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CONSISTENCY OF THE GENERALIZED BOOTSTRAP FOR
DEGENERATE U-STATISTICS

By Marie HugkovA! AND PAUL JANSSEN 2

Charles University and Limburgs Universitair Centrum

A generalized bootstrap version is defined for degenerate U-statistics.
Our main result shows that the (conditional) distribution function of the
bootstrapped degenerate U-statistic provides a consistent estimator for the
unknown distribution function of the degenerate U-statistic under consid-
eration. For the proof we rely on a rank statistic approach.

1. Introduction and main result. Let X,,..., X,, be iid random vari-
ables defined on a probability space ({2, &7, P) and let F denote the common
d.f. Let & be a symmetric kernel of degree 2. We assume

(U.1) ER*(X,, X,) <,

and without loss of generality (w.l.o.g.) we can then assume EA(X;, X,) = 0.
Consider the U-statistic

o= (3)" I mx.x)

1<i<j<n
and assume that we are in the situation where
(U.2) Eh(X,,x) =0 for (almost) all x.

Then the U-statistic is degenerate. According to Serfling (1980), subsection
5.5.2,

nU,(h) =, f A,(22 - 1),
j=1

with Z2 Z2,... independent y2(1) random variables and with A;, A, ... the
eigenvalues corresponding to the orthonormal eigenfunctions ¢, ¢,,... asso-
ciated with the kernel h. Recall that

E¢j(X1)¢k(X1) = ajlw

EhZ(Xl’ XZ) = Z ’\Zk < ®,
k=1
2

K
Kl’im E|h(X,, X;) — kE Meor(Xy)en(Xz)| =0.
— 00 =1
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1812 M. HUSKOVA AND P. JANSSEN

For a recent survey on degenerate U-statistics and for a list of examples
including nonparametric tests such as Cramér—von Mises statistics and good-
ness-of-fit statistics, we refer to de Wet (1987).

In general, it is hard to obtain for a given kernel k the corresponding
sequence of eigenfunctions and eigenvalues. Therefore the bootstrap approxi-
mation to the distribution function of nU, provides a useful alternative for
the asymptotic distribution given previously. For a degenerate U-statistic we
define the corresponding bootstrapped U-statistic as

Uy (k) = zz( 1)(an— %)h(Xi,Xj),

1#]

where W, = (W,,,..., W,,) is a vector of random weights defined on a proba-
bility space (), &7, P) and independent of the data X;,..., X,. We assume
that the components of W, are exchangeable and that

(W.1) W,>0, i=1,...,n,
(W2) ZWni= 17
i=1
n 112
(W.3) ny. (Wni——) —>5c?, n—o o forsomec >0,
i=1 n

2
(W.4) n max (Wm» - l) -5 0, n — o,
l<i<n n

Typical choices of weights include, among others, multinomial weights (result-
ing in Efron’s resampling scheme) and Dirichlet weights (Bayesian resam-
pling). See Section 2 for a more detailed discussion. Relevant references for
further examples are Praestgaard and Wellner (1993) and Hall and Mammen
(1992). We also note that for degenerate U-statistics the Efron bootstrap is
considered in Arcones and Giné (1992) and that iid weights are studied in
Dehling and Mikosch (1992). Since

U () = EEW, W, h(X,, X;) = ¥ Wim T (X, X))

i#j i=1 J#z

- ¥ W Th(X, X) + 7 EEH(X, X)),

Hé.] i#j

we see that for multinomial weights Uy (k) coincides [up to terms h(X;, X,)]
to what Arcones and Giné (1992) denote " as Us(h,, P).

Our main result states that, given X, = (Xj,..., X,), the distribution
function of nc~'Uy, (h) provides a unlformly cons1stent estimator for the
unknown distribution of nU, (k). It reads as follows.
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THEOREM. Assume a symmetric kernel satisfying (U.1) and (U.2) and
weights satisfying (W.1)-(W.4). Then, with P-probability 1,

sup|P{nc‘1UWn(h) <xlX,} = P{nU,(h) < x}| -0, n-oo

x€R
2. Examples of weights.

Bayesian resampling scheme. Let {,,...,{, be any sequence of strictly
positive iid random variables with mean u and finite variance o?. With
{ = n~'X7_,{; consider weights of the form

g;

(2.1) W= =

Note that in the case of exponentially distributed random variables with mean
1, these weights are distributional equivalent with Dirichlet weights. See

Mason and Newton (1992) and Janssen (1993) for further details. Weights of
form (2.1) trivially satisfy (W.1) and (W.2). Also (W.3) is valid, since

n 1 2 1 U -2 g
n W, ——| =— L—¢) = —, n — o
i§1( n) n 2i§1( ) P ,u,2
Finally, we have
1\2 1
Osnmax(Wni——) = — max ({L—{)2
n nl{“1<i<n
(2.2)
<—2—[Z— )2+ max ({; — )2]
B nzz ( H l<i<n i T H '
Since 02 < = if and only if
max, ;. ,(4 — ¢ ~
=izl ~ {) -0, n->oo as.[P]

nl/2

It follows that the r.h.s. in (2.2) converges to 0 a.s. [P]. Hence (W.4) is
satisfied.

Efron’s resampling scheme. Multinomial weights satisfy

(nW,4,...,nW, ) ~ Mult(n; l,..., l)
n n
Then our generalized bootstrap procedure corresponds to the classical resam-
pling from the empirical d.f. F(x) = n 'L 1{X; <x}. For multinomial
weights (W.1) and (W.2) are trivially satisfied. The validity of (W.3) follows
from Lemma 4.1 in Mason and Newton (1992) with r = 2. To establish the
validity of (W.4), note that the fourth central moment of a binomial distributed
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random variable with parameters n and p is given by 3(np(1 + p))? + np(1 —
pX1 — 6p(1 — p)). Since, for i = 1,...,n, nW,; has a binomial distribution
with parameters n and n !, we have
E(nW,, —1)* <4
and hence, for any ¢ > 0,
P{ max n(W,; — n“l)2 > s}

l<i<n

<nP{(nW,, - 1) > en} < 0, .
n{(n i ) sn} n82n2—> n— o

3. Proof of the main result. The proof of our main theorem requires a
good understanding of the proof of Theorem 2.1 in Mason and Newton (1992).
We assume w.l.o.g. that ¢? = 1 in (W.3). We then have to show that

(3.1) suplP{nUW"(h) <xlX,} - P{nU,(h) < x}| -0, n—>o as. [P]
xeR

From Section 2A in Arcones and Giné (1992) [see also the related Lemma 4.1
in Dehling (1989)], we have the following result for a mean-zero kernel
satisfying (U.1) and (U.2). For any n > 0 there exists a simple kernel

Sy
(3.2) hi(x,y) = tlj¢lj(x)¢lj(y),

j=1
with #;,...,t,, real numbers and ¢,,...,¢,;, bounded functions with
E¢, (X,) = 0, such that

E(h(X,, X5) — hy( X, X,))" < m.

At this point we direct the reader to the remark at the end of this section.
Since, for any ¢ > 0,

P{nUy(h;) <x —&lX,} = P{nlUy, (h — h))| = €IX,)
(3.3) < P(nUy, (k) < xlX,}
< P{nan(hl) <x+ sIXn} + P{nIUWn(h —h)l > s|xn}
and since similar inequalities hold for the distribution of nU,(h), we have
suﬁ|P{nan(h) <z[X,} — P{nU,(h) <x}|
xe

(34)
= Tnl(xn) + Tn2 + Tn3 + Tn4(xn)’
with .
Tu(X,) = suglP{nUw,,(hl) <yIX,} = P{rU,(h,) <y},
ye
T,, = sup[P{nU,(h,) <y + ¢} — P(nU,(h;)) <y —¢}],
yeR
T3 = P{n|U,(h — h))| = €},

T,u(X,) = P{n|Uy (h = k)| = €IX, }.
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For the degenerate kernel g,(x,y) = h(x,y) — h,(x, y), we apply Lemma 2.1(a)
in Arcones and Giné (1992) to obtain

4n

T, Egi(X,, X,) < o2

T
To study the behavior of T,,, note that
n 1 8
nU,(h;) = =2 X te(X)ey( X))

n—1n ;2>

n i )
tl' An,l' - Bn,l' ’
n — 1 o1 .l( J J)
with
n
A, ;=072 Y (X)),
i=1
n
B,,=n"" P 07 (X,).
i=1
Furthermore, note that E(A, ;;) = 0 and
COV(An,ljla An,ljz) = E(¢zj1(X1)‘sz2(X1)) =0y, 4y
Therefore by the Lindeberg-Lévy central limit theorem
(An,ll’ ] An,ls,) _)d (Vll’ A ‘/lsl)’

where (Vy, ...,V ) has a multivariate normal distribution with mean vector 0
and variance-covariance matrix

3= (0, Juda=1,...,8).
Moreover, by the classical SLLN we have

B, — 0y i, > ® as. [P].
Consequently,

Sy
Uk =a Y= L 4,(Vi = o1,5)
Jj=1
(note that Y, is continuous) and

T,, = supP{y —e <Y, <y +¢}.
yeR

The discussion just given also implies that instead of handling T,,(X,) it
suffices to study the behavior of

T.s(X,) = sup | P{nUy, (k) <yIX,} — P{Y, < y}|.
yeE
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We now handle T, (X,,) and T,5(X,,). Define

Un () = TF (Wan, = ) Wor, = (X, X)

i#j

and similarly

Un(h) = TE (War, = 2 ) (Wa, = 7 1u(%: X)),

i#j

where (R,,..., R,) is a random vector taking each permutation of (1,...,n)
with equal probability and independent of X, and W,,. The rowwise exchange-
ability of the W,’s implies that U (k) and Ug (k) and also Uy (h,) and
Ug (k) have the same distribution. Therefore

(8.5) suglP{nURn(hl) <yIX,} - P{Y, <y}
yE

is distributional equivalent to T,;(X,,) and
(3.6) P{n|Uy (k — h))| > €lX,}

is distributional equivalent to T ,(X,,). If we add in (3.5) and (3.6) conditioning
w.r.t. W, the randomness in the probability statements only comes in through
the ranks R,,..., R,. It then follows from arguments similar to the ones in
the proof of Theorem 2.1 in Mason and Newton (1992) that, to control the
behavior of (3.5) and (3.6), it is sufficient to show

(3.7)  sup|P{nUp(h)) <3IX,,W,} = P(Y, <3}[ =50, n -
yER
with P-probability 1, and to establish the inequality

(3.8) lim supP{n|URn(h — k)| = sIXn,Wn} <z as [P],
n—oo
for some absolute constant C. Note once more that by adding the conditioning
on W, the problem completely reduces to a rank statistic problem (upon the
conditioning). This idea is taken from Mason and Newton (1992), where it is
used to handle generalized bootstrapped means.
We first show the validity of (3.8). We have

P(n|Uy (h — h))| = elX,,, W, }

(3.9) n?
&2

< 5B, (ZZgl(Xi,X,»)(WnR, - ) (Wan, - %))Zm,wn ,

i#j

where Ej means expectation w.r.t. the ranks. An upper bound for the
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expectation in the r.h.s. of (3.9) is given by

ol 11 (W~ 3| 4000

i=1
[ 1\23 1
(310) + 4ERL(WnR1 - ;) l=2(Wan - ;) AnZ(Xn)
C 112
+ 28| TT{ W, = | 405060,
=1 n
with
Anl(xn) = ZZZZgI(Xi’Xj)gl(Xs’Xt)’
i#jEs#L
A, (X,) = ZZZgz(Xi, Xj)gl(Xi’Xs)’
i#j+#s
A(X,) = LY g (X;, X))
i#j

Upper bounds for the expectations in (3.10) are obtained from the following
lemma, which is essentially inequality (2.9) in Mason (1981).

Lemma. Let (W,,,...,W,,) satisfy (W.1) and (W.2). For Il € N, and for
ay,...,a; €Ny, there exists a constant C = C/ay, ..., a;) such that

n 1 2 ):li=1‘1z/2
SCn—l(Z(Wni—_) ) .
i=1 n

Combining (3.9)-(3.11), we obtain

(3.11) |Eg

ﬁ (WnRt - %)al]

i=1

P{n|Ug (h = h})| = €lX,,W,}

(3.12) - E(nz(vv - %))

X[ 4,(X,) + 1 7%A,0(X,) + nTHA,5(X,)]
From (U.2) and E¢,(X;) =0, j =1,...,s;, we have
Eg(X,, X;) =0,
Egl(Xi’ Xj)gl(Xi’ X,)=0
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and
(3.13) n"*A,(X,) >0, n-ow as [P],
(3.14) nA,,(X,) >0, n-oowo as[P].

We also have
(3.15) n~?A,5(X,) - Egi(X,,X,) as.[P].

We therefore can conclude (3.8) from (3.12)-(3.15) and (W.3).
To establish (3.7), define S, ; and Z,,; as follows:

n 1
Snj(Rl""’Rn) ESnj=n1/2 Z(WnR,";)Qolj(Xi)’
i=1

Z,;(Ry...,R,)

an=nZ

=1

n
1=

112
(WnR, - ;) ¢12j(Xi)'

Then note that
S

nUp (h)) = X t,;(8%; = Z,)).
=1

J

Therefore, similar to (3.4), we have the following upper bound for (3.7):

sup| P{nUy (h;) <yIX,,W,} - P{Y, < y}|
(3.16) yeR

= TnG(xn’Wn) + Tn2 + Tn7(xn’wn)’
with T, as in (3.4) and

Tn6(xn’wn)
(3.17) 5t
= sug P Y 4,;(82 — 0y, 5;) <¥1X,, W, } — P{Y, <y},
Y& Jj=1

(3.18) T..(X,,W,) = P{

Sy
Jj=1

Since s, is a fixed integer, showing

T,.(X,,W,) =50, n—>wo as.[P]
is equivalent to showing that
(319) P{z

Wi =0l 2 elX, ,W,} 550, n-oo as.[P],
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forall j =1,...,s,. Since Z,; is a simple linear rank statistic, we easily obtain
[use (W.3) and (W 4)]

n 1 1 n
E.(Z, .)= Wo,.—-—| — (X; 5 O, jj
(3.20) r(Z,;) nk§1( ) n g‘%( i) 7B 0
n—x as.[P],
\ IR B
Varg(Z,;) <n® ) (Wnk— —) — 2 (X))
-1 n) n-1,2
1\2 & 1)?
(220 <o (W= (W)

n

0, n—-w as.[P].

From (3.20) and (3.21) it follows that (3.19) and therefore also (3.18) are
immediate.

We finally handle T,,(X,,W,) defined in (3.17). The convergence of
(S,1,---»8S,s) as well as the identification of the limit follows directly from

ns;
the Cramer—Wold device. We indeed have for any set of constants vyy,..., v,
that, conditioned on X, and W,,,

Sy n 1 Sy
Z Yjsnj =n'/? Z (WnR, - _) Z Yj‘sz(Xi)
j=1 i=1 nJj=1

converges in distribution (w.r.t. the randomness due to the ranks) to a normal
distribution with mean 0 and variance

S 2 S Sy
E( Z Yk‘Plj(X1)) = Z Z YiYrO1, jk
j=1

j=lk=1

[see the proof of Corollary 2.2 in Mason and Newton (1992)]. Since .., (82, —
0, ;;) is a continuous function, we immediately obtain that

TnG(Xn’Wn) -p 0, n — as[P] O
REMARK. In an earlier version of the manuscript, we used

K
Z Aeer(x)er(y)
k=1

to approximate h(x,y), where the A,’s and the ¢,’s are the eigenvalues and
the eigenfunctions mentioned in Section 1.
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We then can follow the same type of proof, but an extra truncation
argument is needed to handle T,,(X,,W,) as defined in (3.18) but now in
terms of the A,’s and the ¢,’s. Using the present approach, this truncation
argument is not needed due to the boundedness of the ¢,;’s. Another advan-
tage of the present method is that it provides the appropriate approach to
extend our main theorem to degenerate U-statistics with kernels of degree
more than 2.

4. Appendix: proof of the lemma. The proof of the lemma is essen-
tially contained in Mason (1981). We include it for completeness. First note
that for B = 2,4,6,... we obtain by direct calculation

Efw ) <[ £ w2

For B = 3,5,... wehave,withB=2B~+ 1,

n 126+1 n 1\28 1
El Woi = — =i§l(Wni—;) Wei =
12 » 12"
< £ (W) (El(an‘z))
1\2\A+1/2
< (Z(Wni_ ;) )

So we obtain, for £ = 2,3,...,

Wni__

n

(4.1) Y
i=1
Direct calculation yields

ER[PZI(W,,RL,— %)]

i=1

1 N S
“wwn ) 2 e a) (e )

.....

distinct
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Case 1: ay, ..., a; are all even integers.

1\™ 1\%
Z (Wnil_;) (Wnil_;)

il,...,ll

distinct
n 1 @ 1 oy_q
I
i=1 n By i ipg n
1\«
X‘ Z (Wnil_;)}
UyFlyyeee, iy
n 1 @ n 1 ag n 1 a
(28 (e £ ()
=1 on) T *on i=1 'on
(i( 1 2)Ef=1ai/2
< Wni__) ’
i=1 n

where the last inequality follows from (4.1).

Case 2: ay,...,a; are | — q even integers (say Y1+ Yi—g) and q odd
integers greater than or equal to 3 (say 7,,..., n,). Note: relabel if necessary.
Then

1 Y1 ‘ 1 Yi-q 1 m 1 Mg
Z (Wnil_;) ”'(Wnil_q_;) (Wnil_q“_;) ”'(Wnil_;)

[ ST
distinct

1 71 1 Yi-q
< Z (Wnil_;) ”'(Wni,_q_;)

Tyyeneyily
distinct

1\m1 1\" 1!
X(Wni __) Wni __’( ni __)
l—q+1 n l—q+1 n l n
12\2\ 72 112 (&9, + o1 (n,~1)/2
(Wni__) ) (Z(Wni__) )
i=1

n
1 2 z:€=1‘3"z/2
(an - _) ) .
n

nil

.
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Case 3: ay =+ =a,=1, @;,1>1,...,a;,> 1. Note: relabel if neces-
sary. Define
A(g;agir,---5ap)

1 1 1) % 1\
=l X (Wnil__)"'(wni __)(Wni __) "'(Wni,_*) .
- i n 7 n EART n

LS TR
distinct

For ¢ = 0 we are in one of the previous cases and for ¢ = 1 we use

1 ! 1
W, ——|=- e
Z L[( h n) ] (Wnl] n)

i1 #ig,. .., j=2

and the fact that

! 1
j=2\ 7 n

(42) A(L;ag,..., ) < (I - 1)( > (Wni - ;)2

i=1

to obtain

For ¢ > 1 we have

43 ¥ i,(W”il - %) __y (Wm.j - l) - 5 (Wnij - l)

I1%0g,..., Jj=2 n =q+1 n
and
l 1 n 2\ 1/2
(4.4) L (W= 5[ £ (W]
j=g+1 n i=1 n

Using (4.3) and (4.4), we obtain by direct calculation
A(q;aq+1’ AR al)

<(qg-1)A(qg—2;2,a,,4,...,a)
(4.5)

1/2

Alg — Liagiq,--.rap).

+( —q>( £ (w.1)

i=1

Since we already obtained the appropriate bound for ¢ = 0 and ¢ = 1, the
proof follows from the recursive relation (4.5). O

Acknowledgments. The authors thank one of the referees for the sug-
gestion to use a set of bounded functions rather than a set of eigenfunctions to
approximate the kernel. They thank both referees for their constructive



RESAMPLING DEGENERATE U-STATISTICS 1823

reports and David Mason for providing a preprint of Mason and Newton
(1992).

REFERENCES

ARCONES, M. A. and GINE, E. (1992). On the bootstrap of U and V statistics. Ann. Statist. 20
655-674.

DEHLING, H. (1989). The functional law of the iterated logarithm for von Mises functionals and
multiple Wiener integrals. J. Multivariate Anal. 28 177-189.

DEHLING, H. and MikoscH, T. (1992). Random quadratic forms and the bootstrap for U-statistics.
Technical report.

DE WET, T. (1987). Degenerate U- and V-statistics. South African Statist. J. 21 99-130.

HarL, P. and MAMMEN, E. (1992). On general resampling algorithms and their performance in
distribution estimation. Preprint 682, Univ. Heidelberg.

JANSSEN, P. (1993). Weighted bootstrapping of U-statistics. J. Statist. Plann. Inference 34. To
appear.

MasoN, D. M. (1981). On the use of a statistic based on sequential ranks to prove limit theorems
for simple linear rank statistics. Ann. Statist. 9 424-436.

MasoN, D. M. and NEwTON, M. A. (1992). A rank statistic approach to the consistency of a general
bootstrap. Ann. Statist. 20 1611-1624.

PRAESTGAARD, J. and WELLNER, J. A. (1993). Exchangeably weighted bootstraps of the general
empirical process. Ann. Probab. 21 2053-2086.

SERFLING, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York.

DEPARTMENT OF STATISTICS DEPARTMENT OF STATISTICS
CHARLES UNIVERSITY LiMBURGS UNIVERSITAIR CENTRUM
SOKOLOVSKA 83 UNIVERSITAIRE CAMPUS

18600 PraHA B-3590 DIEPENBEEK

CZECHOSLOVAKIA BELGIUM



