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LARGE DEVIATIONS FOR CENSORED DATA

By I. H. DINWOODIE

Tulane University

Large deviation properties of the Kaplan—Meier estimator are studied
and applied to obtain the rate of exponential convergence of the estimator
to the underlying survival curve.

1. Introduction. Let X7, X3,... be an i.i.d. sequence of positive random
variables with common distribution function F°. One often uses the empirical
distribution function F, defined by

1
Frf(t) = Z l(X'?st)
ni-1

to estimate F°. The estimator F, is well understood and its fundamental
asymptotic properties can be found in Pollard (1984).

Censored data arise in applications when the exact value of each random
variable X7 is not always observed, but one knows a lower bound X; for X?
and whether one has observed the true value X; or the “censored value” X;,.
For example, suppose one is measuring the survival times of patients entering
a medical study at various times. Let X; represent the survival time of patient
i after the patient enters the study, let T represent the time at which the
study must end, and let Y; represent T' — E; where E; represents the random
time in (0, T') at which patient i enters the study. If the study ends at time T,
then we observe (X; + E;) A T, or equivalently we observe X7 A (T — E,) =
X; A Y, and we are interested in estimating the distribution of X7 from these
imperfect observations.

The standard estimator for the curve 1 — F° in the presence of censored
data is the Kaplan—Meier estimator [Kaplan and Meier (1958)], which will be
denoted S,,. Gill and Johansen (1990), page 1536, and Gill (1983), page 53,
prove uniform convergence of S, to 1 — F° on a fixed interval both a.s. and in
probability. Breslow and Crowley (1974), Theorem 5, prove weak convergence
on a fixed interval of the process n'/%(1 — S, — F°) to a Gaussian process.
Csoérgdé and Horvath (1983), Theorem 1, prove a law of the iterated logarithm
for a similar estimator which yields a.s. convergence on a fixed interval [under
the assumption that F*(T') < 1 (cf. (2.1)]. Thus the asymptotic theory for S,
includes convergence or consistency theorems, a central limit theorem and a
law of the iterated logarithm. We present here some large deviation results
concerning S, from Dinwoodie (1990).
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To study large deviations for the estimator is to study the decay rate of the
probability that the estimator performs poorly and falls away from the true
probability distribution. Large deviation theorems generally establish an
asymptotic exponential decay rate, and results for i.i.d. and Markov processes
can be stated fairly simply in terms of a variational formula which often has
the form of a Young—Fenchel transform [see Varadhan (1984) or Dinwoodie
(1993)]. The Kaplan—-Meier estimator is a new type of stochastic process with
important applications, and so it is interesting both as the source of a new
large deviation rate function and also as a practical candidate for efficiency and
convergence properties related to large deviations.

We will give the formal definitions and then sketch the results. Let (2, A, P)
be a probability space on which is defined a sequence of independent pairs of
independent, positive random variables {(X;,Y;): i = 1}. For each i > 1, let

X, = min{X?, Y},
(1.1)
9 = lix; <y
The Kaplan-Meier estimator for the survival curve
(1.2) s; = P{X] > ¢}

is the random variable

n n—r, 1%
1.3 S (¢) = _,
(1.3) () ﬁllgh—n+1

where r; is the rank of (X;,1 — §,) in the set {(X,,1 — §,), 1 <k < n}. Note
that r; depends on n. The ordering is lexicographical, meaning that deaths
(8; = 1) come before censored observations (§; = 0) in the case of ties among
the set {X;: 1 <i <n}. When no censoring takes place, the Kaplan-Meier
estimator reduces to the usual empirical probability distribution based on
{(X?): 1 <i < n)}, for which large deviation properties are well known [see
Groeneboom, Oosterhoff and Ruymgaart (1979)]. In general, the Kaplan-Meier
estimator is a nonlinear function of the new process {(X;, §,)}, a process whose
law depends on the distributions both of X; and Y;. Many properties of the
estimator can be found in the original paper of Kaplan and Meier (1958) or in
Miller (1981). The censoring scheme studied here in which the sequence of
censoring random variables {Y;: i > 1} is an i.i.d. sequence is called “random
censoring.” An alternative form of censoring occurs when each random vari-
able Y; is a fixed number c;. The resulting sequence {X;: { > 1} is not i.i.d. and
our results do not apply to this censoring scheme. Meier (1975) studies the
Kaplan—Meier estimator under fixed censoring.

The technique used here to study S, is to first establish a contraction,
which means that the process S, is written as the image of a process with
known large deviation behavior. The known process will be a sequence of
empirical probability measures P, on R,X{0,1}. The contraction will be
denoted /, and hence we write

S,=/¢P,.
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The probability that the random curve S, falls in a certain set of curves is the
same as the probability that the well-understood process P, falls in the
preimage of this set. The difficulty in -carrying out this idea for
the Kaplan-Meier estimator is that the contraction / is not continuous and
nonlinear. The results depend on a continuity property of / only at certain
points in its domain (see Lemmas 2.2, 2.3 and 2.4).

Since all results for S, are proved in the uniform topology on curves on the
fixed interval [0, T'], we use large deviation results for the measure P, not in
the weak topology but rather the stronger r-topology proved by Groeneboom,
Oosterhoff and Ruymgaart (1979). The 7-topology on measures is very useful
because its associated topology on distribution functions is stronger than the
topology from the uniform metric. This property is the essence of Lemma 2.2,
which together with the very useful Lemma 2.3 of Gill (1981) proves the
continuity property of / at Lemma 2.4. This continuity property is combined
with the large deviation results of Groeneboom, Oosterhoff and Ruymgaart
(1979) to prove the basic large deviation properties of S, at Lemma 3.1.

The main result is Theorem 3.1 which is a large deviation theorem for S,
with no restriction on the type of distribution function of either X7 or Y;. This
theorem intuitively says that the large deviation rate at a certain curve s is the
Kullback-Leibler distance from one measure on R, X{0, 1} to another, where
the first measure in this distance is a measure transformed from laws for X7
and Y, which would make S, consistent for s, and the second measure is
transformed from the original laws of X; and Y;. Theorem 3.1 specializes to
Corollary 3.1 when one is concerned only with small neighborhoods of the true
survival curve s°. Corollary 3.2 is the a.s. consistency of S, and follows from
Theorem 3.1 together with the assurance furnished by Lemma 3.2 that the
exponential rates of Theorem 3.1 are nontrivial. This consistency result ap-
pears to have as few hypotheses as any consistency result in the literature and
therefore argues for the use of large deviation methods as a general tool for
proving consistency theorems in statistics.

2. S, =/(P,). Fix T > 0. This section is devoted to studying a represen-
tation of the Kaplan-Meier estimator S, on the interval [0,T] as a func-
tion / of an empirical probability measure P, defined on & = R, %{0,1}. The
map / will be called a contraction in the large deviation sense of Varadhan
(1984). This use of the word ‘‘contraction” is unrelated to the more common
use of the word in describing a map on a metric space that reduces distances
between points. The map / will be defined on the space of probability
measures on E = R, X{0, 1}. The technical difficulty is that / is not continu-
ous at certain probability measures which are supported on [0, T') X {0, 1}. The
probabilistic analysis succeeds because the empirical law P, avoids such
probability measures anyway when P(X; > T') > 0.

* Let F° denote the distribution function of X7 and F” the distribution
function of Y,. With this notation, the distribution function F* for X is

(2.1) Fr=1-(1-F°)(1-F?)=1-s".
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P, will denote the empirical probability measure on the space E from the
observations {(X,,6,): 1 <i < n}:

120 1

n
(2.2) Py(A) = — X Lix, 59¢ 4
i=1

I 3|

where A is a measurable set in 2 with the Borel field derived from the
product metric. The probability induced on E by (X, 8,) will be called p, and
we define

(2.3) r=max{X;:1<i<n}.

We let S be the set of bounded, right continuous functions on R, = [0, ) with
the o-algebra generated by the open balls or the coordinate maps and we will
consider S, as an element of S. If s; and s, are two elements of S, then we
will use the notation [ls; — s,llp = Supg <; < 7ls1(t) —s5(¢)l. We let M denote
the set of probability measures on the metric space E. The topology on M will
be the -topology [see Groeneboom, Oosterhoff and Ruymgaart (1979) or
Deuschel and Stroock (1989)], which is the one generated by the bounded,
measurable functions on E. A function s on R, such that 1 — s is a probabil-
ity distribution function will be called a survival curve. If 1 — s is a subdistri-
bution function, then s will be called a subsurvival curve.

Let us proceed to construct the contraction /. Let SD denote the set of
subdistribution functions on R, with the uniform metric on R + denoted || ||.
The contraction / will be a composition of functions from M to SD to S,
and so SD can be ignored after some preliminary lemmas. Define the maps
fr: M — SD for £ = 0,1 by

fo(@)(¢) = q([0,¢]1 X {0}), O0<¢<e,
fi(a)(¢) = q([0,¢]1 X {1}), O0<¢<w.

We will need a different representation for S, which will require the
following definitions:

N,(t) = n[ f1(P,)(1)],
Y.(t) =n[1 = [(fo + F)(P)(-)]].
N,(¢) can be interpreted as the number of deaths up until and including time ¢,
and Y,(¢) is the number of observations among {X;: 1 <i < n} which are
greater than or equal to time ¢ > 0. The following lemma is known but we
write out the proof to clarify the ranking procedure in the case of ties in the
data. If H is a function such that the left limit H(s — ) exists, then we will use
the notation :

AH(s) =H(s) —H(s—).

(2.4)

(2.5)

LemMma 2.1. The Kaplan—Meier estimator S, has the representation

AN,(s)
Sn(t) = s]._.[st[l - Yn(s) ],

where 0/0 = 0.
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ProoF. Fix w € Q and let {s; <s, < -+ <s,}={X(w) <t:1<i<n}).
Then from (1.3),
m n-r, 1%
t = -
Su(?) l;l U [n -r+1

Now the deaths at s, have ranks {n — Y,(s,) + 1,...,n — Y,(s,) + AN,(s,)},
and so by the telescoping effect of the second product, the last expression is
equal to

m AN, (sk) AN,(s)
kl]l Lo Y 2(Sk) s<t - Y.(s) ]
Let G = SD x SD. If G = (G,,G,) € G, we define for ¢ > 0,
(2.6) Yo(2) = (G1 + Go) () — [(Gy + Go)(¢ )]
We follow Gill (1981) and define ®: G — S by
AG(s)
(27 @(G1,Go)(1) = T1 [1 Vo) ] [ [ Y—(—)dG (s)],

where G is the continuous part of G,, obtained by subtracting the jumps
from G,. The convention is that 0/0 = 0, and exp(—) = 0
From Lemma 2.1, it is immediate that on [0, T'],

S, = ©(fi(P,), fo(Py))s

since the exponential factor is just 1. This tells us how to define our contrac-
tion. Let /: M — S be defined by

(2.8) F=®(f1, fo)

We begin with the following technical lemmas about / to ultimately prove
the large deviation results.

LemMa 2.2. Both f,: M — SD and f;: M — SD are continuous when SD
has the uniform metric on R .

Proor. ATh_e proof is essentially the proof of Lemma 2.1 of Groeneboom,
Oosterhoff and Ruymgaart (1979), and hence will be omitted. O

The next result is Lemma 2 from Gill (1981).

LemMa 2.3. Let G = (G,,G,) € G be fixed and suppose Y (T') > 0. Then
I®(G,, Gy) — ®(Hy, Hp)llr > 0
as max{”G]_ - Hllla ”Go - Holl} - 0.
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Lemma 2.4 below establishes a certain amount of continuity for the
map £ and is thus the foundation for the large deviation results of Theorem
3.1. If A c M, we define

A= AN {geM:q([0,T) x {0,1}) <1},

(2.9)
A*=AU{qeM:q([0,T) x {0,1}) = 1}.
LemMA 2.4. If U is open in S with respect to the pseudometric || ||, then
L/~ YU~ is open in M, and if C is closed in S with respect to || |7, then
L/~ MCN* is closed in M.

ProoF. Suppose U is open in S with respect to || |l andlet ¢ € [/~ X(U)]".
Then 1 — [(fy + g T -)]=1—¢f[0,T) x {0,1}} > 0. But since f, and f;
are continuous, there is a neighborhood N, of g such that if r € N, then
1-1[(fo+f)FNT-)1=1-r{[0,T) X{0,1}} > 0. By Lemma 2.3 and the
continuity of f, and f; once again, there is a neighborhood N, of ¢ such that
if r € Ny, then /(r) = ®(f,, f)(r) € U. Thus N, = N; N N, is a neighbor-
hood of g contained in [/~ X(U)]".

Suppose now that C is closed in S. We have seen that [ /~ Y(C9)]~ is open in
M, and it is immediate that [ /~(C)*]° = [ /~%(C°)]", and hence [/~ (C)]" is
closed in M. O

In Section 3 a large deviation rate A on S will appear as the infimum of an
image of a map x, which transforms pairs of survival curves (a,o) to a
“censored” law on R, X{0,1}. The map x gives the law of (X, §;) when X;
and Y; have survival curves a and o, respectively. The heuristic description is
that the map / undoes the censoring effect of y.

Lemma 2.5 is essentially Theorem 2.1 of Peterson (1977), although
Peterson proved it under the assumption that f,(p) and f,(p) do not have
jumps at a common point in the interval [0, T']. The result is essential for
proving the consistency of S,,. If s is a survival curve and o is a subsurvival
curve on R, we define a new probability measure x(s,o) on E = R, x{0, 1}
by

x(s,0)([0,8] X {1}) = [Looucno(u—)d(1 - s)(n),

x(5,0)([0,8] X {0}) = [Lo,cys(r) d(1 = o)(r).

By allowing o to be a subsurvival curve, we effectively allow a censoring
variable with distribution 1 — o to take the value « and so the range of x
includes uncensored distributions as well. An imprecise interpretation
of / and x could be the following diagram:

X

SxS - M

/7
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LEMMA 2.5. Let s be a survival curve and o a subsurvival curve on R . If
s(T—)o(T—) > 0, then /(x(s,a)) =s on [0, T].

Proor. Define the cumulative hazard function G for F=1—s by

1
G(t) = foﬂstf—_F(T—_) dF(x).

Lemma 3.2.1 of Gill (1980) shows that
1-F(¢) = l_It[l — AG(x)]exp[-G°(¥)],
x=<
where G¢ is the continuous part of G defined by subtracting the jumps of G.

Let ¢ = x(s, o). It is enough to show then by the definition of / at (2.8) and
® at (2.7) that for x € [0, T],

Afi(g)(x)
1 - fo(g)(x—) — f(g)(x—) ’

1
@1) GO =[ TG - ADEo)
To see (2.10), observe that AG(x) = AF(x)/[1 — F(x —)]. Now
Afi(g)(x) = q([0,2] x {1}) — ([0, %) x {1})
= [Lozrcao(r=) dF(r) = [Los, cxo(r=) dF(r)

= o(x—) AF(x)

(2.10) AG(x) =

dfy(q)°(x).

1
= a'(x—)s(x—)—lfm AF(x)

= [1 - fol@)(x =) = fi(@)(x—)] AG(x),

which proves (2.10). To prove (2.11),

1
f()sxstl —fo(@)(x—) — fu(q)(x—)
1

- f()sxstl —fo(q)(x—) - fi(@)(x—)

-y Afi(q)(x)
sot 1 —fo(@)(x—) — f(a)(x—)

= fosm—————a(x_)ls(x_)a(x—)dF(x) - Et AG(x)
= G(t) — Y AG(x) = G°(¥). a

x<t

df1(¢l)c(x)

dfi(q)(¥)
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REMARK. Since the law p of (X,, 5,) on R x{0,1} is x(s°,s”),
follows that Z(p) =s° on [0,T] if s°(T—)s*(T—) >0 or equlvalently 1f
FXT-)<1

Lemma 2.5 says that the map x(-, - ) parametrizes at least part of the set of
measures in M that are sent to s on [0, T'] under /-

x:{(a,0):a=s0on[0,T],a(T—-)o(T~-) > 0}

- {geM: /(q) =son[0,T]}.

The range of y is identified in the following lemma. Let g,r be the restriction
of the measure ¢ € M to the o-algebra generated by open sets in [0, T'] X {0, 1}.

LEvMMA 2.6. Ifs € S, then
{x(a,0)r:a(T~)o(T~)>0,a=s0n[0,T]}

= {ar: £(q) =son [0,T]} .

ProoF. Let L denote the set on the left and R the set on the right.
Let @ be a survival curve on R, such that @ =s on [0,T] and suppose
a(T - )o(T - ) > 0. By Lemma 2.5 it follows that /(x(a,0)) =s on [0,T].
Furthermore, if m = y(a, o), then using Fubini’s theorem,

m([T,=) x {0,1}) = a(T—)o(T~) >0

_and therefore x(a,0) € {g € M: /(q) =s on[0,T]}". Hence L C R.

Conversely, let ¢ € R. We will produce a survival curve a and a survival
curve o such that ¢ = x(a, o) for sets in [0,T'] X {0,1}, a = s on [0, T] and
a(T — )o(T =) > 0. Define a survival curve a on [0, ©) such that

a(t) =Z(a)(t), te[0,T].
The definition of a(¢) is unimportant on (T, ). Note that since /(q) = a on
[0,T] and A(gXT —) > q(T,») x{0,1}) > 0, it follows that a(T— ) > 0.
Clearly @ = s on [0, T']. Define o on [0, ») such that

o(t t,©) x {0,1}), te[0,T],

=7 () X (0,1) [0,7]
where o(T) = 0 in the case where /(gXT) =0 and g((T,*) X {0,1}) = 0
The function o is nonincreasing on [0, T'] by the following argument. Define a
probability distribution function H on R, by H(¢) = q([0, ¢] X {0, 1}). Then by
representing 1 — H through its hazard function as in the proof of Lemma 2.5,
we see that

q((¢,) x {0,1}) =1 - H(?)

N AH(s) .
= TG )] [fl i) )|
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But by letting H(#) = ¢q([0, ¢] X {1}) we can write

AHI(S) t 1
t)y=TI|[1 - ——=——|exp|- [(——— dHT
/@) - T1[1- ol Jos| - [ i)
and now it is clear that g((¢, =) X {0, 1}) decays more quickly than /(qXt).

Since q([T,») x {0,1})) > 0, it follows that o(T—)> 0 and therefore
a(T - )o(T - ) > 0. To see that x(a, o)r = q;r, observe that for any ¢ € [0, T']
we have g((t,) X {0, 1}) = a(¢)a(¢) and again using Fubini’s theorem

a()o(t) = [Lycycmo(u—) d(1 - a)(u) + [1yc,cma(r) d(1 - o)(r)

=x(a,0)((¢,°) x{0,1}).
Thus x(a, o X[0, ¢] x {0, 1}) = q([0, ¢] X {0, 1}), and on the interval [0, T'],

fox(a,0)) + fi(x(a,a)) =fo(q) + fi(q)

[cf. (2.4)]. By looking at the definition of / we see that this implies that
filx(a, o)) = fi(q) on [0,T], and hence fy(x(a,a)) =fy(q) on [0,T]. Thus
x(a,0) = q on sets in [0, T'] X {0, 1} which proves R c L. O

3. Large deviation properties of S,. This section will use the techni-
cal results of Section 2 to prove the main results Theorem 3.1 and Corollary
3.1. The notation K(A, p) when A c M will denote the infimum
inf, . 4 K(q, p), where K(q, p) is the Kullback-Leibler number

dq
log| —ldq, if q<p,
ko - Ll wo<s

0o, otherwise.

We will also use the conditional Kullback-Leibler number K, defined by

dq
log| —IT | dq, if < pip,
KT(q,p) — '/'E g[dp ] q q|T p]T

o, otherwise.

where dq/dp; denotes the conditional expectation of dq/dp with respect to
the o-algebra generated by open sets in [0,7'] X {0,1} and the measure p.
Alternatively, K;(q, p) is the minimum Kullback-Leibler distance over all
probability measures which agree with ¢ on sets in [0, T'] X {0, 1}. This second
description is a consequence of Jensen’s inequality.

" When we refer to open and closed sets in S, we do so in this section with
respect to the topology from the pseudometric || ||, since we are interested in
studying S, on the interval [0, T'].
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LemmA 8.1.  If U and C are open and closed measurable sets, respectively,
in S, then

(@) liminf~ ~logP(S, € U, X3 > T) = —K([/ /()] ", p),

(b) lim sup — logP(S eC) < K([/ (C)] )
where [ /~ Nt and [ e 1(U )1~ are defined at (2.9).

Proor. (a) Using the identity S, = /(P,) and the definition at (2.9) of
[/~ U,
P(S5, €U, X;>T)=P(P, e[/ (V)] ).
Then from Lemma 3.1 of Groeneboom, Oosterhoff and Ruymgaart (1979) and
Lemma 2.4,
lim inf — —logP(S, €U, X;>T) > -K([/ (V)] ", p).
(b) Since S, = / (P,),

P(S,C) =P(P,c/7(C)) <P(P, e [ /H(0)]").

Hence from Lemmas 2.4 and 3.1 of Groeneboom, Oosterhoff and Ruymgaart
(1979) and Lemma 2.4 above,

lim sup — logP(S cC) < -K([770)] . p). O

Define for each s € S,
(3.1) A(s) = (inf)KT(X(a,cr),p),
a,o

where the infimum is taken over survival curves a which agree with s on the
interval [0, T'] and survival curves o with a(T — )o(T—) > 0. If s(T— ) =
then the infimum is taken over the null set and we let A(s) = ». Let A(A) =
inf,_ 4, A(s) when A C S.

When X7 and Y, are discrete random variables there is an explicit formula
for A [DanOOdle (1990)]

Tueorem 3.1. If U and C are open and closed measurable sets, respec-
tively, in S, then

(a) hmlnf logP(S eU,X;=T) > -A(U),

(b) lim sup — logP(S eC) < min{A(C),log[F—x(—;T)]}.
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Proor. First observe by Lemma 2.6 that if s is a survival curve and a and
o are survival curves with a(T'— )o(T— ) > 0 and a@ = s on [0, T'], then

A(s) = (inf) K;(x(a,0),p)

- & U (x(a,0),p)

(a,0)

=K,({g eM: £(g) =son[0,T]} ", p)

=K({geM: /(q) =son[0,T]} ,p).
Now to prove (a), we see from the above that
A(U) = siéng({q eM: /(q) =son[0,T]} ,p)

=K( U (g eM:/(q) =son [O,T]}',p)

seU

-k([7 )] ,p)

and thus (a) follows from part (a) of Lemma 3.1.
To prove (b), we argue as above that A(C) = K(/~(C)]", p). We also have
the inequality

min{ (lr' @l p) o e Fx(T ) } <k([/©)] . p).
since if ¢ € [/ 7(C)]* and q([0,T) x {0,1}) = 1, then

K(q,p) = log[1/F*(T-)]

by Jensen’s inequality, whereas if ¢ € [/~ )]+ and ¢(0,T) x {0,1}) < 1,
then g € [/ ~(C)]™. Together we have

. _ +
mln{A(C),log[—m]} < K([/ 1(C)] , p),
and so (b) follows from part (b) of Lemma 3.1. O
CoOROLLARY 3.1. Assume F*(T — ) < 1. For ¢ > 0 suitably small,

1

(a) liminf; logP(lIS, — s°llr <e&) > —A({s:lls = s°llr <&}),
1

(b) limsup - logP(IIS, —s°llr>¢) < —A({s:lls — s°ll7 > &}).

Proor. Let U ={s: |ls —s°llyz <e}. Then U is open, measurable, and
hience (a) follows immediately from part (a) of Theorem 3.1.

Now consider (b). If s°(T') = 1, then S,(¢) = 1 a.s. for ¢t €[0,T] and thus
P(|S, — s°ll7 = &) = 0 and (b) is true in this case.



LARGE DEVIATIONS FOR CENSORED DATA 1619

Now suppose that s°(T) < 1. Since F*(T - ) < 1, it follows that
logll/F*(T - )] > 0. Let C, ={s: lls —s°llr > ¢}. We will show that
lim, , , A(C,) = 0, which will imply ,

A(C,) = min{A(Cs),log[Fx—(;—_—)—]}

for £ > 0 sufficiently small, and thus (b) will follow from part (b) of Theorem
3.1. Let n > 0 and let p, be a probability measure on R, x{0,1} such that
K(p,,p) <m and such that /(p) is not identically s° on [0,T]. Such a
measure -can be constructed by making the derivative dp,/dp <1 on
[0,T] x {0}, dp,,/dp = 1 on [0, T] X {1} and dp, /dp > 1 on a part of [0, T] X
{1} which has positive probability under p. For positive ¢ sufficiently small
that ¢ < /(p,) — s°ll7, we have

A(C,) <= MA(p,)) <K(p,,p) <n.

This shows that lim, , , A(C,) = 0 and completes the proof. O

The following lemma shows that part (b) of Corollary 3.1 gives a nontrivial
exponential convergence rate of S, to s°.

LEmMAa 3.2. If FS(T—-) <1, then Ms € S: |ls — s°llr > €} > 0 for every
e> 0.

Proor. Let C ={s € 8S: |ls — s°|lr = €}. It is enough to show that

(3.2) k([ )] .p) >0,

since A(C) = K([/~%(C)~, p) = K[/~ X(C)]*, p) by Lemma 2.6 and the def-
inition of A. To show (3.2), it is enough to show that p ¢ [/~ 1(C)]*, because
K(q, p) = 0 if and only if ¢ = p, and K([/_I(C)]+, p) is attained for some
element in [ /~ ()] [Groeneboom, Oosterhoff and Ruymgaart (1979), Lem-
mas 2.2 and 2.3]. Since F*(T — ) < 1, it follows that p((T, %) X {0,1}) > 0, and
hence

p<€{qeM:q(0,T) x{0,1}) <1}.

Thus it remains to show that p & #/~C). But this is immediate since
/(p)=s>¢C. 0O

REMARK. Lemma 3.2 completes the main idea of the paper, which can be
roughly summarized as follows. Since S, = /(P,) and / is reasonably contin-
uous, S, is distance ¢ from s° only if P, is outside a certain neighborhood of
p. But the probability of this happening decays exponentially, as we know from
the large deviation results of Groeneboom, Qosterhoff and Ruymgaart (1979).
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We conclude with the following corollary of Theorem 3.1 and Lemma 3.2.
For the Kaplan-Meier estimator set to zero strictly beyond X*, the result is
given in Theorem 2.1 of Féldes, Rejté and Winter (1980).

CoroLLARY 3.2. Assume F*(T—) < 1. For each & > 0, there exists ¢ > 0
such that P(||S, — s°lly > &) <e™ for n sufficiently large. Hence S, con-
verges a.s. to s° uniformly on [0, T'].
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