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CONDITIONAL ASSOCIATION, ESSENTIAL
INDEPENDENCE AND MONOTONE UNIDIMENSIONAL
ITEM RESPONSE MODELS'

By BriaN W. JUNKER

Carnegie Mellon University

We consider two recent approaches to characterizing the manifest
probabilities of a strictly unidimensional latent variable representation (one
satisfying local independence and response curve monotonicity with respect
to a unidimensional latent variable) for binary response variables, such as
those arising from the dichotomous scoring of items on standardized
achievement and aptitude tests. Holland and Rosenbaum showed that
conditional association is a necessary condition for strict unidimensional-
ity; and Stout treated the class of essentially unidimensional models, in
which the latent variable may be consistently estimated as the length of the
response sequence grows using the proportion of positive responses. Of
particular concern are strictly unidimensional representations that are
minimally useful in the sense that: (1) the latent variable can be consis-
tently estimated from the responses; (2) the regression of proportion of
positive responses on the latent variable is monotone; and (3) the latent
variable is not constant in the population. We introduce two new condi-
tions, a negative association condition and a natural monotonicity condition
on the empirical response curves, that help link strict unidimensionality
with the conditional association and essential unidimensionality ap-
proaches. These conditions are illustrated with a partial characterization of
useful, strictly unidimensional representations.

1. Introduction. Item response theory, IRT, specializes latent variable
models, for example as discussed by Holland and Rosenbaum (1986), to
examinee responses to questions—items—on standardized achievement or
aptitude tests. Widespread interest in binary (0-1) item response models was
stimulated by Birnbaum (1968) and the more recent survey of Lord (1980).
These and related models are also used in other applications such as medical
diagnosis and psychiatric epidemiology [Eaton and Bohrnstedt (1989)], multi-
ple recapture methods for estimating population sizes [Sanathanan (1972),
Chao (1987) and Darroch, Fienberg, Glonek and Junker (1991)], as well
as systems reliability and population genetics as surveyed by Holland and
Rosenbaum (1986). Although latent variable methods are also used to study
polytomous and continuous response data [cf, e.g.,, Bartholomew (1987)],
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binary response models still predominate in applications (e.g., item responses
on standardized multiple-choice tests are often simply recoded as wrong /right).

Item response modeling and analysis is greatly facilitated by the assumption
of unidimensionality, that is, the latent variable “driving” the item responses
is a one-dimensional, typically real-valued, random variable. In this paper we
are concerned with two recent approaches to characterizing (the distributions
of) binary item response data for which traditional unidimensional IRT repre-
sentations exist. We consider a vector of J response variables,

XJ=(X1,X2,...,XJ),

representing the responses (1 = positive response, 0 = negative response) of a
randomly chosen subject to the o/ test items or other stimuli.

Let x; = (x,, %5,...,%;) represent an arbitrary fixed outcome of X; an
IRT representation makes assumptions on the conditional distribution
P[X; = x,|® = 0] which impose restrictions on the marginal distribution
P[X; = x;] through the integral

(1) P[X,=x,] = fP[xJ = x,/® = 0] dF(0).

Here F(0) is the sampling distribution of the latent variable or vector @ =
(04,...,0,) in the examinee population under discussion. [A brief considera-
tion of estimation in (1) follows Proposition 2.1.] Obviously, the representation
(1) does not itself restrict the distribution of response variables P[X, = x,] in
any way. Standard practice involves the imposition of additional conditions
that make (1) a restrictive, and hence meaningful, representation.

The traditional IRT assumptions are that local independence holds,

(LI) PX,=x,0=0] = li[ P[X;=x;l0 = 0]
Jj=1

[this was called ““latent conditional independence” by Holland and Rosenbaum
(1986)], and that monotonicity holds for the response functions:

(M) P;(0) = P[X i =1|0 = 0] coordinatewise nondecreasing in VJj

in the sense that if 6} < 6% for all £ = 1,2,...,d, then P,(6®) < P,(6®). In
view of the binary nature of the data, the LI condition may be rewritten as

J
P[X, = x,10 =0] = ITP,(0)"(1 - P;(0)) .

One additional assumption is needed to make (1) restrictive, namely that the
dimensionality d of ® is much smaller than the test length J [see, e.g.,
Holland and Rosenbaum (1986)], that is,

(D) d<d.

(Ir; the development that follows, this is formalized by requiring that d remain
fixed as J grows.) The three assumptions, LI, M and D, form the foundation of
item /test modeling in traditional IRT. Indeed, if any of these three assump-
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tions is completely relaxed, the resulting “model” will fit any distribution of
binary data: Suppes and Zanotti (1981) show that M cannot be completely
dropped; Holland and Rosenbaum (1986) show that D cannot be com-
pletely dropped; and it is easy to see, using ® = HJX that LI cannot be
completely dropped. Holland (1990) provides a valuable account of the ratio-
nales for traditional IRT representations of the features of various IRT-style
models and fundamental estimation and inference issues.

The least d for which the representation (1) holds and satisfies LI and M
(and smoothness of the response functions) we will denote d ;. We will refer to
the case in which d; = 1 as the strictly unidimensional case.

Throughout this paper we embed the observed response variables X ; in an
infinite sequence of similar response variables

X = (X, X,,...).

LI and other properties of X ; extend in a natural way to the infinite sequence
X by requiring that they hold, in a fashion satisfying Kolmogorov’s consistency
conditions, in every finite set of responses X, taken from X.

Various unidimensionality assumptions have been investigated to see what
properties they imply for the manifest distribution P[X; = x;] through (1).
Holland and Rosenbaum [Holland (1981), Rosenbaum (1984) and Holland and
Rosenbaum (1986)] have shown that when strict unidimensionality holds, the
item responses X; must be conditionally associated (CA); this shows that
strict unidimensionality is a restrictive, and hence meaningful, set of condi-
tions. Cressie and Holland (1983) [see also Tjur (1982)] have characterized the
Rasch model in terms of a suitably restricted log-linear model for P[X; = x,].
Furthermore, de Finetti’s theorem may be used to characterize an infinite
sequence of binary response variables with identical response functions by the
property that the response variables must be exchangeable. Except for the
special cases of the Rasch model and de Finetti’s theorem, no other characteri-
zations of strictly unidimensional structure in terms of features of P[X; = x ;]
seem to be known.

Stout (1987, 1990) capitalizes on the good 6-estimation properties of the
proportion of positive responses X, = (1/J)L{X » when JJ is large and unidi-
mensionality holds, to produce a statistical test of latent variable unidimen-
sionality. Stout’s statistical test is tailored to his essential unidimensionality
condition (dz = 1) which, in contrast to strict unidimensionality, allows there
to be some minor violations of the LI and M conditions.

In this paper we examine the intersection of the Holland-Rosenbaum and
Stout approaches to unidimensionality. In Section 2 we introduce the notion of
useful latent variable representations for binary response data. In Section 3
we review the conditional association and essential unidimensionality condi-
tions, and relate them to the existence of a useful strictly unidimensional
representation for X. Section 4 introduces two new conditions, negative associ-
ation and monoton1c1ty of the empirical response curves P[X; = 1|X, — X, /J 1.
Section 5 gives a partial characterization of useful d; = 1 representations in
terms of CA, d; = 1 and the new conditions. A consequence of our work here
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is a better understanding of how “far” each of the conditional association and
essential unidimensionality approaches is from the strict unidimensionality
assumptions.

2. Useful unidimensional representations. In seeking an understand-
ing of the traditional d; = 1 model, we will be considering latent variable
representations that are somewhat more general. Hence it is worthwhile to ask
what constitutes a ‘“useful” unidimensional latent variable representation. We
avoid specific parametric assumptions about P[X; = x,/® = ] and F(6) in
(1), and instead require that a representation (1) for (0, X, X,, ...) satisfy the
following somewhat informal definition. Note that what we mean by “useful”
here relates primarily to connecting observations of X, with inferences
about ©.

DeriNiTION 2.1. An IRT representation, in which LI may or may not hold,
will be called useful if and only if the following three principles are satisfied:

(U1) © can be estimated from the observed values of X;, X,,..., X,. At
minimum we require that there are functions ¢,(x, ..., x;) that consis-
tently estimate ® in the sense that

t(Xy,...,X,) -0 -0,

in probability, as the test length J grows. Moreover, consistent estima-
tion should still be possible even though any fixed group of response
variables (Y73, ...,Y; ) in X is absent.
(U2) Subjects with higher ® values tend to produce more positive responses.
In particular, we require that the average response curve be increasing
in 6:
P,(0) = E[)—(JIG) = 0] is increasing in 6.

(U3) O is useful for categorizing subjects. In particular, ® should be able to
take on at the very least two distinct values, each with positive proba-
bility.

These principles are implicit in traditional item response models, and are

easily justified on practical grounds.

First, ® has little objective value as an index of ability, achievement,
aptitude or other trait, if it cannot be estimated; hence Ul. There is no hope
that ® can be estimated with high precision unless J — « [e.g., the survey by
Fienberg (1986); see also Levine (1992) for a related discussion], so Ul
represents, in some sense, a minimal estimation condition. The further re-
quirement that estimation of ® should not depend strongly on the presence of
particular response variables is central to what is meant by ‘“latent trait.”

Principle U2 reflects the interpretation of ® as a quantity of the latent
frait, and of X, as an instrument for measuring that quantity. U2 also has the
effect of bounding the Fisher information for estimating 6 away from zero
[Junker (1991)], and in general U2 makes it easier for the representation to
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satisfy Ul. Finally, we will only require U2 to hold for J larger than some
Jy > 0; see Definition 3.2. In this sense U2 does not imply that the individual
response curves P;(0) are monotone for any j.

Principle U3 simply reflects the practical desire to use the X s to diagnose,
assess or otherwise categorize subjects and populations. If there is no variation
in O, then there is no sensible way to use X, in this way. Indeed, if U3 fails in
a d; = 1representation, the components of X ; become independent, noniden-
tical Bernoulli’s under P[X; = x ] itself. In terms of (1), U3 asserts that the
(prior) O distribution does not concentrate at a single 6 value.

We may illustrate Definition 2.1 with the following proposition.

ProposITION 2.1.  Suppose that there is a d; = 1 representation for X and
0, for which principle U2 holds, in the sense of Definition 3.2. Let 7 x bethe
tail sigma field of X, and o(®) the sigma field generated by ®. Then:

(a) T = 0(0) almost surely.
(b) If ® has a nontrivial distribution, then the representation is useful in the
sense of Definition 2.1.

Proor. It can be deduced from Theorem 3.2 that Ul holds, and this is
enough to obtain part (b). For part (a), observe that U1 implies that o/(®) c 75 X}
conversely, the 0-1 law for independent random variables shows that 7 x C
0(0) almost surely. O

The distribution of X ; can be estimated to arbitrary accuracy by increasing
the number of cases of X; observed, that is, by increasing the number of
subjects and leaving J fixed. On the other hand, by Proposition 2.1, knowing
the distribution of @ is equivalent to knowing the tail behavior of the response
variables. Hence, to estimate P[X; = x,/® = 0] or F(0) from the data, it is
necessary in general to increase both the number of cases of X 7 observed and
the length o of each response vector—unless specific parametric assumptions
are made, for example, the Rasch model [Cressie and Holland (1983) and Tjur
(1982)]—even when strict unidimensionality holds. Following psychometric
traditions, we will call the marginal distributions P[X 7 = X ;] the manifest
structure, and the marginal distribution F(6) and conditional distributions
P[X; = x,10® = 0] the latent structure of the sequence X of response variables.

3. Conditional association and essential independence.

3.1. Conditional association. Holland and Rosenbaum have sought covari-
ance conditions, or equivalently probability inequalities, in the distribution of
X, t?at must be satisfied if any d; = 1 model applies. The starting place for
their investigations may be taken to be coordinatewise nondecreasing func-
tions f(y) of finite response vectors Y = (Y, ..., Y, ) taken from X: If y{ <

¥V j, then f(y®) < f(y®). These are exactly the functions that assign
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higher summary scores to comparable response sequences with more positive
responses. Under LI, the response variables must be associated [cf. Esary,
Proschan and Walkup (1967)], conditional on the latent variable O:

(2) cov( £(Y), g(Y)I® = 8) > 0,

for each possible 6 and each pair of coordinatewise nondecreasing functions f
and g. Although LI is not by itself a restrictive condition, if M is also assumed
this “local association” condition can be converted from a condition on the
latent structure to a condition on the manifest structure.

THEOREM 3.1 [Rosenbaum (1984) and Holland and Rosenbaum (1986)]. If
X satisfies d;, = 1, then X is conditionally associated (CA): For every pair of
disjoint, finite response vectors Y and Z in X, every pair of coordinatewise
nondecreasing functions f(Y) and g(Y) and every function h(Z),

(CA) cov( f(Y),g(Y)Ih(Z) =¢c) >0  Vc €range(h).

Consider a test with item responses X ;, which are rearranged and parti-
tioned into the “subsets” Y and Z. Intuitively, if X ; satisfies d; = 1, the test
possesses so much internal coherence (the item responses are driven monoton-
ically by the single latent variable ®) that all “reasonable’ subtest scores on Y
must be correlated, in any subpopulation of examinees selected by any crite-
rion h(Z) relating to another part of the test.

Our statement of Theorem 3.1 is an easy extension of Holland and
Rosenbaum’s result for finite length response vectors to infinite sequences.
Note also that for finitely many discrete random variables Z,, Zoy ..., Ly,
conditioning on a scalar-valued function A(Z) is equivalent to Holland and
Rosenbaum’s practice of conditioning on vector-valued h(Z). Seminal special
cases of (2) and CA were developed by Holland (1981). Applications to studying
the internal coherence of a set of standardized test items may be found in
Rosenbaum (1984) or Holland and Rosenbaum (1986). Related work appears in
Rosenbaum (1985, 1987, 1988). An application of CA to assessing the dimen-
sionality of standardized tests for the National Assessment of Educational
Progress is described by Zwick (1987).

3.2. Essential independence. A successful approach to identifying unidi-
mensional latent structure outside the strict d; = 1 framework has been
pursued by Stout (1987, 1990) and extended by Junker (1991). The main idea,
which borrows from both the large sample tradition in mathematical statistics
and the factor analysis tradition in psychometrics, is that of essential indepen-
dence. Actually, we use Stout’s strong essential independence, with some
ehanges in terminology to match Junker (1991). For any (infinite) sequence of
binary response variables X = (X, X,, X,,...), consider uniformly bounded
item scores A;(X)), such that for some M < o, |A;() <M for all j, and

denote A, = (1/J)L7_ A (X)).
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DeFiNITION 8.1, X is essentially independent (EI) with respect to O if
EI lim Var(A,|® = ¢) = 0,
(EI) Jl_lg ar( Jl ) A
for every set of uniformly bounded item scores { A =12, .}

In particular, for a sequence of binary response variables X, EI implies that
the proportion of positive responses X s consistently estimates values of the
average response curve P,(0) as J — .

Let us call the uniformly bounded item scores {A ()} ordered if A 40 <
A;(1); and call the ordered item scores asymptotically discriminating if
(1/DNEI_{A;Q) - A ;(0)} is positive and bounded away from 0 as J — c. Also,
denote ZJ(B) = E[KJIB]. ’

DeriNtTION 3.2. X is locally asymptotically discriminating (LAD), if for
every set of asymptotically discriminating item scores, to every 0 there corre-
sponds an interval N, containing 6 and an £ > 0 such that

A (t)—A,(0
(LAD) lim inf 229 A0 VteN, t+*0.
J oo t—0 0 0

DerFiNiTION 3.3. X is essentially unidimensional, if there exists ® such
that X is EI and LAD with respect to ©.

If X is essentially unidimensional, we will write d g = 1. If no such unidi-
mensional O exists, we write d; > 1. A statistical procedure for testing the
hypothesis that X ; comes from a d e = 1 sequence has been developed by
Stout (1987). When d = 1, A 4(6) may be inverted to produce estimates of §
directly.

THEOREM 3.2 [Stout (1990)]. If the sequence X satisfies dp =1 with
respect to ©, then for any set of asymptotically discriminating item scores,

(3) Ve>0,  lim PllA;Y(4,) - 6l <¢l® = 6] =1,
where A7%(u) is the inverse function for A ;(6).

Indeed, under the conditions of Theorem 3.2 and some mild smoothness
conditions, the maximum likelihood estimate of 6 calculated as though LI
were true is also consistent for 6 [Junker (1991)]. It is valuable to think of EI
as the greatest possible weakening of LI under which LI-based trait estima-
tion /prediction schemes might be expected to work. In this sense, the study of
El is the study of robustness of latent trait estimators to variations from an LI
latent structure. Clarke and Junker (1991) pursue this matter in a more
general setting.
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Moreover, the latent variable ® with respect to which d z = 1 holds is
unique, up to a monotone transformation. The following theorem can be
deduced from Theorem 3.3 of Stout (1990).

TueoreM 3.3 [Stout (1990)].  Suppose X is essentially unidimensional with
respect to both ® and t. Then there exists an invertible function h(-) such that
0O = h(7), almost surely.

Because LAD formalizes principle U2 and Theorem 3.2 implies principle U1,
any dg = 1 model in which ® has a nontrivial distribution is useful in the
sense of Definition 2.1. However, the existence of a useful d g = 1 representa-
tion does not imply the existence of a useful d; = 1 model. Stout (1990),
Example 2.3, gives a model for a sequence of ‘“paragraph comprehension”
questions that is a useful d; = 1 model: Suppose that P[X ;=1/6] =6 and
the items are arranged in successive groups of 8, items as

Xl,X2,...,Xgo,
Xe v1r D G S Xog,;
and so on,

such that different groups of g, items are independent of one another, given 6,
and items within a single group are positively correlated, given 6, and with
¢, if X; and X are in the same group,
Corr(X;, X;10) = o / group
0, ifnot,

for some fixed ¢ € (0, 1].

No useful d; = 1 model can be formulated for X: Suppose kg, <i <j <
(k + 1g,, so that Cov(X;, X;|® = 6,) > 0. If there were a unidimensional
latent variable 7 with respect to which LI and LAD held, we could use A(-)
from Theorem 3.3 to obtain

0 = Cov(X,, XIr = ¢,)
= Cov(X;, X,|h(®) = k(8,))
= Cov(X;, X;l© = 6,)

# 0.

This contradiction shows that no such r can exist, that is, no useful d =1
model exists for the sequence of paragraph comprehension items.

3.3. Combining CA and dz = 1. The following lemma tells us that under
dg = 1, for any finite response vector Y taken from X J» We may approximate
expected values of the form E[f(Y)|®] with expected values of the form
E[f(Yla; < X; < B;]as J > «. We shall assume that
4) E[ f(Y)|® = 0] is continuous in 6,

for any function f(Y) of finitely many response variables.
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LemMA 3.1. Suppose X satisfies EI and LAD with respect to some unidi-
mensional O, and assume (4). If f(Y) is a function that depends on only
finitely many response variables Y = (Y,,...,Y;) (J, fixed) from X then for

every set of asymptotically discriminating Ltem scores {A;(+): j = ..} and
for each 0 there exist € ; — 0 for which
: lim E[f(Y)||A7(A,) - 0 < &;] = E[f(Y)|® = 6].

ReMarks. Using Lemma 3.1, we could approximate a uniformly bounded
function f(X) defined on all of X in a similar manner. For example, f,(X) =
E[ f(X)IX,,..., X,] converges to f(X)in L' and a.s. as k tends to infinity, by
a standard martingale limit theorem, so that for large J and &,
E[ f,(X| IAJI(A ) — 6l <e;] = E[f(X)]O = 6] However we will not pursue
this extension, since it will not be needed here.

Proor oF LEMMA 3.1. For any event C, let 1, take the value 1 if C is true
and 0 if C is false, and let E[ f(Y);C]= E[f(Y)1;]. We may decompose the
expectation on the left above as

E[f(Y)I A7 (A,) - 6l <]
_E[£(Y);10 — 0 <] E[f(Y);1A7'(A,) - 0l <¢]
P[|® — 6] < ¢] E[f(Y);10 — 0] <¢]
P[0 — 6] < ¢]
X — —
P[A;(A,) - 6l <&
=1I(g) - II(e) - III(e).

Note that for any rate ¢ = ¢; = 0, I(¢ ;) = E[ f(Y)|® = 6] as J — », using the
continuity condition (4) and the integral mean value theorem. The idea now is
to choose € = ¢; — 0 so that II — 1 and III — 1 as J — o, We will look at II
explicitly; note that III is a special case of II. We have

E{ f(Y)[1(|Z;1(ZJ)—9|<e) - 1(|®—0|<e)]} .
E(f(Y)Ljo-o<e) ’

one can apply Theorem 3.2 to show that the numerator on the right tends to

zero for each fixed ¢ > 0 as J — «; a simple diagonalization argument now

yields a rate ¢; — 0 for which IT — 1. A similar argument works for III, and a
further diagonalization completes the proof. O

II(e) =1 -

We can use Lemma 3.1 to gain information about the latent structure of X
from the manifest condition CA. Proposition 3.1 shows that CA and dy =1
together give the same local association condition (2) as d; = 1 alone.

PropPOSITION 3.1. Suppose X satisfies CA and dy = 1, and suppose that
(4) holds. Then (2) holds.
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RemMARKS. By modifying the proof of Lemma 3.1, we could also conclude
conditional association given © = 6, that is, if Z were another finite response
vector from X disjoint from Y and A(Z) were any function, then

cov( f(Y),g(Y)Ih(Z),® = 6) > 0.

Proor or ProposiTiON 3.1. Let Y be a response vector from X s, for fixed
Jo, let W=(X,; .1, X, ,p,...) and let A,(0) = E[(1/J)T] W;|0]. Using CA
and a sequence ¢; obtained with Lemma 3.1,

0 < Cov[ f(Y), (V) IA;Y(W,) - 6l <&,]
— Cov( /(Y), &(Y)l0 = 0)

as J - o, O

Let us digress briefly to indicate another way in which CA and dj =1
interact well. Two alternative definitions of EI have been proposed by Stout
(1990), one involving the full sequence X but taking absolute values of
covariances,

-1
(5) lim (°2’) LY [Cov(X,, X,10)| =
Unds 1<i<j<d
and another involving ‘“nonsparse” subsequences of responses which, in the
present context, is equivalent to considering only those asymptotically discrim-
inating item scores for which A;(0) =0 and A ;(1) €0, 1}, and requiring

-1

(6) lim (J) Y)Y Cov(A,(X;),A;(X;)e) =o.
I\ 2 1<i<j<d

It is not known in general whether these three definitions are equivalent.

However, under CA and LAD they are.

CoroLLARY 3.1.  If CA and LAD hold for X, then all three definitions of EI
are equivalent.

Proor. Condition (5) implies EI as defined in Definition 3.1, which in turn
implies (6). For the converse directions, observe that if LAD holds [for the
restricted case of A (X ) €{0,1} V j], then by Proposition 3.1, Cowv(X;,
X; ) >0V i, . In thlS case, (5) follows from (6). O

Returning to our main development, the next result complements Proposi-
tion 3.1 by characterizing LI in terms of quantities that can be approximated
by manifest quantities E[ f(Y)la; < X, < B,] as in Lemma 3.1 under EI and

ProrosiTION 3.2. X satisfies LI with respect to © if and only if the
following two conditions hold: For all 6, all coordinatewise nondecreasing f
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and g, and all finite response vectors Y taken from X,

(7) cov( (), g(Y)I0 = 0) = 0;
and for all 0, i and j,
(8) Cov(Xi, X0 = 0) <0.

ReMARK. Note that (7) is the same local association condition as introduced
in (2).

Proor oF ProposiTioN 3.2. That LI implies (7) follows from Esary,
Proschan and Walkup (1967); (8) is trivially satisfied under LI with
Cov(X;, X;|6) = 0. For a proof of the converse, in unconditional form, see
Newman and Wright (1981) or Joag-Dev (1983). O

Despite the strength of the CA and dz = 1 conditions, it seems unlikely
that they together guarantee that a useful d, = 1 model exists. To see why,
suppose X satisfies dy = 1 with respect to some unidimensional ©, and
suppose that the © in this d; = 1 representation is the first coordinate of a
latent vector © = (0,0,,0,,...,0,) needed for a d; = d representation:

J
P[X,=x,00 = 0] = [ TTP;(6)"(1 - P;(0)) ¥ dF(8l© = 0),
j=1
for each J. In general, although dz = 1 implies that

lim (J)_l YY Cov(X,, X0 = 0) = 0,

J—oo \ 2 1<i<j<d
the individual covariances
Cov(X;, X;|0 = 0) = Cov(P,(®), P;(®)|0 = 0)

may be positive or negative, depending on the conditional distribution of
(0,,...,0,) given 0.
Now suppose X satisfies CA also. Then by Proposition 3.1,

(9) Cov(Xi,XjI('*)=0) >0 Vi#j;

in fact the stronger condition (2) holds. Thus not only does ® represent the
dominant trait for X (in the sense that EI holds), but the “minor traits”
needed for LI to hold are concordant with ©, in the sense that they interact
with ® so as to keep the local interitem covariances nonnegative.

Under CA and dj = 1, therefore, there is enough ‘“coherence” that covari-
ances between responses, given ® = 0, are nonnegative. Indeed, it is quite
plausible that under these conditions, for some sequence of response variables
X, some of the inequalities in (9) will be strict (despite its plausibility we have
ndt been able to construct an example in which this may rigorously be shown).
But if any of the inequalities (9) are strict for a latent variable ® with respect
to which dy =1, then there cannot exist another latent variable = with
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respect to which a useful d; = 1 model exists; this follows by appealing to
Theorem 3.3 again. Thus some condition in addition to CA and d; = 1 seems
to be needed to get a useful d; = 1 representation.

4. Two helpful conditions. In this section we introduce general condi-
tions on the manifest distribution P[X; = x ;] which allow us to promote the
“local association” conditions (2) and (7) to LI, and to ensure that individual
response functions P;(f) are monotone.

4.1. Negative association. As indicated at the end of Section 3, there may
be some situations in which EI and CA hold, but the implied coherence among
items is so tight that LI cannot also hold. The following theorem provides an
additional negative association condition enjoyed by many sequences of inde-
pendent random variables.

THEOREM 4.1 [Joag-Dev and Proschan (1982)]. Suppose the random vari-
ables X ;= (X, X,,...,X,) are independent with (possibly nonidentical)
log-concave densities. Then for any partition (Y,Z) of X, and any coordinate-
wise nondecreasing functions f(y) and g(z),

Cov( f(Y), g(Z)X,) < 0.

Taking f and g to be functions that select single items from X ;, and noting
that the Bernoulli density is log-concave, we see that when LI with respect to
O holds, then

(LCSN) Cov(X;, X,|1X,,0) <0,

for all i <j < J. This says that, under LI, the item responses are ‘“not too
tightly bound together” even though (2) holds: Each X; and X; are suffi-
ciently free of one another among examinees at the same latent trait level that
when X, increases from one examinee to the next, X is free to decrease so
that the summary score X, may be kept constant. The abbreviation LCSN
stands for locally, covariances given summary score are negative.

However, LCSN is a condition on the latent, not the manifest, structure. To
obtain a natural manifest structure analogue to LCSN, it is useful to consider
the special case of the locally independent Rasch model, for which by definition

logit P[X; = 1|0] = 6 — b,. Here X, is sufficient for @: (X;, X,,..., X,;) are
independent of ® given X ;. Consequently,

(CSN) Cov(X;, X;X,) <0,

for all i <j < J. CSN should be read as covariances given summary score are
negative.

Because X, is not sufficient for ® outside the Rasch model, CSN is an
imperfect substitute for LCSN. However, even outside the Rasch model, LCSN
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and CSN are closely related. Consider, under d; = 1, the decomposition
Cov(X,, X,IX,) = E[Cov(X,, X,IX,,0)|X,]
+ Cov[E[ X)X, 0], B[ X,IX,,0]|X,|.

The first term on the right is nonpositive under LI, by LCSN. The second term
may be negative or positive, but should be small since under d; =1 the
(posterior) distribution of ® given X, should have very low variance, as
grows. A small simulation study [Junker (1990)] suggests that this holds in
more realistic logistic response models for even moderate values of o, J > 40,
and Theorems 2.1 and 3.2 of Clarke and Ghosh (1991) indicate that this holds
more generally as J — . In particular, when Cov(X;, X;|X,) fails to be
negative for a LI model, we at least expect it to be near zero.

4.2. Manifest monotonicity. Let X, = X, — X;/J; we will say manifest
monotonicity, MM, holds if
(MM) E [XiIX'i J] is nondecreasing in X, ;,

for all i < (and all J). MM is intimately related to d; = 1 latent structure,
as Proposition 4.1 and Corollary 4.1 will show.

LEmMA 4.1.  If conditions LI and M hold for X with respect to ©, then © is
stochastically increasing in S = X, ;:
(10) Va<bVec: P[6 > c|lS =a] < P[0 >c|S =b],

whenever the conditional probabilities are defined.

Proor. We may apply Theorem 2 of Grayson (1988) to the response vector
(Xy..os X;_1, Xit1---» X)) to see that the score S = X, has the monotone
likelihood ratio property )

P[S =bl6] o
(11) R, ,(0) = m nondecreasingin§ Va <b,

whenever the conditional probabilities are defined. To establish (10) [for any
score S satisfying (11)], we may write its left-hand side as

[*P[S = al0] dF(6)

P[o>clS=a]= [*=P[S = al6] dF(0)

=P[T > c],

where T is a random variable with density proportional to P[S = alt]dF(¢),
that is, T = [0|S = a]. On the other hand, the right-hand side of (10) may be
written as

fc+°°P[S = alo]Rab(o) dF(o) _ E[Rab(T)]'(T;c)]
[*%P[S = alo]R,,(0) dF(6) E[R,(T)]

P[6>c|S=0b] =
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for the same random variable T. Hence (10) is equivalent to the assertion that
P[T > c] E[R,(T)] < E[Rab(T)]'(T>c)] )
which follows from property (P3) of Esary, Proschan and Walkup (1967), since
g(T) =1y, and A(T) = R,(T) are both nondecreasing functions of T. O
PROPOSITION 4.1.
(a) LI and M = MM.
(b) EI, LAD, MM and (4) = M.

Proor. (a) Note that
(12) E[X/X,,] = E[E[ X,X,,,0]|X,,] =E[P(0)X,,]

by LI. This last expectation is nondecreasing in X,; by M and Lemma 4.1,
using a result of Lehmann (1955).

(b) Let 6V < 6®; then there exist sequences o’ < P and P < BP with
BP < aP for all large J, such that {«}f < X;,; < BP} = (P;UX,,) — 09 <
£#} from Lemma 3.1. Then

E[X,0 = 60] = lim E[ X,la® < X,, < BP]

J >0

Zaf})scsﬁﬁ})E[XiIXiJ = C]P[XiJ = C]

lim

s 2a9>scsﬁ5}>P[)_{iJ = C]
< lim Zag,%scsﬁf}')E[Xi'XiJ ic]P[)_(iJ = C]
oI ZaS"’scSﬁf;z’P[XiJ = c]

= lim E[ X,leP < X,, < B

J oo
= E[X,|0 = 67|

(under MM, the second ratio of sums above is a weighted average of larger
conditional expectations than the first one). O

COROLLARY 4.1. Under LI, LAD and (4) we have
MM < M.

Molenaar (1990) has independently discovered Proposition 4.1(a). Example
4.1 is related to an example of his, and shows that the method of proof of
Lemma 4.1 cannot be extended to the polytomous case, even if the cumulative
response curves are continuous and strictly increasing. Example 4.2, commu-
nicated by Molenaar and due to T. A. B. Snijders, shows that in Proposition
4.1(a) we cannot replace the “deleted average” X;, with the more natural
average over all items X .

\



ITEM RESPONSE MODELS 1373

ExampLE 4.1. The monotone likelihood ratio property (11) does not extend
to polytomous item response variables. Let 0 < ® < 1 and consider a single
graded-response variable X taking the three values 0, 1 or 2, with

PLX > 10 30, 0<6<1i,

> =

> 116] 2+ 30, $<0<1,
20, 0<6<i,

P[X>2|0]={0+ 1%, $1<6<1,
1+ 30, i1<o0<1

For 6, = § and 6, = 3, calculation shows that the likelihood ratio P[X =
x|001/P[ X = x|6,] is not monotone in x.

ExampLE 4.2. P[X; = 11X, = s] need not increase with s, and hence we
may not replace X;; with X; in Proposition 4.1(a). Consider three binary
response variables and a two-point distribution for ©, P(® = §,) = P(® = 6,)
= 1. Let

2

Pi(0,y) =, J=12,3,
Py(8,) = % and Py(6,) = Py(6;) =1 —e.
It follows that, as ¢ —» 0, P[X,; = 1|X,= 1] > } and P[X, = 11X, = 2] - 0.

5. A partial characterization of d;, = 1. The major results of the
previous two sections may be summarized in the following theorem.

THEOREM 5.1. If X satisfies d; = 1 and LAD with respect to a unidimen-
sional O, then each of the conditions CA, d; = 1, LCSN and MM hold.

We show in this section that the converse is also true: The four conditions
CA, dg = 1, LCSN and MM guarantee a useful D; = 1 representation. More-
over, this converse implication is still true if LCSN is replaced with its
manifest structure analogue CSN.

To obtain these two converses of Theorem 5.1, we must connect condition-
ing on X, alone, as in CSN and LCSN, with conditioning on intervals
a; < X; < B,, as in Lemma 3.1. In the proof of the next lemma, we assume
that for each J and i < J there exist differentiable ‘“‘interpolating functions”
&, such that

E[Xz"XJ] EgiJ()?J)’

sup [gi,(u)l <M <

i,J,u

(13)

and that for each JJ, i <J, and 6 there exist differentiable “interpolating
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functions” g, ;, such that
E[Xil)_(J’@) = 9] = giJo(XJ)’

14
(14) sup lg,(u)| < M, < o,
i,dJ,u

The conditions (13) and (14) are maximum rate-of-change conditions on the
regressions of X, onto X ;; most likely they would be acceptable in practice. In
particular, (13) and (14) do not by themselves imply monotonicity of the
response curves P;(0).

LEmmMma 5.1.

(a) Suppose CSN holds, and suppose (13) also holds.. Then for any constants
a; < B, for which the covariances are defined, and for which B; — a; — 0,

(15) limsup Cov(X;, Xjla, <X, < Bs) <0.

J oo

(b) Suppose LCSN holds, and suppose (14) also holds. Then for any constants
ay < By for which the covariances are defined, and for which B g—a;—0,

(16) lim sup Cov(Xi,XanJsX'JsBJ,B) <0.

J—o
Proor. We will do part (a) only; part (b) is virtually identical. We have
Cov( X, Xl < X, < ,) = E[Cov(X,, XX, )i, < X, < B,
(17) + Cov(E[ X,IX,],
E[X|X,]la, <X, < By).

The first term on the right is evidently nonpositive, by CSN. Dropping the
conditioning on «; < X; < 8, from the notation for brevity, the second term
in (17) is ’

Cov(E[XiIX,] , E[le)_(J]) = Cov(giJ(XJ),giJ(X'J))
- - 1 1/2
4 < {VargiJ(XJ) ~Varng(XJ)} ,
by the Cauchy-Schwarz ingquality. Now applying Taylor’s theorem,

— 2 _
Varg,-J(XJ)s[ sup lgl,()l| - Var X,
ues(0,1)

so that conditioning on a, < X, < B8,, which forces Var X s — 0 and hence
Varg; ,(X,;) - 0 as J — o, also forces the second term in (17) to go to zero,
completing the proof. O

Now we are ready to state and prove the two converses to Theorem 5.1.
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THEOREM 5.2. Suppose X is a sequence of binary response variables and ©®
is a unidimensional variable, and suppose (4), (13) and (14) hold. Then:

(@) CA,dp =1, LCSN, MM < d; = 1, LAD.
(b) CA,dg=1,CSN, MM = d; = 1, LAD.

REMARKS. In the implications “ = ”’ in (a) and (b), ® is the latent variable
with respect to which dz = 1 holds, and the theorem asserts that in fact
d; = 1 holds with respect to this ©. In the implication ““ <"’ in (a), ® is the
latent variable with respect to which d; = 1 holds. In both cases, © is unique
up to monotone transformation, by Theorem 3.3.

Proor oF THEORM 5.2. It is more convenient to prove (b) first.

Part (b), “ = ”’: There are three conditions to check on the right: LI, M and
LAD. LAD follows from d; = 1 by definition. M follows from MM and d; =1
via Proposition 4.1(b). LI follows from CA, d; = 1 and LCSN, using Proposi-
tions 3.1 and 3.2 and Lemma 5.1(a), since (15) implies that under CSN and
dz = 1 we have Cov(X;, X;|6) < 0 for all 7, j and 6.

Part (a), ““ = ”: Again we must check LI, M and LAD. LAD and M follow as
before. LI follows again, using Propositions 3.1 and 3.2 and Lemma 5.1(b),
since now (16) implies that under LCSN Cov(X;, X;|6) < 0 for all i, j and 6 (a
conditional [give ® = 6] form of Lemma 3.1 is needed to show this, but this is
straightforward).

Part (a), ¢“ «”’: This is Theorem 5.1, but we state the proof for complete-
ness. We must check MM, CA, EI, LAD and LCSN. MM and CA follow from
d; = 1 by Proposition 4.1(a) and Theorem 3.1, respectively. EI follows from LI
trivially, LAD is assumed on the right, and LCSN follows from LI via a
conditional form of Theorem 4.1. O

6. Concluding remarks. Considerable attention has been paid to the
development of nonparametric conditions on P[X; = x ;] that characterize a
d; = 1 (locally independent, monotone, unidimensional) latent variable repre-
sentation for the binary items X; = (X,,..., X;). In this paper we have
examined the relationships between conditional association (CA), essential
unidimensionality (dz = 1), and useful, strictly unidimensional (d; = 1), la-
tent variable representations for binary item response data.

Both CA and d; = 1 follow from a d; = 1 representation which is useful
in the sense of Definition 2.1. Conversely, when both CA and dz = 1 hold,
Proposition 3.1 provides a unidimensional ® such that the conditional distri-
bution of X given O is associated. But d; = 1 requires the stronger local
independence (LI) and monotonicity (M) conditions of Section 1. If, in addition
to CA and d; = 1, the negative association condition CSN, Cov(X;, X jl)_( ) <0,
is also satisfied, LI results. Proposition 4.1 shows that monotonicity of the
empirical response curves P[X; = 11X, - X /J 1 is intimately related to M:
This ‘“manifest monotonicity”’ (MM) must hold if d; = 1 holds; and, con-
versely, it can be used to verify M when d; = 1 holds.
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Theorem 5.2 summarizes these relationships. Part (a) characterizes d; = 1
representations among ‘‘smooth’ representations satisfying the mild mono-
tonicity condition LAD—this is essentially the class of useful d; = 1 represen-
tations, assuming that the distribution of ® is not concentrated at one
point—in terms of CA, d; = 1, MM and a ‘““local” version of CSN. Part (b)
gives reasonably general conditions—CA, d; = 1, MM and CSN itself—on the
manifest structure of X that are sufficient to guarantee useful d; = 1 latent
structure. These results suggest that conditions like CSN and MM will be
needed to produce a more general characterization of d; = 1 latent structure.

The approach taken in this paper is somewhat novel in the context of latent
variable modeling, in that it explicitly embeds the observable responses X ; for
each subject in an infinite response sequence X of responses for the same
subject. This embedding seems absolutely vital to clarify estimation and
model-identification issues. Haberman (1977) treats joint maximum likelihood
estimation of 6 and the P,(6) in this fashion for some important exponential
family cases; Levine (1992) details some of the limitations of our ability to
know O from X for finite J; and Stout (1990) makes a determined case for
interpreting IRT applications in terms of this embedding.

Overly restrictive parametric assumptions, such as detailed knowledge of
the forms of the response curves or of the distribution of ©, are not needed in
our approach. However, we must explicitly employ some form of monotonicity
or response function smoothness to avoid meaningless models. Our preferred
“nonparametric’’ condition has been Stout’s local asymptotic discrimination
(LAD) condition. In settings in which the response curves P;(6) are themselves
parametrized [e.g., Jannarone (1986) and Thissen and Steinberg (1986)], a
general monotonicity condition such as LAD might be dropped in the face of
other smoothness available from the parametric form of the model. However,
LAD is often plausible, even if the individual response curves are not mono-
tone, and greatly enhances the interpretability of the model.

Acknowledgments. A preliminary version of this material appeared as
Chapter 4 of the author’s Ph.D. dissertation. This work was greatly facilitated
by enjoyable and stimulating discussions with Bill Stout. Comments by
Bertrand Clarke, Paul Holland and an anonymous referee were very much
appreciated. In addition, the author is grateful to Ivo Molenaar for the
examples appearing in subsection 4.2.

REFERENCES

BarTHOLOMEW, D. J. (1987). Latent Variable Models and Factor Analysis. Oxford Univ. Press.

BirnBAUM, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In
Statistical Theory of Mental Test Scores (F. M. Lord and M. R. Novick, eds.). Addison-
Wesley, Reading, MA.

CHao, A. (1987). Estimating the population size for capture-recapture data with unequal catcha-
bility. Biometrics 43 783-791.

CLARKE, B. S. and GHosH, J. K. (1991). Posterior convergence given the mean, with applications.
Technical Report 91-68, Dept. Statistics, Purdue Univ.



ITEM RESPONSE MODELS 1377

CLARKE, B. S. and JUNKER, B. W. (1991). Inference from the product of marginals of a dependent
likelihood. Technical Report 508, Dept. Statistics, Carnegie Mellon Univ.

Cressig, N. and HoLLanp, P. W. (1983). Characterizing the manifest probabilities of latent trait
models. Psychometrika 48 129-141.

DarrocH, J. N., FIENBERG, S. E., GLoNEK, G. F. V. and JUNKER B. W. (1991). A three-sample
multiple-perceptive approach with heterogeneous catchability for census population
estimation. Technical Report 543, Dept. Statistics, Carnegie Mellon Univ.

EaroN, W. W. and BoHrNSTEDT, G., EDS. (1989). Latent variable models for dichotomous out-
comes: analysis of data from the epidemiological catchement area program. Sociological
Methods and Research 18 3-182.

Esary, J. D., Proscuan, F. and Warkup, D. W. (1967). Association of random variables, with
applications. Ann. Math. Statist. 38 1466-1474.

FIENBERG, S. E. (1986). The Rasch model. In Encyclopedia of Statistical Sciences 7 627-632.
Wiley, New York.

GravsoN, D. A. (1988). Two-group classification in latent trait theory scores with monotone
likelihood ratio. Psychometrika 53 383-392.

HaBERMAN, S. (1977). Maximum likelihood estimates in exponential response models. Ann.
Statist. 5 815-841.

HoLLanp, P. W. (1981). When are item response models consistent with observed data? Psychome-
trika 46 79-92.

HoLranp, P. W. (1990). On the sampling theory foundations of item response theory models,
Psychometrika 55 577-601.

HoLLanD, P. W. and RosenBauM, P. R. (1986). Conditional association and unidimensionality in
monotone latent trait models. Ann. Statist. 14 1523-1543.

JANNARONE, R. J. (1986). Conjunctive item response theory kernels. Psychometrika 51 357-373.

Joac-DEv, K. (1983). Independence via uncotrelatedness under certain dependence structures.
Ann. Probab. 11 1037-1041.

Joac-Dev, K. and ProscHaN, F. (1982). Negative association of random variables, with applica-
tions. Ann. Statist. 10 286-295.

JUNKER, B. W. (1990). Progress in characterizing strictly unidimensional IRT representations.
Research Report 90-1, Dept. Statistics, Univ. Illinois, Urbana-Champaign.

JUNKER, B. W. (1991). Essential independence and likelihood-based ability estimation for polyto-
mous items. Psychometrika 56 255-278.

LeaManN, E. L. (1955). Ordered families of distributions. Ann. Math. Statist. 26 399-419.

LEVINE, M. V. (1992). Orthogonal functions and the finiteness of item response theories. Model-
Based Measurement Laboratory, Dept. Educational Psychology, Univ. Illinois, Urbana-
Champaign.

Lorp, F. M. (1980). Application of Item Response Theory to Practical Testing Problems. Erlbaum,
Hillsdale, NJ.

MOLENAAR, 1. (1990). Personal communication.

Newman, C. M. and WricHT, A. L. (1981). An invariance principle for certain dependent se-
quences. Ann. Probab. 9 671-675.

RoseNBaUM, P. R.-(1984). Testing the conditional independence and monotonicity assumptions of
item response theory. Psychometrika 49 425-436.

RosexBauM, P. R. (1985). Comparing distributions of item responses for two groups. British
J. Math. Statist. Psych. 38 206-215.

RosenBauM, P. R. (1987). Probability inequalities for latent scales. British oJ. Math. Statist.
Psych. 40 157-168.

RosenBauM, P. R. (1988). Item bundles. Psychometrika 53 349-359.

SANATHANAN, L. (1972). Model and estimation methods in visual scanning experiments. Techno-

metrics 14 813-829.

Stour, W. F. (1987). A nonparametric approach for assessing latent trait unidimensionality.

Psychometrika 52 589-617.



1378 , B. W. JUNKER

Sroutr, W. F. (1990). A new item response theory modeling approach with applications to
unidimensionality assessment and ability estimation. Psychometrika 55 293-325.

SuppEs, P. and ZanorTi, M. (1981). When are probabilistic explanations possible? Synthese 48
191-199.

THissEN, D. and STEINBERG, L. (1986). A taxonomy of item response models. Psychometrika 51
567-577.

Tsur (1982). A connection between Rasch’s item analysis model and a multiplicative Poisson
model. Scand. J. Statist. 9 23-30.

ZwicK, R. (1987). Assessing the dimensionality of NAEP reading data. J. Ed. Measurement 24
293-308.

DEPARTMENT OF STATISTICS
CARNEGIE MELLON UNIVERSITY
PITTSBURGH, PENNSYLVANIA 15213

s



