ExampLE 1 (Sphere in R™). For simplicity, we first consider the case where
our manifold is the unit sphere S™~! in R™ and the tube is the set of all
points within Euclidean distance w of the sphere. A random point U is
uniformly distributed in a large ball of radius a containing the manifold of
interest, and the random field X is the Euclidean distance from U to a point y
in the manifold. Of course, it is trivial to determine directly the volume of a
tube about S™~!. The point of the example is to show that our upper bound
always yields the exact volume, whereas for large tube radii Weyl’s formula
overestimates the tube volume when m is odd and underestimates it when m
is even. We begin by considering an arbitrary hypersurface and later specialize
to the unit sphere.

Let X =|ly — U|>. We assume that 1 + w < a, so the tube of Euclidean
radius w about the hypersurface M is completely contained in the ball of
radius a centered at the origin. If N denotes the number of local minima of X
where X < w?, the analog of Proposition 1 is

EN=[E(|X|;X<w2,X=o,X> 0) dt.
T

From X, = 2{y;,y — U), Xij = 2{y;;,y — U) + 2g;;, we see that at points y
where X = 0, U lies in the direction normal to M, and from Gauss’ formulas

%)

X;;=2g;;+2L;{n,y - U),

where n is normal to the manifold M at 7.
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For the special case where our manifold is the unit sphere, n = y and hence
L;;={n,%;> = —<{¥;,7;> = —8&;;- Simple algebra now shows that for the
special case of interest

EN = [E((y, Uy 5 (1 -w) < (& U) <1+w,
(15) T
(¥;, U) =0, for all i)ig,,| dt.

The joint density of <(y,U){y,U), i=1,...,m—1, at (x,0,...,0) is
[Igijll/za”‘Qm]_l, where Q,, is the volume of the unit ball in R™. Hence

EN = {(1+w)" -~ [(1- w) "]} /e,

which is the volume of the tube divided by the volume of the ball of radius a.
It is easy to see that P[min X < w?] = E(N,). Weyl’s formula gives a very
similar result, except that there is no positive part in (15) or the final
expression. When w < 1, it gives the true probability; otherwise it is a lower or
upper bound for the probability depending on whether m is even or odd, and
the error made by Weyl’s formula can be substantial.

This example has an instructive geometric interpretation. Assume 1 <w <
2. Suppose that U is inside the unit ball of radius w — 1 centered at the origin
and X(y) is the squared distance from U to an arbitrary point y on the unit
sphere. As y moves on the unit sphere, X attains its extrema at two points. An
elementary argument shows that we can without loss of generality assume
U= (u0,...,0), where 0 <u; <w — 1. Since the unit sphere satisfies the
equation x2 + - -+ +x2, = 1, the squared distance from y = (xy,..., x,,) to U
is

(%, —uy)’ + - +x2 =1 - 2ux;, +ul,

which attains its extrema, one minimum and one maximum, when |x,| = 1.
Our formula includes the minimum and excludes the maximum to arrive at
the correct probability. Depending on whether m is even or odd, the expres-
sion given by Weyl’s formula is less or larger than the true probability. At the
maximum the (m — 1) X (m — 1) determinant of Weyl’s formula has entries
{y,U) < 0 along the diagonal and 0 elsewhere, and hence is negative when m
is even and positive otherwise. A picture in two dimensions is illuminating. See
also (15).

ExampLE 2 (Cylinder). Consider the sphere S® in R* and a cut cylinder M
in S3, '

M= {y(0,¢>) = (h cos 6cos ¢, h cos B sin ¢, b sin 6, V1 — h*):

6 (0,7),¢< (0,27},

where A is fixed in (—1,1). This surface is a natural two-dimensional version
of an example of Knowles, Siegmund and Zhang (1991).
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We have
Z = h cos 6(cos pu, + sin pu,) + hsin Quy + V1 — h?u,,
Z, = —hsin 0(cos pu, + sin pu,) + h cos fu,

Z¢ = h cos 0( —sin ¢pu, + cos dpu,),

Zyy = —h cos 0(cos pu, + sin pu,) — h sin fu,,
Z"M, = —hsin 6( —sin ¢u, + cos du,),
Z¢¢ = —h cos 8(cos pu, + sin pu,).
Conditional on Zo =0, Z¢ = 0, we have Z"% = 0 and
. h cos 0
Zos =~ cos ¢ Yo

Zyy = Zd>¢ — hsinfug
sin0(sin0 . )

¢ cos | cos” *?
_ Zyy _ h )
cos? 0 cospcosfh

Then the expression given by Weyl’s formula is

)

h? h
16 CE 2, +V1—-h%u, >
(16) (cosquul’ cosq&cosﬁ?u1 Ua oW

where C is some constant playing no role in our illustration, and the expecta-
tion of the number of local maxima is
h? h

17 CE 2. +V1—-hu,>w,
(17) (coszqﬂu1 cosd>cos6'u1 “e = W

LI 0) .
cos ¢ cos 6

We see that (16) > (17). The equality holds if and only if 1 — A% < w?; that is,
there is no overlap in the tube.

4. Numerical evaluation. In Section 2 we showed that Weyl’s formula
is exact if condition (11) is satisfied. However, in statistical applications it is
not feasible to verify this condition; and examples in the previous section,
although artificial, show that neglecting the condition can lead to arbitrarily
poor approximations to the true probability. For the special case of a two-
dimensional manifold, Zhang (1991) has evaluated numerically the expression
given in Proposition 2 for E(N,). In Section 5 we use this evaluation to
compare our upper bound with Weyl’s approximation in a number of statistical
examples.
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The evaluation of E(N,) involves a lengthy calculation, which is divided
into a number of different cases. The function y and its derivatives are
represented in terms of an orthonormal basis of R™. Repeated use is made of
the fact that if U™ = (u{®, ..., u™) is uniformly distributed on S™~%, then
for p < n, the joint density of (u{™, ..., u$") is given by

r(%n)_p) - fu

(n—-p—2)/2
" |
p/21"(__._
i 2

The details are quite complicated and are not given here. The final expression
involves a four-dimensional numerical integration. This should be contrasted
with Weyl’s formula, which always involves an integration of the dimension of
the manifold—2 in this case. In one dimension Naiman’s (1986) upper bound
is no more difficult to evaluate than Hotelling’s (1939) equality, but we have
been unable to achieve a similar result in higher dimensions. The added
complication involved in evaluation of E(N,) comes from the constraint that
Z be negative definite. We do not know for a higher-dimensional manifold how
many additional dimensions of numerical integration are required, but the
number appears to grow rapidly with the dimension. We believe it is possible
to carry out the numerical integration for a manifold of three dimensions, but
four or more dimensions pose quite substantial challenges.

In the following numerical examples, we often do the calculations with and
without the constraint on Z in order to obtain some empirical evidence
concerning the possibility of using the simpler evaluation as an approximation
of the more complicated one. For the probability discussed so far, this approxi-
mation just brings us back to Weyl’s formula. However, for the problem of
confidence regions discussed in Section 6, the corresponding approximation
does not have a simple interpretation and apparently cannot be obtained by
local methods of differential geometry.

5. Examples and simulation. In this section we consider statistical
applications of the results stated in Section 2. Since complete evaluation of the
expressions given there is onerous, we shall be interested in the extent to
which neglecting some aspects of the calculation leads to useful approxima-
tions.

Assume that we have observations (x;,y,), i = 1,..., m, from the regression
model .
(19) ¥, =X;a + Bfi(x,0) + ¢,

where X, is a vector which is independent of unknown parameters, f; is a
nonlinear function of 6 and ¢; are independent and identically distributed as
N(0, o?) with unknown o. Suppose we want to test H,: B = 0. For this
purpose we can assume without loss of generality that the linear term X; does
not appear in (19) [cf. Siegmund and Zhang (1991)]. Then the p-value of the
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likelihood ratio test for H, is

(20) P|supl{y(6),U"™)| > w|,
0

where, under H,, U™ is uniformly distributed on S™~, y is the unit vector
f/Ifl, w is the observed value of [{y(8),y)!/llyll and 6 is the maximum
likelihood estimator of 6.

ExampLE 3 (Testing for a harmonic). We begin with an example from
Knowles and Siegmund (1989). The model is

y; = Beos(ux; + w) + ¢,

where for simplicity x; =i —(m + 1)/2,i=1/,...,m.

For various values of m and w, Knowles and Siegmund computed p-values
from Monte Carlo and from their Corollary 3, derived from Weyl’s formula. In
some cases they were able to use the special structure of the model to show
that the expression given by Weyl’s method is a genuine upper bound. In other
cases they were unable to show this, and evidence from their Monte Carlo
experiment was ambiguous.

The method of this paper gives numerical results which are virtually
indistinguishable from those of Knowles and Siegmund in all the cases they
considered. Thus, insofar, as this example is concerned, the theoretical possi-
bility that Weyl’s method may be anticonservative seems not to be realized.
See Zhang (1991) for the actual numerical values.

ExaMPLE 4 (Broken-plane mode). The ‘“broken-plane” model is a natural
generalization of the broken-line regression model discussed by a number of
authors. A particularly interesting data set involving the lifetime of plastic
pipes as a function of stress and temperature is mentioned by van de Geer
(1988) and has been provided to the authors by Richard Gill.

The model is piecewise linear and because of the linearity seems to be a
particularly simple example for our general theory; but by virtue of the lack of
differentiability of the regression surface, our results do not apply directly. To
understand these problems in the simplest context, it is helpful to consider the
tube of Euclidean radius w about a broken line y in the plane (cf. Figure 1)
and compare the approach of this paper with the related but intrinsically
one-dimensional level crossing theory of Johnstone and Siegmund (1989). [See
Siegmund and Zhang (1991) for an application of that idea to broken-line
regression and Naiman (1986) for a similar picture described analytically.]
Using the expected number of downcrossings (cf. Example 1), one obtains the
same upper bound to the volume of the tube either by a direct argument
applied to the broken line or by approximating the broken line uniformly by a
sequence of smooth curves, since for each point in the interior of the tube, that
is, whose distance to the broken line is less than the tube radius, the number
of downcrossings is the same for all smooth approximating curves that are
sufficiently close to the broken line. The expected number of downcrossings
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Fi1G. 1. Broken line in the plane.

gives a strict upper bound for the volume of the tube in Figure 1 because
points in the figure designated with the letter a are counted twice, while
points in the areas b and c¢ are counted once, as they should be. The situation
regarding the expected number of local minima is more complex. If we
approximate the broken line by a sequence of smooth curves, the points in
areas a and b are both counted twice, while those in area c are counted once,
to give a less accurate bound. On the other hand, if we apply the local minima
calculation directly to the broken line, points U in areas a and b are counted
twice, while those in ¢ are not counted at all, since there the derivative of the
process |ly — Ull> jumps across 0 without ever being equal to 0. Since the
areas b and c are equal, the expected number of local minima exactly equals
the expected number of downcrossings, so the two methods give the same
bound on the tube volume. Note, however, that this last argument would not
work for an arbitrary continuous curve with a discontinuous derivative, so to
obtain a guaranteed upper bound for the tube volume by using local minima,
one would have to calculate the limit associated with a sequence of smooth
approximations.

For broken-plane regression, there is no notion of the expected number of
upcrossings, but we can easily calculate the expected number of local maxima.
In what follows we have employed the symmetry considerations of the preced-
ing paragraph to obtain the better of the two bounds. The difference between
these bounds can be quite substantial if the number of breaks in the regres-
sion surface is large.

We consider the simplest possible broken-plane model

:

(21) y=B(x; — 0,x, — 0,)".

Suppose that x; takes values of 1,...,6; to each value of x, there corresponds
a series of x, taking values of 1,..., 7. So there are 42 design points of (x, x,).
Let

(22) A = sup {y(6,,8,), U*D),
01,05
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TaBLE 1
Comparison of p-values: P[A > w?]

w? Empirical value Approximated value
0.285 0.010 0.010
0.249 0.025 0.025
0.221 0.050 0.051
0.203 0.075 0.079
0.191 0.100 0.108
0.180 0.125 0.140
0.171 0.150 0.174

Finding 6 for (19) is usually difficult; fortunately, the special structure of the
model (21) allows us to obtain the maximum likelihood estimates quite effi-
ciently. See the algorithms described in van de Geer (1988) and Zhang (1991).
Thus it is feasible to approximate the empirical distribution of A and hence
the p-value (20) by Monte Carlo.

Our Monte Carlo experiment proceeds as follows. First, we independently
draw 42 observations of y,, ..., y, from N(0, 1); we fit the sample data to the
model (21) using the algorithm suggested in Section 7.2 of Zhang (1991); we
find the regression residual sum of squares, denoted by R, and convert R into
A via the relationship A = 1 — R/|ly||®>. Now we repeat this procedure 20,000
times to obtain the empirical distribution of A. See Table 1 for selected
quantiles of the tail of the distribution.

On the other hand, an approximation can be derived for the distribution of
A by our local maxima results. It is interesting to point out that because of the
piecewise linearity of the manifold, the bound obtained by the local maxima
argument depends only on the area of the manifold M = {y(6,, 6,)}, the length
of its boundary dM and the sum of the exterior angles ¢,. The numerical
computation of these quantities is easy because every edge on the manifold M
is a segment of a big circle. Some numerical results are given in Table 1. The
accuracy of our bound, especially in the upper tail, seems more than suffi-
ciently accurate for practice.

We have also applied this method to obtain a p-value for the test of no
break point in the regression surface for the data provided by Richard Gill (see
Figure 3), concerning survival time of plastic pipes as a function of tempera-
ture and stress. The result was an attained significance less than 1075,

6. Confidence regions. In Section 5 we observed that testing the hy-
pothesis B = 0 for the model (19) leads to the problem of evaluating the
probability (20). Now we are interested in finding confidence regions for 6, or
more generally joint regions for § and 8 and /or some components of « for the
model (19). Conceptually, our method is exactly the same as that discussed by
Knowles, Siegmund and Zhang (1991) for models involving only one nonlinear
parameter, but the required probability calculations are more complicated. See
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also Siegmund and Zhang (1991). For simplicity, we again assume that the
linear term involving X; does not appear in (19). Our 1 — & confidence region
for 6 is the set of all 6, such that

(23) Peo[s‘;p<7(0), U™ > w?(y(6,), U™) = Z] >,

where w and 2z are the observed values of max,|{y(9), y/lyll}| and
(y(8o), ¥/lly I}, respectively. For a manifold without boundary, we bound from
above the probability on the left-hand side of (23) by

(24) E{[N,(M)] = [E2||Z); 2> w, Z = 0, Z < 0] do,

where E* means conditional on {y(8,), U™) = 2.

Knowles, Siegmund and Zhang (1991) give a geometric interpretation for
(23), although there does not seem to be a (local) geometric method for
calculating it. The numerical evaluation of (24) is similar to that of (10) though
more complicated. We omit the tedious calculations and refer to Zhang (1991)
for details.

There are a number of other methods for obtaining confidence regions in
nonlinear regression [cf. Bates and Watts (1988), Chapters 6 and 7, or Seber
and Wild (1989), Chapters 3 and 5]. One of these, the approximate F or
likelihood method, is based on the assumption that an appropriate version of
the likelihood ratio statistic has an F distribution, as it would in the case of a
linear model. This method seems to perform very well, better in fact than the
theory behind it leads one to suspect, although Knowles, Siegmund and Zhang
(1991) show that it can behave poorly when the confidence region contains
points close to the boundary of the parameter space.

ExampLE 5 (Hunt’s ryegrass data). We consider data published by Hunt
(1971) and also analyzed by Cook and Goldberg (1986). Hunt originally
suggested use of the logistic model "

B B
1+ exp(6; + 05x)

(25) y

for the data. However, Cook and Goldberg fit the data with an asymptotic
growth model

(26) ¥ = By + Bexp(—6x).

Our interest in these data was prompted by the unusual shape of the confi-
dence regions obtained by Cook and Goldbe » This shape suggests large
curvature, where methods like the approximate ¥ method, which are justified
by local, linear approximations, may break down. This should then be a good
test case for our method, which can only err in the direction of conservatism,
and which, based on the empirical evidence in Knowles, Siegmund and Zhang
(1991), we believe to be essentially exact under a wide variety of conditions. A
plot of the data shows clearly the S shape associated with the logistic model
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Fic. 2. 95% joint confidence region for ryegrass data. The solid region was obtained by the
approximate F method; the plus sign is the location of the MLE.

and incompatible with the asymptotic growth model. Indeed, the two compo-
nents of the confidence region obtained by Cook and Goldberg indicate the
schizophrenia of the asymptotic growth model in trying to choose parameter
values which either ignore the convex curvature at the left-hand end of the
regression function while modeling the concave curvature at the right-hand
end, or vice versa. Hence we have used the logistic model (25).

Since evaluation of (24) is time consuming and unlike the significance level
in the preceding sections must be done repeatedly, Knowles, Siegmund and
Zhang (1991) suggest the possibility of calculating the much simpler approxi-
mate F confidence region and using their method as a diagnostic to check the
accuracy of that region and if appropriate to correct it. In Figure 2 we have
obtained a 95% approximate F joint confidence region for (6,,6,). It is
approximately elliptical in shape, which suggests that it should have close to
its nominal coverage probability. As a check, using (24) we computed upper
bounds for conditional p-values at 15 points along the boundary of the 95%
approximate F region. The results are given in Table 2. It is apparent that the
approximate F' method has given a very accurate region in this case.

Since one of the most onerous aspects of evaluating (24) numerically is the
constraint that Z be negative definite, we performed the same calculation
omitting this constraint. The calculation was much faster and yielded the same
numerical results. We saw in Section 2 that in the hypothesis-testing context,
eliminating this constraint gives us Weyl’s formula; but for the present
problem we do not know any comparable interpretation.
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TABLE 2
Tail probability along boundary

0, 0, Upper bound
2.362 -0.059 0.0498
2.460 -0.057 0.0496
2.560 -0.059 0.0499
2.660 -0.062 0.0498
2.760 -0.066 0.0495
2.860 -0.070 0.0499
2.960 -0.076 0.0498
2.985 -0.079 0.0497
2.964 -0.081 0.0497
2.864 -0.080 0.0497
2.764 -0.078 0.0497
2.664 -0.075 0.0497
2.564 -0.072 0.0497
2.464 -0.068 0.0498
2.364 -0.061 0.0496

Although the model (27) seems inappropriate, we also assumed that model
and calculated a joint confidence region for (9, 8), which was virtually indistin-
guishable from the disconnected approximate F region of Cook and Goldberg
(1986).

ExamPLE 6 (Broken-plane model). Now, we study the data on plastic pipes
provided by Richard Gill. The survival time of a pipe, that is, the time until the
pipe bursts, is believed to depend on the ambient temperature and on the
stress applied to it. The data are presented in Figure 3. The logarithm of
the stress (x,) in MN /m? (meganewtons /square meter) and the logarithm of
the survival time y in hours are plotted along the horizontal and vertical axes,
respectively. There are only four values of temperature: 20°C, 40°C, 60°C and
80°C. The reciprocal of the temperature is chosen as x;. We use the broken-
plane model

(27) y=a;+ 0,x; + Bixy + Ba(xy — 3%, — C“2)Jr

The predicted change line is x, = —0.0043 + 1.14x,; and for each fixed tem-
perature of 20°C, 40°C, 60°C and 80°C, the fits are shown in Figure 3. As we
indicated previously, the p-value of the likelihood ratio test for the hypothesis
B, =0 is less than 105 Here we compute the 95% approximate F and
conditional likelihood ratio confidence regions for (8,, a,). Figure 4 reports the
results. Both regions are in close agreement and are elliptical. The small
variations of the estimated coefficients of the change line suggests that the
model is reasonable for these data and fulfills the goal of allowing us to
estimate the break point in the line at 20°C from the data obtained at higher
temperatures.
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Fic. 3. Data for plastic pipe.

Because of the nondifferentiability of the manifold in this model, the
computations leading to Figure 4 present some special problems, which were
mentioned in Example 4. For the evaluation of the confidence region in Figure
4, we did not introduce a smooth approximating manifold, but rather took
advantage of the special structure of the broken-plane manifold to simplify the
calculation. See Zhang (1991) for a detailed derivation. However, unlike the
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Fic. 4. 95% confidence region for (85, a,). The solid and dashed regions are the AF and CLR
ones, respectively.
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hypothesis-testing situation in Example 4, because of the conditioning in-
volved, we cannot argue by symmetry that the result we obtain is a genuine
upper bound, although it should be a reasonable approximation. It is also
plausible, however, that our calculation is not numerically stable and by doing
the calculation somewhat differently we might obtain different numerical
results.

The manifold for this model has a boundary, so in principle there should be
a boundary term to supplement (24) just as there was the boundary correction
to the basic expression (10). For these data, inclusion of an appropriate
boundary term has no discernible effect on the confidence region. Qur experi-
ence indicates that this is quite often the case, although it appears to be
precisely those cases where the boundary term is important that the approxi-
mate F method, predicated on an approximately linear model with no bound-
ary, may break down [cf. Knowles, Siegmund and Zhang (1991) and Zhang
(1991)].
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