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INCIDENTAL VERSUS RANDOM NUISANCE PARAMETERS

By J. PranzaGL
University of Cologne

Let {P; ,: (8,m) € @ X H}, with ® c R and H arbitrary, be a family of
mutually absolutely continuous probability measures on a measurable
space (X, &7). The problem is to estimate 9, based on a sample (x, ..., x,,)
from X" 1 Po,n, If (ny,...,m,) are independently distributed according to
some unknown prior distribution T, then the distribution of n!/2(3™ — §)
under Pg (P, being the TI-mixture of P;,, n € H) cannot be
more concentrated asymptotically than a certain normal distribution
with mean 0, say Ng, .9, y)- Folklore says that such a bound is also valid if
My ...,m,) are just unknown values of the nuisance parameter: In this
case, the distribution cannot be more concentrated asymptotically than
No,o3o, B . 5» Where EGD . . is the empirical distribution of

.......

(M1, ..., m,). The purpose of the present paper is to discuss to which extent
this conjecture is true. The results are summarized at the end of Sections 1
and 3.

1. Introduction. Let {P,,: (#,7) € ® X H}, with ® CR and H arbi-
trary, be a family of mutually absolutely continuous probability measures
(p-measures) on a measurable space (X, 7). Assume that H is endowed with
some o-algebra &, and that n — P; ,(A) is measurable for 9 € 0, A € &.
Under this condition, the densities p( 4,1 of Py . with respect to some
o-finite dominating measure, say u, can be chosen such that (x,m) - plx, 3, n)
is measurable for ¢ € ©. For v € N let x, be a realization from P; , . The
problem is to estimate ¥, based on a sample (x4,...,x,), with the nulsance
parameters (74, ..., n,) unknown.

For practical purposes, one is interested in estimators 9 for which the
distribution of n'/2(3" — ¢) under X7 P, . is approximable by some simple
distribution, usually a normal dlstrlbutlon This goal has been achieved in
many particular cases. It is, however, difficult to evaluate the quality of such

estimators, since bounds (even asymptotic ones) for the concentration of

estimators are not available for this model.

The situation is different if ,, v = 1,..., n, are i.i.d. realizations from some
p-measure I' on (H, &). Then the interest is in the distribution of n/2(9™ —
¥) under Py, where P, denotes the I'-mixture of P, ,, n € H, defined by

(1.1) Py r(A) = [P, ,(A)T(dn), Aew.

If p(-,9,m) is a p-density of Py, then p(-,9,T) = [p(-,9,7I'(dn) de-
fines a p,-densny of P .
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Now, the sequence (74,...,7,) of n unknown random nuisance parameters
has been replaced by a single—if more complex—unknown nuisance parame-
ter, namely the p-measure I'.

For the purpose of illustration consider the celebrated example of Neyman
and Scott (1948), page 3. For v =1,...,n let (x,,y,) be a realization from
N(i »2, With u, and o? unknown. It is straightforward to show that

.....

is a reasonable estimator sequence (e.s.) for o2 Its distribution under

X1NZ ,2 does not depend on w;,...,u,. For n— o, n'/*g? - 0o? is
asymptotically (as.) normal with mean 0 and variance 20*. Despite the intu-
itive appeal of this estimator, the question naturally occurs whether better
estimators exist. If u,, v € N, is a realization from some completely unknown
p-measure I, then o2 is as. optimal. [See Pfanzagl and Wefelmeyer (1982),
pages 235-236, Example 14.3.21.] But is 0,2 also (approximately) optimal if
H1,-- ., M, are just unknown constants?

Following the usual terminology, we use the term ‘‘structural” to character-
ize the model with random nuisance parameters, and the term ‘functional”
for the model with varying unknown nuisance parameters. (For short, we
write S-model and F-model, respectively.)

If T is known to be a member of a certain parametric family, then we are
back to a parametric model, now with a constant unknown (finite dimensional)
nuisance parameter. In this case, a bound for the as. concentration of e.s. is
available, as well as methods for the construction of e.s. attaining this bound.
If T belongs to a given nonparametric family [usually the family of “all”
p-measures on (H, #)], the general theory based on tangent spaces can be
applied to obtain as. bounds. Methods for the construction of e.s. attaining
these bounds are available in certain special cases [see Bickel and Ritov (1987),
Pfanzagl (1987), van der Vaart (1988), Pfanzagl (1990), and Wong and Severini
(1991)].

Several authors study the problem of as. optimality for restricted classes of
e.s. As an example we mention estimators depending on the data through a
“model-specific”’ ancillary statistic (the distribution of which depends on ¥,
but not on the nuisance parameters). An advocate of such a procedure is
Sprent (1966, 1976). See also Nussbaum (1979), Section 4. Another possibility
is to restrict attention to estimators obtainable as solutions to an estimating
equation, that is, to find a function u(x, 9) such that [u(-,®)dP, , = 0 for all
n € H, and to determine 9" X(x,..., &,) as a solution to L u(x,,¥) = 0. For
a certain optimality theory for such estimators, see Godambe (1976), Kumon
and Amari (1984) and Amari and Kumon (1988). [See also Pfanzagl (1990),
Section 6, for a brief discussion of this approach.] It is, of course, important to
know the (as.) best e.s. obtainable by a certain method. This information is but
of limited value without the complementary information about the best e.s.
obtainable by any method. [See, e.g., the remarks by Bunke (1979), pages
521-522.]
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So far, the only author who tries to obtain bounds for a reasonably large
class of e.s. is Andersen (1970a, b). Under suitable regularity conditions on the
family (P, ,: (8,7) € ® X H}, he obtains as. bounds for e.s. which are as.
normal and as. locally uniformly median unbiased. Under his assumptions, the
as. variance cannot be smaller than lim,, (9, E{), where E{ is the empiri-
cal distribution on &, defined by

(1.2) EJ’(B) =n~'Ylg(n,), Be4Z,
1

and

¢%(9,T)

(13) [f(f’(l)(""’ﬂ)zdl’a,n

_(fz<1>(.,0,n)z<2>(~,0,n) dP,,’n)2/[l(2)(-,ﬁ,n)zdPﬁ,n)F(dn)l_ .

Straightforward examples demonstrate that the bound lim , ¢%(9, E{™) is
not attainable in general. Hence it seems hard to agree with Andersen’s
statement [Andersen (1970a), page 85] that “in situations where the lower
bound is not attained, [it] provides us with a denominator for an efficiency
measure.”’

An attainable bound can be expected only for sequences of permutation
invariant estimators 9. In this case, X7 P, . * n’/%(9™ — 9) is invariant
under permutations of (n,,...,n,). The failure of Andersen’s approach re-
sults, among others, from the fact that he makes no use of this invariance.

The absence of as. bounds for the F-model is widely recognized as an
important loophole in statistical theory. Moran (1971), pages 251-252, men-
tions among several “‘outstanding problems” that “there is no theory of the
optimality of estimators in the functional equation case” (i.e., for the F-model).
Similarly, de Leeuw and Verhelst (1986), page 193, state that .. .it is already
nonstandard to define consistency and efficiency in this [i.e., the F-] model.” A
competent discussion of these problems can be found in van der Vaart (1988),
subsection 5.4.2, where he also suggests an estimator which might be super-
efficient. This estimator is obtained by splitting the sample in two parts and
estimating the score function for each part separately.

Since bounds for the F-model, attainable under general regularity condi-
tions, are not available, many authors are inclined to take the bounds for
regular e.s. in the S-model as bounds for (which class of?) e.s. in the F-model.
In fact, the interest in as. bounds for the S-model springs partly from the
opinion that these are as. bounds for the F-model. Says Follman (1988), page
561: “It provides a statistically accepted way ... making the weak assumption
that [the nuisance parameter] be random.” Portnoy (1985), who studies the as.
behavior of M-estimators in the F-model in a related context, uses in the proof
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of his Theorem 3.3, page 1414, an auxiliary result, stated as Theorem 4.1,
which refers to normally distributed nuisance parameters. [For a proof of the
latter theorem, see Portnoy (1987), page 28, Theorem 2.1.] Amari and Kumon
(1988), page 1062, confronted with the problem that an e.s. attaining their
bound does not exist, ‘“reformulate the problem by regarding the nuisance
parameter as a random variable.” Similarly, Skovgaard (1989), page 345: “We
restrict the problem by considering the sequence of nuisance parameters to be
drawn from some (unknown) distribution. Given the exchangeability of the
observations in the model, this step should not be alarming to statistic-
ians....” Several authors express the opinion that exchangeability of the
nuisance parameters virtually implies that they may be considered as a
“random sample” [see, e.g., Novick, Lewis and Jackson (1973), page 20, or
Hambelton and Swaminathan (1985), pages 92 and 142]. This opinion can be
traced back to Lindley (1971), page 437, who refers to de Finetti’s theorem
without giving any details.

Presumably, these authors have the following argument in mind. If a
sequence of nuisance parameters is irregular, any permutation of this se-
quence is of the same nature. If one thinks of (1,), . as a realization from a
p-measure on &V, this p-measure ought to be invariant under arbitrary finite
permutations, in which case it can be considered (according to an appropriate
version of de Finetti’s theorem) as a mixture of probability measures I'N|Z"
(mixed over I'). Hence one can think of (n,),.y as a realization of the
following two-stage process: Having selected a p-measure I'| & at random, one
obtains (1,), .y as a realization from I'N. What counts is that (n,), .y is a
realization from I'N, no matter where the p-measure I' comes from.

In view of this strong implication, it appears that ‘‘exchangeability’ is not
the adequate mathematical counterpart of our “lack of knowledge” about

(m4,...,m,). More adequate is the requirement that 9™ (x,, ..., x,) be permu-
tation invariant. Without knowing anything about the origin of the nuisance
parameters—how can we exclude the possibility that (n,,...,n,) is a realiza-

tion of some stationary stochastic process, hidden to us? By postulating
exchangeability one tries to deduce from our lack of knowledge something
about reality [here the origin of (7,), <]

The only paper which tries to justify the interpretation of bounds for the
S-model as bounds for the F-model by theoretical arguments is Bickel and
Klaassen (1986). Their Proposition 1.1(ii) says that e.s. which are regular in
the F-model and as. efficient in the S-model are also as. efficient in the
F-model among all regular e.s. The cruc1al point is their definition of regularity
in the F-model, namely,

n
1/2
>1< Py, m, %1 /(9™ = 9,) = No, oo,y

for every sequence 9, — 9, and every sequence 7 € H" for which E{» =T.
This requires in partlcular that () lim,, X7P,, *n'/% (9™ — 9) exists for
every sequence n € HY with E{®, n N weakly convergent, (i) the limit



INCIDENTAL VERSUS RANDOM NUISANCE PARAMETERS 1667

depends on 1 through lim, E,(,”) only, and is (iii) a normal distribution with
mean 0. Though many e.s. share these properties, they are hard to defend as a
general condition to be imposed upon all e.s. How restrictive this condition
really is can be seen from the fact that it implies a rather strong version of
regularity in the S-model, namely, Pj . *n'/* (9™ —9,) = Ny ,2 y for
every sequence U, — ¥ and every sequence [, =T (not only sequences with
I and T'” contlg'uous) [See their Proposition 1 13G).]

The property of an e.s. relevant in the S-model is the as. behavior of
P} -+ n'/?(8" — 9), n € N. From numerous examples we are used to the fact
that X1P, . *nl/2(8™ — 9), n € N, converges to a limit distribution also in
the case Where n,, v € N, is a sequence of unknown constants fulfilling certain
regularity conditions. Such an as. behavior is, in fact, necessary if we wish to
use asymptotic distributions as approximations for finite sample sizes. Though
common in many examples, weak convergence of X7P, n'/% (8™ — @),
n € N, is not what occurs in general under regularity condltlons At a surface
inspection one would think that

lim Py .+ n'/?(9™ — 9) = B, | for some p-measure I'| &
n

entails
n
lim X P, , *n'3(®™ - 98) =B, ,
n 1

for I'-a.a. sequences 7,, v € N. Regrettably, this is not true. If n,, v € N, is a
realization from I', the distribution X7P, . *n'/2(3"™ — 9) itself is a ran-
dom element. Even for highly regular e S. ?say e.s. which are permutation
invariant and as. linear), this sequence of random distributions converges to a
distribution over the set of p-measures on (R, B), the real line, endowed with
the Borel algebra. This distribution is nondegenerate unless the gradient
K(-,9,T), occurring in the representation of the e.s. [see (2.6)], fulfills
jK( 9,I)dP,; , = 0 for I-a.a. n € H. This may not be alarming, since this
condltlon is always fulfilled if the family of possible mixing distributions is full
—the case which one usually has in mind. Perhaps more critical is the fact
that—even in the case [K(-,9,I)dP, , = O—there are sequences n € H"
with E{”, n €N, weakly convergent, for which X" 1Py # 0/ — 9),
n € N, converges to a limit distribution which is more concentrated than the
optimal limit distribution in the S-model. This entails in particular that the
limit distribution of XTP, , *n'/2(9 - 8), n €N, if it exists for some
sequence n € HN, is not unlquely determined by the limit of E{®, n € N.

2. Asymptotic bounds for the S-model as bounds for the F-model.
In this section we develop the concept of an as. bound for the S-model and
discuss its possible role as an as. bound for the F-model.

The specification of an S-model includes the specification of the family of
possible mixing distributions T, say . A family  is called “full” if it is large
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enough, so that the tangent space of the family & at T, say T(T', &), equals
Z(T) = {g € LT, #): [gdT' = 0}.

To obtain a meaningful concept of an as. bound, we have to specify the class
of e.s. 9™, n € N, say &, to which this bound refers. The obvious minimal
requirement for such an e.. is weak convergence of Py *n'/2(9™ — @),
n € N, for every (9,) € O X #Z.

An as. bound for the concentration of e.s. in & is a family of p-measures
{B, rIB: (8,I') € ® X &} with the following property:

1) lim Py o {n/2(9™ — 9) € (=¢,t)} < By r(—t,t)
2.1 n

forall £ > 0 and all (9,T) € ©® X &.

The bound is attainable if an e.s. exists in & for which equality holds in
(2.1),for all ¢ > 0 and all (3,T) € ® X £.

Entering (2.1) through their values on symmetric intervals only, the p-mea-
sures B, r|B are uniquely determined only on measurable sets symmetric
about 0. Hence we presume throughout the following that By | is symmetric
about 0.

The concept of an as. bound as defined in (2.1) is not meaningful if & is the
family of all e.s. Usually one can find e.s. which are “superefficient” at a given
parameter value (9, [)) to such an extent that

LimPj {n*/?(9™ — 9y) € (—¢,£)} =1 forevery ¢ > 0.
n

Then a family {Ba,ﬁ (9,T) € ® X &} which fulfills (2.1) for all e.s. is
necessarily trivial: It fulfills B, {0} = 1 for all (8,T) € ® X & and is there-
fore not attainable. This motivates restricting the family & to e.s. which are
S-regular at every (¢,T) € ® X £.

S-regularity of 9, n € N, at (9, I') is defined as follows. P§' . * n*/%(9™ —
9,), n € N, converges weakly to the same limit for every sequence (19,,, r,),
neN, with 9, converging to & at a rate n=/% and I,, n € N, converging to
T at a rate n~ /2 so that [ fulfills an LAN-condition with respect to I'”, that
is, there exists a I'*-density of I’ of the type

n 1
("71,---,"7,;) — €exp n_1/2 Zk(nu) - Esz dr + r(n)(n17"'7nn) ’
1

with k € T(T, £) and r™ - 0 (T"").
This type of ‘“‘regularity” is generally accepted as a paradigm, mainly
because it makes as. theory work, not so much because of its intuitive appeal.
Using the theory of tangent spaces, one can obtain as. bounds for S-regular
e.s. [under mild regularity conditions on {P,,,n: (%, 1) € ® X H}]. One obtains
that

(2.2) By,r = N0,y
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with
-1
(2.3) 70,1 = (Lo, 9,12 dPy 1)

where L(-, 9, ) is the orthogonal component of 1°(-, 9, T) ==
(3/09)log p(-, 9, T') with respect to

JE(n)p(x, ¥, m)T'(dn)
p(x,9,I)

(24)  To(Pyr) = {x - ke T(I‘,f)},

the tangent space of the family (P, - I' € &}. [See, for instance, Pfanzagl
(1990), pages 17-18, 38—42 and 48.]

If # (the family of possible mixing distributions) is parametric, then these
bounds are attainable under the usual regularity conditions. For nonparamet-
ric families ¢, the attainability of the bound (2.2) has been established for
certain types of models. [See Pfanzagl (1990) for some recent results in this
field.] The paper by Ritov and Bickel (1990) emphasizes that there are severe
problems with nonparametric families. It remains to be seen how these
problems can be remedied by restriction to nonparametric families of “nice”
p-measures. [See also Pfanzagl and Wefelmeyer (1982), page 165, Corollary
9.4.5.]

Assume now that {B, : (4,T) € ® X #} is an attainable bound for e.s. in
&. Let H denote the class of all sequences n € HN with E{™, n € N, converg-
ing weakly to some p-measure, say E, . Let A(#) denote the class of all
sequences 7 € H with E s

The intuitive claim that bounds for S-regular e.s. are bounds for e.s. in the
F-model can now be written as follows: For every e.s. 9, n € N, in &,

limsup X P, {n'/2(9"™ — 9) e (—t,t
25) ; : s, 7" %( ) € ( )}

<B, p(—t¢t) forallz>0,9 € ®andqy e H(L).

Straightforward examples show that this claim cannot be true for arbitrary
S-regular e.s. One can easily find S-regular e.s. which are superefficient for
particular sequences n € H(#). The problem becomes more delicate if we
restrict our attention to e.s. in & which are (i) as. efficient in the S-model and
(i) invariant under permutations of (x,,..., x,,). The class of these e.s. will be
denoted by &). If nothing is known about the sequence of nuisance parame-
ters, using e.s. which are superefficient for a particular sequence, yet ineffi-
cient for ii.d.-sequences, can hardly be recommended. This justifies restriction
(i). Similarly, in the absence of any knowledge about the values of the nuisance
parameters, there are no arguments for the use of e.s. other than permutation
invariant ones (and there are easy counterexamples of superefficient e.s. in &
which are not permutation invariant because they are adjusted to a particular
sequence of nuisance parameters).
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To find out whether (2.5) is true for all e.s. in &,, we need some more
preparation.

An e.s. is as. linear in the S-model with influence function K if it admits a
representation

n
(26)  nY2(¥™(x) - 9) =n"V? LK(x,,9,T) + r(x,9,T),
1

with
(2.7) JK(,#,T)dP, =0,
(2.8) JK(-,9,T)*dP, 1 € (0,)
and

(2.9) rm(-,9,T) >0  (Pyr).

If an e.s. is as. linear and regular in the S-model, K(-, 9, I') is necessarily a
gradient. If an e.s. is as. efficient in the S-model amongst all S-regular e.s., it
is (as a consequence of the convolution theorem) as. linear, and K(-,d,I) is
the canonical gradient, that is [see (2.3) and (2.4)], relation (2.6) holds with

(2.10) K(-,9,T) =LO(-,t},F)/fLO(-,f},F)zdPM«.

[A convenient reference for these results is Pfanzagl (1990), pages 4-5.]

Observe that every e.s. in &, is as. linear with influence function given by
(2.10). If an e.s. is called “as. efficient in the S-model,” it is understood that
this e.s. is also regular in the S-model.

REMARK 2.11. Many e.s. are as. linear with a remainder sequence fulfilling
a stronger version of (2.9), namely,

(2.9) r(-,9,T) -0  Pjrae.

This condition is (by Lemma 5.1) equivalent to

0

(2.9") r(-,9,T) -0 X P, , -ae. for N-aa. neHV.
1

Condition (2.9) is adequate for the usual as. theory, which takes care of the
as. performance of Pg .+ n'/*(9™ — 9), n € N,

If the remainder sequence r™, n € N, converges to 0 stochastically under
P}, but fails to converge to O stochastically under X TP,,,,,V, then
X 1Py , +n/% 9™ — 9), n €N, will, in general, fail to converge [even if
JK(-,9,T)dP; , = 0; see Theorem 3.1]. Hence without

3

(2.9") rm(-,9,T) > 0 ( X P,,_m) for TN-a.a.n € HY,
1
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one cannot expect a useful result on the as. performance of
X3Py, +nt/2(9™ — 9),n € N.
The indispensable condition (2.9") is implied by (2.9").

For parametric families, as. linear e.s. with a remainder sequence converg-
ing to 0 a.e. (rather than stochastically) can always be obtained by the one-step
improvement procedure, if the initial e.s. is as. linear with a remainder
sequence converging to 0 a.e. Whether this is also true for nonparametric
mixture models in general remains to be seen. It is, however, true for our
Examples 1 and 2.

REMARK 2.12. &, was defined as the class of all e.s. which are as. efficient
in the S-model amongst all e.s. which are S-regular and permutation invari-
ant. {B; r: (9,1') € ® X &} was introduced as a bound for all S-regular e.s. If
this bound is attainable by an S-regular e.s., then it is also attainable by an
S-regular sequence of permutation invariant estimators, since any as. linear
e.s. can be replaced by a sequence of permutation invariant estimators with
the same as. behavior. [ Hint: The median of all 19(")(xi1, v ), (@gyeniyiy)a
permutation of (1,...,n), has this property. Since

n

nl/z(ﬂ‘”)(xil, ce X ) — 1‘}) =n"'2 Y K(x,,9,T) +r"(x;,...,%; ,9,T),
1

this follows from Lemma L.17 in Pfanzagl (1990), page 94.]

3. The asymptotic performance of n'/2(3™ — ) under random
nuisance parameters. Our interest still is in the as. behavior of
X 1Py, +n/(9™ — 9), n €N, for sequences n € HY with E{®, n €N,
weakly convergent. To get an idea of what might happen, we first study the as.
behavior for sequences n which are realizations from I'™. In this case, the
p-measure X'P,  +n'/2(9" — 9)|B itself is a random element.

THEOREM 3.1. Assume that 9", n € N is as. linear in the S-model with
influence function K and a remainder term fulfilling (2.9"). Then the following
holds true for TN-a.a. n € H™:

n

X P, , {n'2(9™ - 9) <t}

lim sup

n teR 1

(3.2)
=0,

~Newin, 9,109, 0%s, (=%, t]

with

n
(33) Ba(n, 9, T) =n"V2 Y [K(-,9,T)dP,
1
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and
(3.4) o?(9,T) =af(9,T) —af(9,7),
where
(3.4) o¥(9,T) = [K(",9,T)*dP,
and
2
(3.4") o2(9,T) = j([K(-,a,r) dP,,m) I'(dn).

As a particular consequence of (3.2), we have
lim P o * n'/2(9™ — 9) = N, 03¢5,y
n

AppEnDUM. If
(3.5) [K(-,9,T)dP, ,=0 forT-a.a.n€H,

then

n

(3.6) lim >1< Py, #n**(9™ —8) = Ng 2.1y for INa.a.n€H",

Proor. To simplify our notatlon we omit ¥ and I' whenever possible. In
particular, we write P, K(x), o2 and so forth, for Py ., K(x,9,T ) and
o%(9,T). By definition, we have

(3.7) VA9 — 9) = n 2 YK () + 1),
1

with 7, = 0 (X TP, ) for T™-a.a. n € HY. The proof starts from the decom-
position

w2 LK () = () + 02 5 (K(x) - [Kap, ),

with u,(n) = n‘1/2Z"deP For I-a.a. n € HN, n~ V2™ K(x,) — deP )
is as. normal with mean 0 and varlance o2. Moreover, u, is, under 'V,
normal with mean 0 and variance 0. These two components add up to render
n~Y2Y?K(x,) and therefore also n'/%(9™ — 9) as. normal under P} with
mean 0 and variance of = o + 0.

More formally, the proof proceeds as follows.

According to Corollary 5.7, applied with A(x) = K(x), the following rela-
tions hold for I'N-a.a. n € H™:

>< P { Vzi(K(x,,) - dePm) < t} ~ Ng,oo(—,2][ =0
1

1

lim sup
n teR
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Hence
n

n
>1< an{n—l/z ZI:K(xv) = t} = Ny my, o2 (=, £]

(3.8) lim sup

n teR

= 0.

Moreover, (2.6) implies

X P, {n/?(9™(g) - 9) <t} - X Pm{n'l/2 iK(x,,) < t}
1 1 1

< X Pm{t <n~12 iK(x,,) <t+ s} + X P {r,(x) < —¢}.
1 1 1

Since
n

n
limsup sup X P, {t <n Y2Y K(x,)<t+ s}
n teR 1 ’ 1

1
< lim sup sup N, 2(t,t+¢e] < —¢
) pte£ (nln), a2t ] omo’

and, as a consequence of (2.9"),
n

lim X P, {r,(z) < —¢} =0 for a.a.neHY,
n 1

we obtain

n teR

lim sup sup[ X P, {n'2(80™(x) - V) <t}
1
(3.9) - X Pm{n'l/2 iK(x,,) < t}]
1 1

1
< —¢,
Vi2mo
for I'™-a.a. n € HV. Since ¢ > 0 was arbitrary, the left-hand side of (3.9) is
nonpositive. Together with the opposite inequality, this implies
n

lim sup| X P, (n'/?(9™(x) — 9) < ¢}
1

n teR
(3.10)

- X Pm{n'l/ziK(x,,) < t}
1 1

The assertion now follows from (3.8) and (3.10). O

=0 for I'M-a.a.n € HN.

A realization 1 from I'V determines a p-measure N, (n,9,1), 0%s,Ty The
distribution of n — u,(n,d,T), under I'™, converges weakly to N, 029, 1y)-
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This means that the distribution of 7 — Ny, (, s 1) %o,y under I' N, con-
verges to a distribution over the space {N, ,2 ry: # € R}, which can conve-
niently be described by a distribution of the parameter u over (R, B), namely,
N, 029, 1) Hence (3.2) has an obvious implication for the as. behavior of the
sequence of distributions of n = X 7P,  +n'/2(37 — ) under I'™. This is a
sequence of p-measures over the set Q of all p-measures on B, converging to a
p-measure which is concentrated on a subset of 2, namely, {N, ,2. r):
u € R}

REMARK 3.11. The p-measures which constitute the support of the limit of
Nx(n » X ;‘Pﬂ,m* nt/2(9™ — ), n € N, that is, (N, ,2 ) # € R}, have,
in general, a variance smaller than the as. variance bound for S-regular e.s.,
(9, T), given in (2.3). It is, perhaps, of some interest to point to the fact that
this phenomenon is met with in a more general context.

Let .#'={N, ,2: (u,0®) €RXR,}. Let Il be a distribution over the
parameter space R X R_. If

fMu,aZ)H(d(/"’ o)) = No, o3

then the distribution II is concentrated on R X (O 0-0] that is, all p-measures
N, 1,0?) occurring in the mixture have a variance o2 < o£. If, as in our case the
mixing distribution II is concentrated on a subset R X {¢2}, then o < o2 if II

is nondegenerate. See Teicher (1960), page 65, Theorem 6.

INTERPRETATION OF THEOREM 3.1. Our intention is to obtain information
about the as. performance of X'P, 9., * B/ — §) for “irregular” se-
quences of nuisance parameters n,,, v € N. To obtain an intuitive mterpreta-
tion of Theorem 3.1, we consider the following ‘‘Gedankenexperiment.”” We
determine several i.i.d. realizations (7,), <y from I'™, which we lay in store as
‘“ideal models” of irregular sequences of nuisance parameters. What we expect
is that X[P,  *n!/2(9™ — 9), n € N, converges to the same limit distribu-
tion for any such sequence. What we 'find is that X" 1Py o % 028 — 9)
is—for large n—approximately normal, but the means of the approximating
normal distributions [given by (8.3)] are different for different sequences
(1,), ent The means themselves are approximately normally distributed, with
mean 0 and variance o2(¢, ) [given by (8.4"]. If ¢2(9,T) > 0, it therefore
makes no sense to speak of the as. behav1or of the sequence
X Py, #n'/% (8™ — 9), n € N, given the path (,), . There is no “limit as
n tends to infinity” which could be used as an approximation to
X Py, * n*/*(9™ — 9) for finite n.

One could of course, object that, with this interpretation, one is in the
wrong model, that the correct interpretation has to proceed from
P+ n'/?(9™ — 9). This is certainly true in the S-model. In the F-model,
however, we have just irregular sequences of nuisance parameters, and no
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distribution over the space of these sequences which we could use to ‘“average”
over X P, . *n'/?(9" — 9) for different (7,), <y

This is illustrated by Example 1 (given in Section 4) which describes the as.
performance of X [P, , *n*/*(9™ — &) for sequences n which are realiza-
tions of a stationary autoregressive process with parameter a, say G, |2"
(including the i.i.d. case for @ = 0). The distribution of n*/%(9™ — ¢) under
J(X TP, )G, (dn) converges to a normal limit distribution with mean 0 and a
variance depending on a. Hence this limit distribution is not determined by
the stationary distribution of the process which is the same for all @ € (-1, 1),
and which agrees with lim, E® for G,-a.a. n € HY.

The situation is different under condition (3.5). This condition is always

true T'-a.e. if the family of possible mixing distributions is full [i.e., T(T', &) =
Z,(T) for every T € #]. In this case, X TPﬂ,nv* nt/2(9™ — 9), n € N, does,
in fact, converge to a limit distribution, for I™-a.a. n € HY. It is in this
particular case that we could possibly expect to have convergence of
X TP, , # n'/A(3™ — §) not only for T-a.a. n € H", but for a larger class of
sequences 7 € HY, say all sequences with E{”, n € N, convergent. And only
in such a case is it meaningful to speak of an as. bound for the concentration of
e.s. in the F-model, and to ask whether it coincides with the bound for regular
e.s. in the S-model. In other words, only in such a case is it meaningful to ask
whether N .25,y the bound for i.i.d. sequences from I', extends to arbitrary
sequences 1 with lim , E,(,") = I'. The answer to this question is ‘“No.”

Example 2 (given in Section 4) exhibits for a model with a full family ¢ an
e.s. which is permutation invariant, strongly as. linear [see (2.9")] and as.
efficient among all S-regular e.s., yet “superefficient” along countably many
“irregular’’ sequences in A.

What are the consequences of this negative result? (i) For scholars inter-
ested in statistical theory: Find an appropriate concept of ‘stability”” for
sequences of nuisance parameters n which absorbs more attributes of an i.i.d.
sequence than just weak convergence of E{”, n € N, and prove the intuitive
claim, specified in (2.5), for such stable sequences. Alternatively: Prove that
the “number” of sequences along which e.s. in &, are superefficient is
negligible (in some sense yet to be defined). (ii) For scholars interested in
applications: Use e.s. which are as. efficient among all S-regular e.s., but make
sure that these e.s. are as. linear with a remainder term converging stochasti-
cally (X 7P, , ) to 0 for any sequence n € H.

4. Examples. The first example refers to a model with T(T', &) g -, (T),
for which condition (3.5) is not fulfilled. The natural e.s. 3, n € N [see (4.6)],
has the following properties:

1. For every n € N, 9™ is permutation invariant.

2. 9™, n € N, is as. efficient in the S-model.

3. If the sequences 7 are realizations of a certain autoregressive process
G| 8", then the distribution of n —» X[P; , *n'/*(3™ — 9) under G,
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converges to a nondegenerate distribution which is concentrated on {N,,,
u € R}
4. Under [(XTP;, )G, (d7), the distribution of n!/?(9( — ) converges to
1\/'(0 2/(1+a)) Since lim, E{W = N,y for Graa e HN, for every a €
1, 1), the limit dlstrlbutlon is not determined by lim E,(,") Its as. vari-
ance is smaller than the as. variance bound in the S- model for lim, E{™ if
a €(0,1).

ExampLE 1. Let I' be an unknown distribution; given a realization 1, from
I, a realization x, from N, ,, is observed. The problem is to estimate the
expectation of I'. This model can be rephrased as Py, = Ny, 1, With 7
distributed according to an unknown p-measure I' with I I‘(d n) =0. Let &
denote the family of all p-measures I'|B with [nT'(dn) = 0 and [172T(dn) < .
Then the tangent space at I' in & is

(4.1) T(T, %) = {k e Z.(T): fnk(n)l“(dn) = 0}.

At first we shall show that the as. variance bound for S-regular e.s. for 9 is

(4.2) of(T) =1+ [nT(dn).

We have [see (2.4)]

JR(m)e(x — (9 + n))l(dn)
Je(x = (9 + m))T(dn)

with ¢ denoting the density of the standard normal distribution. To obtain the
as. variance bound, we have to determine the orthogonal component of 7°(-,T')
[see (4.4)] with respect to Ty (P, F) For this purpose we show that the
orthogonal complement of T,(P; in «(Py r) is

(4.3) H(Py ) ={x—>c(x—3):ceR}.

To simplify our notation, let now 4 = 0. By Lemma 5.12 a function fe&
£ (P, p) is orthogonal to T(P, ) iff

To(Py r) = {x-—> :kET(F,f)},

[£(x) [k(n)e(x = n)T(dn) dx =0 forall k € T(T, ),
that is,
[f(®)o(x—m)ds=a+cn, neER
Now f € Z,(P, 1) implies [[f(x)¢(x —n)dxT(dn) = 0, whence a = 0.

Therefore, fe& .2, (P, 1) is orthogonal to Ty (P, 1) iff there exists ¢ € R
such that

[f(x)e(x —m)dx=cn, meR,
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equivalently: If

f(f(x)—cx)¢(x—n)dx=0, n €R.

By completeness of {N, ;: 7 € R}, this holds true iff
f(x)=cx A-ae.

This proves (4.3).
With I(x,T) == log [e(x — n)['(d7), we have

I'(x—9,T) = %l(x -9,T).
Hence
[(x = (O +m))e(x = (9 +1))(dn)

Je(x — (9 +1))T(dn)

The projection of I'(x — 9, T) into .#(P, 1), say Ly(x, 9, 1), is o5 2T x — 9).
Since o5 2(I')x — §) is in #(P, 1), it remains to be shown that I (x — 9,T) —
05 2(T)x — 9) is orthogonal to .#(P, 1), equivalently that

(4.5) J(1(x,T) = 05%(1)x)aP, (dx) = 0.

This follows easily from (4.4).
From Ly(x,9,T) =05 %I')x — &), we obtain the as. variance bound [see

(2.3)]

(44)  I(x-9,T)=

(JZotx 0, 1°Py o)) = o3(D),

a relation which was anticipated in our notation.
The canonical gradient [see (2.10)] is K(x, 9, T) = x — 9. Since
JK(x,9,T)P; ,(dx) = n, condition (3.5) is not fulfilled.
The natural e.s. for 9 is
n
(4.6) 9™(x) = n"t L
1

»
We have for any sequence € R,
n
1/2 (n) _ —
>1< Py o % 0207 = 0) = N, oy, 1y

(4.7)
n
with p, (1) =n"2 Y n,.
1

For I' € &, the distribution of y, under I'N converges weakly to
No, m2r(any-

Hence the sequence of distributions of n — X7P, = n!/2(9™ — ) under
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I'N converges weakly to a distribution over {N,, ;,: 4 € R}, which can conve-
niently be described as u being distributed according to Ny (n2r(any-

To establish that 3, n € N, is S-regular and as. efficient amongst these
e.s., we have to show that

1/2
Pg p#n'/2(9™ — 9,) = No ,zry)

for 9, converging to & at a rate n~'/2, and I'" being LAN with respect to I'".
Because of (4.7) it suffices to show that [ w, = Ny (neray) Since [}
admits, by definition, a I'*-density

n 1
(M1, m,) > exp| 2 L k(n,) = 5 [R*dT +r®(ny,.om,) |,
1

with r™ — 0(I'*) and k € T(T, &), it is straightforward to see that the weak
limit of I} *u,, n € N, is the same as the weak limit of I'" * u,, the latter
being N j,2r(nqy- [This e.s. is, of course, not regular in the F-model in the
strong sense required by Bickel and Klaassen (1986).]

Now we investigate the as. behavior of the e.s. (4.6) under various sequences
of nuisance parameters. At first we consider sequences 7,, v € N, which are
realizations of a stationary autoregressive process with expectation 0. For
a € (—1,1), the process G,|B" is defined inductively as follows: 7, is dis-
tributed as Ny ;,; the conditional distribution of 7,,,, given (n,,...,,), is
N_an, 1-a?- For every a € (—1,1), the process G, has the following features:

(i) The distribution of n, under G, is N, ;, for every » € N.

(i) E{ = N, for G,-a.a. n € RV,

Assertion (i) follows easily from Wold (1954), pages 54-55 and 112. Asser-
tion (ii) follows from the fact that G, *(n — (15(n,)), <) is an irreducible,
aperiodic, finite, homogeneous Markov chain with stationary limit distribution
N, 1y- See Langrock and Jahn (1979), pages 178 and 165.

Hence any realization n from G, might serve as a model of a “stable”
sequence of nuisance parameters. It includes an i.i.d.-model for & = 0. To see

how X'P, . *n'/*(9™ — §)behaves under such realizations n, we make use
of the following fact [see Anderson (1971), page 478, Theorem 8.4.1].

(iii) The distribution of u, [see (4.7)] under G, is normal with mean 0 and a
variance converging to (1 — a)/(1 + a). Hence it converges in the sup-metric
to Noo, 1 -a)/1 +ay-

Therefore the sequence of distributions of

n
X Py, +n* (0™ - 9), neN,
1
converges under G, weakly to a (nondegenerate) distribution over {N, ,:

u € R} which may conveniently be described as u being distributed as
Z\’(0,(1—01)/(1“11))'
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Observe that this distribution is also nondegenerate for a = 0, correspond-
ing to the i.i.d. case.

The distribution of n'/* (9™ — #) under [(XP; , )G,(dn) converges
weakly to Ny, 2 /(1+ay- Despite the fact that—for every « € (-1, 1)—lim, E(®

0,1y for G,-aa. 7, the as. distribution of the es. under G, bemg
0,2,/(1 +ay depends on a. For a = 0 (the i.i.d. case), the as. variance becomes
2, thus coinciding with the as. variance bound od(N, 1)) = 2 [see (4.2)]. What
is of interest here is that the as. variance under G, is smaller than this as.
variance bound if « € (0, 1).

That the as. variance surpasses the as. variance bound for @ € (-1, 0) must
not be interpreted as subefficiency through which we have to pay for superef-
ficiency for a € (0,1). This interpretation would be justified if « were an
unknown nuisance parameter which varies in (—1,1) (and is taken into
account in the estimation procedure). Our interpretation is different: For any
a € (-1,1), G,a.a. realizations n are reasonable models of ‘“stable” se-
quences of nuisance parameters. If « happens to be in (0, 1), the e.s. 9™,
n € N, which is as. efficient in the S-model, is superefficient along these
“stable” sequences of nuisance parameters.

There are, of course, also sequences n € H for which X P, . * n'/?(9™ —
?), n € N, converges to a limit distribution. Let » € RV be a sequence with
n,.l < m'/4 for m e N, and E{”, n € N, converging weakly to some limit
distribution, say I'|B, which is symmetric about 0. [If ¢ is a realization from I'N
fulfilling E(") = T, then n,, = {,,1,_,,1/4 ,1/4({,,) has the required properties.]
Let &, , =m,, £, = —m,. Then E<") = r but X7P, . +n'/%(3™ - 9) =
N(0 1 whatever T. Since 1 < o (I for any nondegenerate T, the e.s. (4.6) is

“superefficient” along this sequence ¢, if evaluated by comparison with the as.
variance bound pertaining to the limit of E{®, n € N.

The second example refers to a model with T(T, &) = _#,(T). In this case,
condition (3.5) is necessarily fulﬁlled Hence, unlike Example 1, ‘““nondegener-
ate limit distributions” over {N, ,2: u € R} will not occur. We establish the
existence of an e.s. 37, n € N, w1th the following properties:

(i) For every n € N, § is permutation invariant.

(i) §™, n € N, is as. efficient in the S-model.

(iii) For every I'|B, X P, = *n/%(§™ — §), n € N, converges for I'N-a.a.
n € RN to the optimal l1m1t d1str1but1on in the S-model.

(iv) There exist countably many 1rregular sequences 1 € R with E{),
n €N, weakly convergent, such that X[Py  *nl/2(§™ - 9), n €N, con-
verges to a limit distribution which is more concentrated about 0 than the
optimal limit distribution in the S-model pertaining to lim,, E{™.

ExampiE 2. For 4 €Rand n € H=R, let Py, = Ny,, 1y X N, 1) As-
sume that ¢ is the family of all p-measures on B, so that T(F &) = _/ ()
forT' € #.
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At first we shall show that the as. variance bound for S-regular e.s. is 2 for
every I'. This can be seen as follows.
For every fixed ¢ € R, the function S((x,y),?) == (x — ) + y is sufficient
for {P, 2 E R}, and {P, n* S(-,9): n € R} is complete [since P, , * S(,9) =
N, 2)] "Hence To(Py 1) [see . 4)] consists of all functions in £, (P ) wh1ch
depend on (x, y) through S((x, y), &) only.
To apply the results of Pfanzagl (1990), pages 38-40, we write the density of
P, , as

9((%,5), ) po(S((x,5),9),m),
with

1 1 \
o((5.9),9) = e - 7 (== 9) -

1 1 \
Po(s,m) = oV P —Z(S — 27) ]

Dpo(+, m) being a density of P, _ * S(-,d).

Since ((x — ¥) — y) and SZ(x ¥), 19) are stochastically independent under
P, ., we have P7C"(q (-, 8)/q(-,9)) =

[P SCGOF denotes the condltlonal expect;atlon of f, given S(-,9), with
respect to P, 9, n- We write PP rather than P3¢ to emphasize 1ts indepen-
dence of 7.]

With a, b, L, denoting the orthogonal components with respect to T(P; 1)
of g°/q, S" and [°, respectively, we obtain

(48) a((%,5),9) =q°((%,5),9)/9((x,5),9) = ((x = ¥) —¥)/2,
(4.9) b((x,y),9) =0,
and therefore

(4.10) Lo((x,5),9,T) = ((x = 9) —y)/2.

Since [Lo(+,3,T)?dP, 1 = 3, the as. variance bound for S-regular e.s.
equals 2 [see relation (2.3)].
The estimator

n
(411) ’a(n)((xv’yv v 1,..., ) = n_lx(xu_yv)
1

is permutation invariant. The sequence 9, n € N, is S-regular and attains
the as. variance bound. Moreover, X 'ILP,,) ¥ nt/%(9™ — 9), n € N, converges
to the optimal limit distribution for '™-a.a. n € R" for every I'|B.

In the following we construct an e.s. which shares these properties and is, in
addition, superefficient for countably many sequences of nuisance parameters.
For this purpose we need a sequence of permutation invariant remainder
terms which converges stochastically to 0 for almost all i.i.d. realizations, yet
behaves differently for certain sequences n € RN with E{™, n € N, weakly
convergent. The basic idea is the same as in the celebrated example of Hodges
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[see Lehmann (1983), page 405]. We use a preliminary test to discriminate
asymptotically between a distinguished sequence of nuisance parameters and
arbitrary i.i.d. sequences, and let the estimator depend on the outcome of this
test. The delicate nature of this discrimination makes the proof somewhat
technical.

As a first step, we define a sequence of tests which distinguishes asymptoti-
cally with probability 1 between realizations from a given p-measure, say Q,
and p-measures P # Q.

For Q|B and n € N, we define [with L(n) = loglog n]

C.(Q) = {v € RM: sup

teR

i (1(—oo, t](vu) - Q(—, t])‘
(4.12) '

< ynL(n) }

LemMA 4.13. For nonatomic p-measures P,Q on B, the following holds
true:

(4.14)) QV(liminf C,(Q)) = 1,
(4.14") PN(limsupC,(Q)) =0 forP + Q.

Proor. By Smirnov’s Glivenko—-Cantelli version of the law of the iterated
logarithm [see, e.g., Shorack and Wellner (1986), page 530],

Y1 _, ,) — —oo, ¢ 1
limsupsup| 1(( ’t](v) A ])l = 7=

(4.15) n  teR VnL(n) V2

for @V-a.a.v € RN,
This implies (4.14'). Since

supn|P(—o,t] — Q(—o, t]

teR
< sup| ¥ (1, 4(v,) = P(~,¢])
teR| 1
+ sup Z(l(—w,t](vv) - Q(—OO, t]) ’
teR| 1 ,

for every v € RY, n € N, the relation P # @ implies C,(P) N C(Q) = @ for n
sufficiently large. Hence (4.14") follows from (4.14'). O

Throughout the following we write N, for the normal distribution with
mean ¢ and variance 1, and Ny for [N,I'(dé).

Let T, denote the p-measure with characteristic function exp[— |¢|*/?].
Recall that I'; is symmetric about 0 and unimodal with bounded Lebesgue
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density. Moreover, the distribution of n~2Y7x, under I} is T,. [See, e.g.,
Lukacs (1970), pages 136, 138 and 158.]

To prepare the definition of the estimator sequence, we need the following
result.

LEMMA 4.16. For any sequence a, € R, n € N, we have

lim

n—o

n
n-1/2 Zyv -a,
1

= forNp-a.a.y €R.

Proor. By Anderson’s theorem

N,L\('){y e RN:

n
n"2 Yy, - a,
1

< n1/4}

= N x F(’,\'{(v,f) € R™ X R™;

< n1/4}

n
1

= Ny X To{(v,¢) €R X R: [v + n¥% — a,| < n'/*}
<To{é € R: |é] < n™5/%}.

Since T, has a bounded Lebesgue density, X% _,T{¢é € R: |¢] < n7%%) < .
Hence, by the lemma of Borel and Cantelli,
<nl 4}) = 0.

Now we define a countable class of sequences ¢ € RN, I €N, by the
following inductive procedure. Assume that ¢!, 1 =1,...,k — 1, are defined.
By Lemma 4.16, applied with a, = n~1/2%7¢! for I = 1,...,k — 1, we obtain
that for Nil-a.a. y € RY,

\

N}\(')(lim sup{y € RN:

n
nT2 Yy, - a,
1

This implies the assertion. O

n12 Y (y, - &)

1

lim =0 forl=1,...,k— 1.

n—o

This may be rewritten as follows: For I)-a.a. ¢ € RV,

=

NON{U € RN: lim n~1/2

n-—oo

Y (v, +£ - &)
1

(4.17)
forl=1,...,k — 1} =1.
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Let £* € RN be a sequence with the following properties:

N(’,\'{v € RN: lim n='2| Y (v, + £F - £})
1

= ©
(4.18)
forl=1,...,k— 1} =1,
(4.18") >1< N,:(liminf C,(Ny,)) = 1,
(4.18") E® = T,.

The existence of such a sequence follows from (4.14'), applied with @ = Ny,
and (4.17). [(4.18") follows, in fact, from (4.18"). We require it as an extra
condition for the purpose of saving space.] Observe that (4.18') implies implic-
itly that forall I = 1,...,k — 1, &¥ # ¢! for infinitely many v € N. Even if we
subject £* to additional “irregularity conditions’ which hold for realizations
from T’ with positive probability, the existence of such a sequence is guaran-
teed.

For v € R let

(4.19) g(v) = vexp[—av?],
where a > 0 is an arbitrary constant. In the following we repeatedly use that
g is bounded, and lim, _,., g(v) = 0.

With the help of the sequences ¢’ € RV, I € N, we define our estimator
sequence for ¥ as follows:

’é(n)((xu’yv)u=l ..... n)
(4.20) Y (5 = 3) 1 (e 9,
1
with
(4.21) 1 (y1--es90) = éz_lg s Xj:(y" - Ei))lc"(N“)(yl’m’yn)'

Observe that $ is invariant under permutations of (x,y,),...,(x,,,).

LEMMA 4.22. (i) For every I'| 4,
(4.23) r, >0 Nla.e.
(ii) For every k € N,

n
To(¥1r-- s 0) — 2758072 Y (y, — 55")) -0
1

for X Ng-a.a.ye€ RN
1

(4.24)
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Proor. (i) If T # T, we have Ny # N ; hence N{(limsup C,(Ny)) =0
by (4.14"). This implies r, —» 0 Nj-a.e.

If T =T, we obtain from Lemma 4.16 that for Nl’a\("-a.a. y € RN the follow-
ing relation holds for all [ € N:

n
: -1/2 gl
Yim n =X (v, - &)

Together with (4.19) and (4.21), this implies r,, —» 0 Ny -a.e.
(ii) By (4.18), [ # k implies
= 00} =1.

=w.

n-—o

(4.25) X Ngf{y e RM: lim n~1/2
1

Z':‘,(yy - &)

Since

Pa(Y1re s Yn) = 2"“g(n‘l/2 Yy - Ef))
1

n
=X 2‘1g(n‘1/2 Yy - fi))lcnmro)(yl,--.,yn)
1

14k
- 2_kg(n_1/2 Z(yv - 65))(1 - ]‘C"(Nro)(yl’ e ’yn))’
1
relation (4.24) follows from (4.25), (4.19) and (4.18"). O

For the following, observe that
nl/z(é(n)((xv’yv)v=l ..... n) - ’Bn)

(4.26) B n
=n 1/2 Z((xu - ﬁn) _yv) + rn(yl""’yn)'
1
Moreover, for r,, now considered as a function of (x,,y,), v =1,...,n,

(4.27) Py pxr, =Nyp*r,,

n n
(4.27") X Py ,xr,= XN, *r,.

1 1

PROPOSITION 4.28. 4™, n € N, is as. efficient in the S-model, that is, for
every 9 € R, every T'|4, every sequence 9, — O and every sequence T, = T
with I, n €N, and I'*, n € N, contiguous,

(4.29) Pp . xn'/A(§M —9,) = Ng 5.

Moreover,

n
(4.30) X P, , #nt?(§™ > 9,) =Ny, forTNa.a.neRV
1
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PRrOOF. As a consequence of (4.23), we have r, —» 0 (X N ) for I'N-a.a.
n €R", and r, - 0 (Ny) for any sequence T, for which I‘” and I'" are
contiguous (whlch implies contiguity of Ny and N).

Because of (4.27') and (4.27"), this implies that r, — 0 under X 1Ps. ., for
I'-a.a. n € RY, and also under P  if I and I'" are contiguous. Hence the
assertion follows from (4.26). O

After having established that 379, n € N, behaves'nicely for I'-a.a. n € RN,
we shall show that it is superefficient if the sequence of nuisance parameters is
one of the sequences ¢* € RN, &k € N.

ProposITION 4.31. (i) For every & € R and every sequence 9, — 9,

n

(4.32) X Py axnt/2 (8™ —9) = M,
1
with
(4.33) M, = Ny 5,*((w,v) = u + 27 *v exp[ —av?]),
where 2, is the matrix with elements
(4.33") 0'11 = 2, 0'12 = 0'21 = _1, 0'22 = 1.

(ii) The limit distribution M, is symmetric about 0, and more concentrated
than Ny 5, the limit distribution in the S-model: We have

(4.34) My(—¢,t") > Ng o(—t',8") forallt',t" >0,
and
(4.35) lim [n'/?(§™ ~ 9,)d X Py =0,
n v=1
. (4.36) lim [(n22(8® = 9,)) d X Py o = [wM,(dw),
n v=1

which is less than 2, the as. variance bound in the S-model.

PROOF We have

><P gk*( ‘Vzé«xu—m—yy),n“%(yu—ff))

n n
= (No X Np)" * (n'm Y (u,-v,),n" 2 Zvv) = Ny, 3)-
1 1
Hence
X Py, gt ('fl/z L((x, =) —y)+ 2—’“g(n‘1/2 (- ff))) - M,,
1 1

with M, defined by (4.33").
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Now (4.32) follows from (4.26), (4.24) and (4.27").

(i) Symmetry of M, about 0 follows from the central symmetry of Ny, sy

For every v € R, v # 0, r - Ny ;(—t + rv,t + rv) is decreasing on [0, »)
(by Anderson’s theorem). Since 0 < 1 — 27* exp[ —av?] < 1, this implies

No (-t +uv,t+v)
(4.37) < Ngo,p(—t +v(1 — 27" exp[ —av®]), ¢ + v(1 — 27* exp[ —av?]))
for every v € R, v # 0.

Since
Z\’(0,2) = Zv(g,l)*((u’v) - (u - v’v))’
we obtain
M, = N, 5, *((u,v) = u + 27%v exp[ —av?])
=Ng *((w,v) »u—v(l-27*% exp[ —av?])).
Hence
M,(—t,t) = [Ny (-t + v(1 — 27% exp[ —av?)),
(a.38) (78D [ Mol ( [-av®])
t+u(1 - 27%exp[ —av®])) Ny, 1)(dv).
Since
(4.39) No,o(=t,t) = [N (=t + v, + v) Ng 1(dv),

the relation N, o(—t,¢) < M,(—¢,t) for ¢t > 0 follows from (4.37)-(4.39).
Since Ny, and M, are symmetric about 0, this implies Ny ,(—#,¢") <
M,(—¢',¢") for arbitrary ¢',¢" > 0.

Because of (4.26)

2
+ 2rn(y1"-",yn)2'

< 2(n-1/2 5 ((x, - 8,) - 9,)
1

Since XTPy .#(n~ 2L ((x, — 9,) — ,)) = Ny 5, the sequence of functions
(22 (x, — 9,) — ¥,))? is uniformly integrable with respect to X 1Py e
The same holds true for r? (which is uniformly bounded). This implies
uniform X7P; -integrability of (#'/2(§™ — 9,))? and hence (4.35) and
(4.36).

Jw?M,(dw) < 2 follows from (4.34), applied with ¢’ = ¢". O

5. Auxiliary results.

LEmmA 5.1. For any set A€ /N, PN(A) =1 [=0] is equivalent to
XTP,,V(A) =1[=0] for TN-a.a. n € HN,
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In particular r™ — 0 PP-a.e. is equivalent to r™ — 0 XTP, -a.e. for
I'N-a.a. n € HN.

LemMA 5.2. Let (X, ) and (H,#) be measurable spaces. Let P, |7,
n € H, be a family of p-measures such that n — P,(A) is %-measurable for
every A € .

Let h: X X H — R be an &/'X B-measurable function fulfilling

(5.3) Jh(x,m)P(dx) =0 forT-a.a.neH
and
(5.4) o? = [ [h(x,m)*P,(dx)T(dn) € (0,).
Then

0

>1< Pn,,*(& - n—1/2 Zh(xu’ nu)) = IV(O,D'Z)
1

for TN-a.a. (n,),cn € HN.
Proor. Let
o%(n) = [h(x,1)°P,(dx)
ahd
Ta(Ms e es M) = Z,:.Uz(m)
Since [eX(T(dn) = 0% € (0, ), we have

(5.5) n (... ,m,) = 02,

for all (,), < outside a TN-null set, say N'.
Now we introduce the p-measure M|o/X # defined by

M(A X B) = [15(n)P,(A)[(dn), Acs/,Be &

From (5.3) and (5.4) we obtain

(5.3) JR(x,m)M(d(x,m)) =0

and

(5.4) [r(x,n)"M(d(x,m)) = 0% € (0,%).
For r > 0 let

D(r) = {(x,m) € XX H: |h(x,n)| > r}.
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By (5.4'), for every £ > 0 there exists ¢, such that

JR(x,m) 1o (%, m) M(d(x,7)) <e.
Hence there exists a I'N-null set N” such that

limsupn=' ¥ [h(x,m,) Lp(%,m,) Py (dx) <& for (n,),en & N'.
n 1

Let ¢ > 0 be arbitrary. As a consequence of (5.5), (n,),cn & N' implies
ct,(My,...,m,) > ¢, for n sufficiently large. Hence

lim Supn—l th(x’ ny)le(c-r,,(nl ..... n,,))(x’ ”h)Pm(dx) <¢
n 1
for (n,),en € N' UN".

Since £ > 0 was arbitrary, this implies: For (n,),cn € N' UN" and ¢ > 0,
i 5 fR08 ) Lo no (1) Pa(5) = 0.
Using (5.5), we obtain for (n,), <y € N UN" and ¢ > 0,
(5.6) lim7,*(ny,...,m,) Z JBE ) Loer, .. m (%2 7,) Py () = 0.

Condition (5.6) is Lindeberg’s condition. Hence (7,), <y € N’ U N” implies

n

n
>1< an*(-ﬁ: - Tr:l(nl’”"nn)zh(xw nv)) = ZV(O»I)'
1

Using (5.5) again, we obtain

n

n
>1< Pm*(ér —’n_l/zzh(xwm)) = No, 0% 0
1

CoroLLARY 5.7. Let (X, &) and (H, &) be measurable spaces. Let P, |,
n € H, be a family of mutually absolutely continuous p-measures such that

n — P, (A) is #-measurable for every A € «.
Let h X — R be an ofmeasurable function fulfilling

(5.8) JR(x)Pr(dx) =0

and

(5.9) JR(x)*Pr(dx) € (0,%).
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Let

(5.10) o2 = fh(x)zPr(dx) - f(fh(x)P,,(dx)) I'(dn).
Then o2 € (0, ) and

o

X Pm*(g_c —>np- /2 i(h(x,,) - fh(x)Pn,,(dx))) =>1V(0,02)
1

1

for TN-a.a.(n,),en € HV.

Proor. We apply Lemma 5.2 with h(x,n) = h(x) — [hdP,. Condition
(5.3) is obvious. It remains to prove (5.4).
a2 < o follows immediately from (5.9). By Cauchy-Schwarz,

(5.11) ([h(x)P,,(dx))2 < [h(x)*P,(dx) foralln < H.

It remains to prove o2 > 0. The relation o? = 0 implies equality in (5.11) for
all n outside a I'-null set, say N. Because of (5.8), n & N implies h(x) = 0 for
P-aa x €X and therefore [ h(x)2Pn(dx) = 0. This, however, contradicts
(5.9). O

Lemma 5.12. For m € H, let P |/ be a p-measure admitting a density
p(-,m) with respect to some o-finite measure. For f € £, (Py), the function
n = [fdP, is T-orthogonal to T(T, &) iff f is Py r-orthogonal to

{ Jk(m)p(-,m)T(dn)
/p(-,m)T(dn)

AppenpuM.  If T(T, &) = £, (1), then

:keT(r,f)}.

ffdPn =0 forT-aa.neH

iff f is P, r-orthogonal to
{fk(n)p('m)r(dn)

Jp(-sm)T(dn)

Proor. By Fubini’s theorem, f € #,(Pr) and k € T(T, &) implies

©Jk()p(x,m)T(dn)
[T RPN dn) = [F(x) = =mrrs

This implies the assertion. O

:ke./*(l“)}.

P (dx).
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