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A NOTE ON E-OPTIMAL DESIGNS FOR WEIGHTED
POLYNOMIAL REGRESSION

By HoLGER DETTE

Universitdt Gottingen

In a recent paper Pukelsheim and Studden determined the E-optimal
design for the polynomial regression model on the interval [—1, 1] where
the variances of different observations are assumed to be constant. In this
note we show that these results can be generalized for polynomial regres-
sion models with non constant variances proportional to specific functions.

1. Introduction. Consider the polynomial regression model of degree
deN

g(x) =0f(x), «xe[-1,1],

where f(x)=(1,x,...,x%) is the vector of regression functions and 6 =
(6y,-...,0,), is the vector of unknown parameters. A design ¢ is a probability
measure on [—1, 1] (or on its sigma field). ¢ is called an exact design if ¢ puts
masses (n;/n) (Xi_n;, = n) at the points x; € [-1,1], i =1,...,s. In this
case the experimenter takes n,; uncorrelated observations at the point x; with
expectation g(x;) and variance o?/A(x;), i = 1,..., s. The function A:[—1,1]
— [0, ») is called the efficiency function [see Fedorov (1972), page 66] and in
this note we will assume that A is one of the functions 1, 1 + x, 1 — x and
1 — x2. The information matrix of a design ¢ is defined by

M,(¢) = f_llf(x)f’(x)A(x) dé(x) € RE+DX@E+D),
where
(1.1) AMx)=(1+2)"1 -2  u,ve{0,1}.

For an exact design the covariance matrix of the least squares estimate of the
unknown parameter vector 6 is proportional to M '(¢) and an optimal design
maximizes (or minimizes) a concave (or convex) function depending on M ,(¢)
(or its inverse).

This paper deals with the E-optimality criterion for the parameter vector 6.
More precisely, a design ¢ is called E-optimal for 6 if ¢ maximizes the
minimum eigenvalue of the information matrix M, (¢). In a recent paper
Pukelsheim and Studden (1993) proved that for a constant efficiency function
(ie., u =v = 0) the E-optimal design for 6 is supported at the points s; =
cos(m(d —j)/d), j=0,...,d. In this note we will show that similar results
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hold also for the efficiency functions defined by (1.1). These results allow us to
present a simple example in which the support points of the E-optimal design
cannot be transformed linearly when the design space is changed from the
interval [—1, 1] to [—b, b] where b > 1 is sufficiently large.

2. E-optimal designs for weighted polynomial regression. For opti-
mality criteria depending on the determinants of the information matrix
M,(¢) most of the results for the constant efficiency function carry over to
efficiency functions of the form (1.1) [e.g., see Studden (1982) or Dette (1990)].
This is a consequence of the structure of the supporting hyperplanes to the
moment space #p; = {(cg,...,Coq)lc; = [LixPdé(x), i =0,...,2d} [see
Karlin and Shapely (1953)]. Especially the results for D,-optimality carry over
to the efficiency function (1.1). Because the D,-optimal design for a constant
efficiency function is supported at the same set of points s; as the E-optimal
design, it is reasonable to investigate if the support of the D;-optimal design
also coincides with the support of the E-optimal design for the nonconstant
efficiency function in (1.1).

Pukelsheim and Studden (1993) showed that the E-optimal design for
polynomial regression with a constant efficiency function is supported at the
zeros s; = cos(w((d —j)/d)), j =0,...,d, of the polynomial (1 — xHU,_ (%)
where

sin(d arc cos x)
Us-i(%) =

e[-1,1
sin(arccos x) ’ xe[-11]

denotes the Chebyshev polynomial of the second kind (with leading coefficient
29-1) orthogonal with respect to the measure V1 — x? dx [see Szego (1975),
page 60 or Chihara (1978), page 1]. An essential step in their proof is to show
that the Chebyshev polynomial of the first kind T,;(x) = cos(d arccos x) de-
fines the supporting hyperplane at the inball vector of the Elfving set %=
co({e f(x)lx € [—1,1], e = +1}) [here co(A) denotes the convex hull of the set
Al. For the efficiency functions A(x) = 1 —x% 1 —x and 1 + x the analogues
of the Chebyshev polynomial of the first kind are the polynomials U,(x),

4 1 a1 _ sin(((2d + 1)/2)0)
EB(E,ol)Pg /% D(x) = V2sin(0/2) '
d (1 aay . cos(((2d +1)/2)0)
EB(g’d)Pé 2V (x) = V2 cos(0/2)

where ® = arccos x, B(x,y) = I'(x)I'(y)/T'(x + y) denotes the beta-function
and P{*PXx) the nth Jacobi polynomial orthogonal with respect to the
measure (1 — x)*(1 + x)? [see Szegd (1975), page 60]. The proof of the follow-
ing theorem is performed by similar arguments as in the case of a constant
efficiency function and therefore omitted.
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THEOREM 2.1. Let AMx) = (1 + x)*(1 — x)*, u,v €{0,1}, and b =
(by, . .., by) denote the vector of the coefficients of the polynomials

u-+tv 1 u-+v
2.1 2—{(u+v)/2j( + l )B _ + l J P(—1/2+v,—1/2+u) .
The E-optimal design for 6 is unique and supported at the zero’s s; =
cos(m(2d — 2j +v)/@2d +u +v), j=0,...,d, of the polynomial

1- 1-v —v —u
(L+x) (1 —x) RN T(x).

Moreover, the minimum eigenvalue of the E-optimal information matrix has
multiplicity 1 and is given by ||bl|”%. The weights of the support points s ; are
given by w; = uj/llbll2 where the vector u = (uy,...,uy) is the unique solu-
tion of

f; (1) 7u;(1+5,)%(1 - 5;,)"* f(s;) = b.
j=0

REMARK 2.2. For the efficiency function A(x) = 1 — x2 the proof of Theo-
rem 2.1 can be performed exactly in the same way as the proof of the
corresponding result (A(x) = 1) given by Pukelsheim and Studden (1993)
because this efficiency function preserves the symmetry properties of the
problem. In the case of a nonsymmetric efficiency function some minor changes
are necessary because the coefficients corresponding to the powers x?~/ in the
polynomials P{~%/21/2(x) and P§/%-1/2(x) have different sign patterns
compared to the symmetric case. Note that Pukelsheim and Studden (1993)
originally stated and proved their result for E-optimal designs for parameter
subsystems of the vector # which satisfy some ‘““‘regularity’”’ condition. Theo-
rem 2.1 can also be proved for special subsystems of 6 but for the sake of
brevity only the case of the full parameter vector 6 is stated in this note.

REMARK 2.3. Observing the identities

Ty(x) = dB(3,d)P{/*/?(x),
d+1
U,(x) = ——E—B(é,d + 1) P2 1/3(x),

Theorem 2.1 generalizes the results of Pukelsheim and Studden (1993) to the
nonconstant efficiency functions A(x) = 1 — x2%,1 — x,1 + x. Note that Theo-
rem 2.1 is not valid for efficiency functions in (1.1) with positive u,v > 0
although there exist generalizations in this direction for the D-optimality
criterion. More precisely, it is well known that the D-optimal design for the
efficiency function in (1.1), u,v > 0, puts equal masses at the zeros of the
Jacobi polynomial P{%;*“~(x) [see, e.g., Karlin and Studden (1966), page
339]. For u,v € (0,»)\ {1} analogous results for the D,- and E-optimality
criterion do not exist [see Dette (1992) for some numerical examples].
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REMARK 2.4. It follows from the proof of Theorem 2.1 that the vector
b/||b||*> defines an inball vector of the corresponding Elfving set [see Elfving
(1952)]

R = cole(1 + %) (1 — )" f(x)lx € [-1,1], 6 = F1}

which is the direction where the largest ball centered at the origin and
included in #Z*? touches the boundary of #®¥). This yields to some nice
extremal properties of the polynomials defined in (2.1) [see Pukelsheim and
Studden (1993) for the case u = v = 0].

ExampLE 2.5. The proof of Theorem 2.1 can be transferred to all intervals
of the form [—b, b] where b < 1 but not to all intervals with b > 1. Moreover,
the support points s¥ of the E-optimal design on [—b, b] are not proportional
to the support points s; of the optimal design on [—1, 1] provided that b is
sufficiently large. To see this, let d = 1 and u = v = 1, that is, A(x) = b2 — x2.
If 5 =1 we obtain by Theorem 2.1 that the E-optimal design puts equal
masses at the points s, = —1/V2 and s, = 1/ V2. For an arbitrary > 0 we
have still that the E-optimal design is symmetric and supported at two points,
say —a and a, a > 0. The information matrix of this design is given by

b2 — a? 0
M(f) - 0 a2(b2 _ a2) .
It follows by elementary calculations that for b < V2 the optimal design puts
equal masses at the points s¥ = —b/ V2 and s¥ = b/ V2 and that the mini-
mum eigenvalue is b?/4 with multiplicity 1 (the points s§ and s} are
proportional to s, and s,). If b > V2 we obtain that the E-optimal design on
[—b, b] has equal masses at the points s§ = —1 and s¥ = 1 (independent of
the length of the interval) and the minimum eigenvalue is given by b2 — 1
with multiplicity 2. In this case the support points of the E-optimal design are
not obtained by a linear transformation from the corresponding points on the
interval [— 1, 1]. It is remarkable that the threshold b = V2 also applies for the
quadratic regression on [—b, b] with a constant efficiency A(x) = 1 [see Galil
and Kiefer (1977), (3.8), page 34]. Recently, Heiligers (1992) showed that the
threshold for the cubic model with a constant efficiency is approximately
1.61918 while it follows by some algebra that the thresholds for the quadratic
and cubic model with efficiency funetion A(x) = b2 — x2 are given by V2 and
approximately 1.59003, respectively.
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