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ON PLUG-IN RULES FOR LOCAL SMOOTHING
OF DENSITY ESTIMATORS

By PETER HALL
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Optimal local smoothing of a curve estimator requires knowledge of
various derivatives of the curve in the neighbourhood of the point at which
estimation is being conducted. One empirical approach to selecting the
amount of smoothing is to employ pilot estimators to approximate those
derivatives, and substitute the approximate values into an analytical for-
mula for the desired local bandwidth. In the present paper we study how
bandwidth choice for the pilot estimators affects the performance of the
final estimator. Our conclusions are rather curious. Depending on circum-
stance, the pilot estimators should be substantially oversmoothed or under-
smoothed, relative to the amount of smoothing that would be optimal if
they were to be employed themselves for point estimation. Occasionally, the
optimal amount of undersmoothing is so extreme as to render the pilot
estimators inconsistent. Here, the resulting local bandwidth is asymptoti-
cally random; it is not asymptotic to a sequence of constants.

1. Introduction. In problems of nonparametric curve estimation, the
optimal amount of smoothing depends on unknown characteristics of the
curve, such as derivatives of the curve at the point of estimation. One way of
estimating those characteristics is to construct one or more preliminary curve
estimators, compute derivative estimators from those, and substitute back into
the formula for the optimal smoothing parameter. This so-called plug-in
approach to local, adaptive bandwidth selection is not new; see, for example,
Woodroofe (1970), Krieger and Pickands (1981), Park and Marron (1990)
and the references therein. However, very little advice is available on how the
smoothing parameters should be chosen for the pilot estimators. In the
present paper we remedy this deficiency. Our conclusions suggest that the
pilot estimators should be either substantially oversmoothed or substantially
undersmoothed, depending on circumstance, and relative to the amount of
smoothing that would be appropriate if the primary purpose of the pilot
estimators was point estimation. Sometimes the amount of undersmoothing
may be so extreme as to render one of the point estimators inconsistent.

To describe our conclusions in more detail, let f(x|k) denote a kernel
estimator of a density f at the point x, based on the kernel K (a known
symmetric density) and bandwidth A. Detalls of the construction of f will be
given in Section 2. In the sense of minimising mean squared error, the
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PLUG-IN RULES 695

asymptotically optimal bandwidth for estimating f at x is given by
(1.1) ho=cy f(x)"°1f"(x)| "> Pn=175,

where the constant ¢, depends only on K:

cx = (fK2)1/5{fy2K(y) dy}

See, for example, Rosenblatt (1971) and Silverman [(1986), page 103]. Replac-
ing f and f” in (1.1) by estimators f and f” we obtain a plug-in rule for
computing an empirical bandwidth h.

If £ and [ are kernel density estimators, then they depend on bandwidths,
say h, for f and h, for f. We shall derive an expansion of the mean squared
error of f(x|h) which shows how choice of h, and h, influences over-all
performance. In particular, we shall show that the estimator f should be
substantially oversmoothed if f"(x) > 0, or substantially undersmoothed if
f"(x) < 0, relative to the optimal amount of smoothing for point estimation of
f. In practice, since estimation of f"(x) is a prerequisite for implementing the
plug-in rule, it would often be possible to make a qualitative decision to
oversmooth f somewhat in the event that f" > 0, and to undersmooth when
f" < 0. However, specific quantitative rules are not really possible, owing to
the sheer complexity of this multiparameter smoothing problem.

The same principles apply to smoothing of f"(x), except that here the
appropriate amount of undersmoothing can occasionally be so extreme as to
render the resulting estimator inconsistent for f”(x). In this case the plug-in
bandwidth A is asymptotically random; it is not asymptotic to a nonrandom
sequence. In appropriate circumstances, employing a bandwidth defined in this
way can improve on the size of mean squared error by a constant factor,
although not by an order of magnitude.

Alternative, asymptotically random bandwidth selection procedures have
been suggested by, for example, Abramson (1982). They are simpler than
undersmoothing f”, and more effective in the sense that they do reduce
the order of magnitude of mean squared error. However, the random band-
width constructions given here are quite different from those considered by
Abramson, in that they inherently depend significantly on a large number of
data values and take the same value in each summand of the kernel estimator.
They form an unexpected link between the two kinds of variable bandwidth
discussed by Jones (1990). Our principal purpose in this paper is to describe
the effect of bandwidth choice for pilot estimators when those estimators are
consistent. The fact that inconsistent estimators can sometimes give better
performance emerges as a somewhat pathological feature.

Section 2 states our main technical result on second-order expansion of
mean squared error, and Section 3 discusses issues concerning asymptotically
random bandwidths. A proof of the theorem in Section 2 is given in Section 4.
Related results may be established for curve estimation by nonparametric
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696 P. HALL

regression, and for a variety of alternative approaches to nonparametric
density estimation, such as histogram and histospline methods. Thus, the
results in this paper might be seen as examples of more general phenomena,
although it appears to be impossible to derive a result which, in a useful and
meaningful way, embraces a wide range of contexts.

2. Main results. Let X,,..., X, denote independent and identically dis-
tributed random variables from the population with density f, and let K, L
and M be bounded, compactly supported kernel funtions. If N represents one
of K, L or M, we assume that

1, if j=0,
ij‘N(y) dy = {0, ifl<j<r-1,
v+<0, ifj=r,

where r=2, [ or m and v =k, A or u according as N=K, L or M,
respectively. In common parlance, K, L and M are kernels of orders 2, [ and
m. It is usual to take K to be a symmetric probability density with K(0) > 0,
and [ and m to be even integers, so we make those assumptions here. They
allow us to simplify notation a little, but are otherwise inessential.

Assume that [, m > 2; that f has min(/, m + 2) continuous derivatives in a
neighbourhood of x; that f(x) > 0 and f"(x) # 0; and that K" and M" ex1st
and are bounded. Two estimators of f, f and f, and one estimator of £,
given by

fath) = () ™" X K{(x = X)/m), f(x) = (nh) ™ Ll(x = X) /b,

Fiixy = (nh3) 1 L M'{(x — X;)/hy).
i=1

The quantities f and /" will be used to determine the bandwidth A for fCR).
We wish to ascertain how best to select the subsidiary bandwidths, &, and A,
for this purpose.

Recall from Section 1 that the asymptotically optimal nonrandom band-
width A, is given by hy = cx ()5 f"(x)|"?°n~1/%, where cy depends only
on K and so is known. Our plug-in version of %, is defined by, essentially,

h = el F(x)1V0 ()| Pn 175,

However, since L is compactly supported then for each n > 1, f(x) takes the
value zero with positive probability. This means that P(h =0)> 0 for all
n > 1, and of course f(x]0) is not generally well defined. [On the other hand,
the possibility that f"(x) might vanish causes no difficulties, since flxlo) is
properly defined.] Therefore, we consider the following modified definition of
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h.Let g > 0 be arbitrary, and put

e F()YOLf(x) 72215, i f(x) > 0,
5=

n-5, otherwise.

Consistency of f and f” for f and f”, respectively, demands that k,, A, = 0
and nh,, nh} — ». We ask only a little more: that for some & > 0,

(2.1) hy + hy + (nhy) ™"+ (rh) " = 0(n)

as n — o,

Since mean squared error was used for the optimality criterion that pro-
duced h, as the “asymptotically best” nonrandom bandwidth, then that
yardstick should also be used to assess the performance of A. Thus, we seek
the mean squared error of f(x|A), which is described by the following result.

THEOREM . Assume the conditions above. Then as n — «,

(22)  E{f(slh) - f(x)) = B{{(xlho) = f(0)} +a, +0(£,),
where, dropping the argument x in f, ", f© and f™+?,

a, = %h‘é(%hh e - mi!hgm f<m+2>) K?
+ Ilah%,(nhl)'1,<2f—1f"2 Jr
(23) 4 %h%[(nhlrlf" JIE®) = yK' (9 Lhoy/hy) dy
—4(nh3)” M”(O)f]x,

&, = h4{h% + h3™ + (nhy)) 7'} + hz{(nhl)_ min(1, hy/hy) + (nhd) }

ReEMark 2.1. If we neglect pathological cancellation, then the term «,, is of
precise size ¢, as n — «. Thus (2 2) accurately describes asymptotic propertles
of the mean squared error of f(x|A) up to terms of smaller order than £,

REMARK 2.2. The quantity E{f(x|h,) — f(x)}?, of size n~*/3, is the first-
order term in formula (2.2). Of course, it does not depend on h; or h,. The
second-order term «, depends critically on the smoothing parameters 2, and
h,. If those quantities are chosen appropriately then it is of smaller order than
n~*/%, Third- and higher-order terms are collected together in the remainder

o(¢,).

REMARK 2.3. Minimisation of «, with respect to the first bandwidth hq is
relatively straightforward. It takes the following form. If f"(x) > 0, then the
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optimal %, is asymptotic to a constant multiple of n~3/®@*1} which is an
order of magnitude larger than the size n~'/@"*D that is suitable for point
estimation of f using the estimator f. With h; ~ const.n~3/®@+ Dl the
quantity «, is of size n~2"+2/6CI+D} = o(n=4/5) provided m is sufficiently
large and A, is chosen appropriately. [“Appropriate’ choice of h, means, if
M"(0) < 0, that h, ~ const. n=3/(6@m+3) See Remark 2.4.] In the case where
f"(x) < 0, define

J(p) = [{K(py) — pyK'(py)}L(y) dy

and choose p, € [0, ») to maximise J(p). For appropriate choice of k,, any k,
that satisfies h,/h, — p, (and also, in the case p, =0, n®°h, —» =) will
produce a, ~ (1/5)n"*h,J(p,) f"(x) <0, which is of size n %° and is
asymptotically the ‘“smallest” (i.e., largest negative, on this occasion) value
that «, can assume. Thus, when f"(x) > 0, oversmoothing of f is optimal,
whereas undersmoothing is required when f”(x) < 0. All these results may be
derived by routine analytical methods, outlined in Minimisation Problem I.

REMARK 2.4. Minimisation of «, with respect to the second bandwidth 4,
is straightforward when M"(0) < 0. The latter inequality typically holds in
practice, since M is usually concave in a neighbourhood of the origin; consider,
for example, a kernel of the form M(y) = const.(1 — y2)", r > 0, for |y| < 1,
and M(y) = 0 for |y| > 1. In this circumstance, the optimal A, is asymptotic
to a constant multiple of n~3/¥@m+3) which is an order of magnitude larger
than the size n~1/@™*9 that is appropriate for point estimation of f” using
the estimator f”. However, should M"(0) be positive, 4, should be chosen as
small as possible subject to conditions required for consistency; see condition
(2.1), and also Minimisation Problem II. An example where M"(0) > 0 is
afforded by

M(x)=%{1—(x+0)}I(|x+0|<1)+ {1—(x_a)}1(|x_9|31),

where 37172 < 9 < 1/2.

Next we treat the unusual case where M"(0) = 0. Should f"f® and f+?
be of opposite signs then the contributions from A{’ and A% to the first term
of «, tend to reinforce one another. Thus, choosing h, = o(h’/™) leads to
minimisation of «,. If f"f® and f™*? are of the same sign, then it is
theoretically possible to choose h, so that the first term in «, vanishes.
However, this is hardly a practical suggestion, and so once again it would be
advisable to select h, so that h, = o(h'/™).

Consistency of f” for f"is cruc1al to the methods that we use to prove the
theorem. However, it does not always produce a bandwidth estimator that is
optimal in the mean squared error sense. This issue will be discussed in
greater detail in the next section.

We conclude this discussion by describing two minimisation problems that
elucidate the conclusions of Remarks 2.3 and 2.4.
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MiNIMISATION ProBLEM I. Minimise
(2.4) C,h h% + Cyht(nhy) ™! + Coh3(nh,) "min(1, k, /h,)

with respect to A, > 0, when C,,C, > 0 and C, may be either positive or
negative. We clalm that if C; > 0, then the optlmal h, satisfies h,
Cyn=%/B@HD) > p . the minimum is asymptotic to Cyn =27 +2/6CL+ D), and
the second term in (2.4) plays a neghglble role. If C; W 0 then the mlnlmum
of (2.4) is asymptotic to C3h,n "1, and this asymptotic minimum is attained by
any h, sequence satisfying n=3/® < h, < h,,.

The claim in the case C; < 0 is clear, on reflection. To elucidate the claim
when Cj3 > 0, observe that the sum of the first two terms in (2.4) is minimised
with A, of size &, = n="/®*D, which, since [ > 2, is of the same order as
or larger The minimum of this two- term sum is of size n—291+2/ Bty but
is dominated by the third term in (2.4), which is of size n =27 +D/(521+1} When
C3 > 0, the sum of the first and third terms in (2.4) is minimised with &, of
size h'y = n =3/ D) which is of larger order than k. The resulting two- term
sum is of size n~27+2/ 1} which dominates the second term in (2.4)
(evaluated at h, = k), and is of smaller order than n~27+1/ Bty

MinimiSATION PrRoOBLEM II. Minimise
(2.5) C,hyh%i™ + C h%(nh )

with respect to h, > 0, where C; > 0 and C, may be either positive or
negative. If C, > 0, then the optimal h, satisfies h, ~ Cyn~3/0Cm+3) and
the minimum is asymptotic to C, n'2(7”‘+6)/ BEm+3), If Cy,<0and h, > h’

n~1/9% where 0 <& < 2m/{5(2m + 3)}, then the minimum of (2. 5) is
achieved with h, = &', and is asymptotic to Cyh%(nh3)~ 1.

3. Asymptotically random bandwidths.

3.1. Introduction _and summary. In the case where our theory predicts
that the estimator f should be substantially undersmoothed, we ask that 4,
be taken as small as possible subject to constraints required by consistency of
f" for f. Thus, we ask that h be of larger order than n~'/%. Taking h,, in
formula (2.3), to be of size n 2 5, and ignoring the fact that this extreme
choice of £, invalidates the assumptions required for that result, we see that if
M"0) >0 then the crucial term

—2h3(nhd) " 2M"(0) f(x)

in (2.3) is of the same size (viz., n~%/%) as E{f(x|h,) — f(x)}2. This suggests
that such an extreme choice of h, might produce a significant reduction in the
size of mean squared error, by a constant factor if not by an order of
magnitude.

Generally, reductions in the order of magnitude of mean squared error are
possible if one employs an asymptotically random bandwidth. This is clear
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from work of Abramson (1982), for example. However, Abramson’s method
employs a different bandwidth for each summand in the kernel density estima-
tor, and so is very different from the undersmoothed plug-in rule being
considered here. An alternative approach, using the same bandwidth for each
summand but still reducing the order of magnitude of mean squared error, will
be outlined in subsection 3.2. Variants of the plug-in rule suggested in Section
2, in the case where &, is chosen so that f" is not consistent for f”, can reduce
mean squared error by a constant factor although not, usually, by an order of
magnitude. This will be shown in subsection 3.3.

There should be no misconception concerning the relative practical virtues
of Abramson’s method and our own; Abramson’s is clearly more practical. In
particular it tends to be more numerically stable. The point of the work in the
present section is to elucidate the curious results about undersmoothing f,
encountered in Section 2, and to show that variable bandwidth methods quite
different from Abramson’s can, like Abramson’s, reduce mean squared error.

To better appreciate what is occurring when f” is substantially under-
smoothed, using a bandwidth of size &, = cn~"/® for a constant ¢ > 0, observe
that in this case, f” has an asymptotically normal N{f"(x), o2} distribution,
where o2 = ¢~®f(x)/ M"?. Therefore, the empirical bandwidth selector A ad-
mits the representation A = cxn=1/5f(x)/5| f"(x) + {,|"*/°, where the ran-
dom variable ¢, is asymptotically normal N(0, o2). More generally, we might
define A = hg(Z,), where h = cxn~'/% g is an appropriate function, and Z,
is a random variable obtained by centring a kernel estimator. In the case
discussed just above we have, essentially,

g(2) = f(x)"°If"(x) + ¢,
Z, = (cn/5) "2 i [N{(x - X,) /en~V/5) — EN{(x - X,) /en~V/5)].
i-1

This is the context that we shall study in subsection 3.3.

3.2. An asymptotically random bandwidth selector: first approach. We
begin by describing the decomposition of f into stochastic and deterministic
terms. This expansion will form the basis of our first bandwidth selector.

The stochastic process U,, defined by

n
U, (t) =n"%5 Y [K{(x — X;)n"%" 1} — EK{(x — X;)n"/%t"1}],
i=1
represents the standardised error about the mean for f(x|k), when the
bandwidth is A~ = n~1/5¢. If K is continuous, then so are the sample paths of
U,, and for any 0 < a < b < », U, converges weakly on the space C[a, b] of
continuous functions on [a,b] to a Gaussian process U with continuous
sample paths. See, for example, Silverman (1976, 1978) and Krieger and
Pickands (1981). Now, the mean of f admits the usual expansion,

Ef(xlh) = f(x) + 3h* f"(x) + O(h*)
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provided f® exists and is bounded in a neighbourhood of x. Therefore,
f(xln=15%) = n=2/5¢1U,(¢) + E{f(xIn"'/%)}

(3.1)
=f(x) + n—2/5{t‘1Un(t) + %tsz"(x)} + O(n_4/5),

~4/5 uniformly in

the remainder here being nonstochastic and of order n
a<t<b forany0 <a <b <,

Next we use formula (3.1) to inspire an asymptotically random bandwidth
selector k. Let m,(a,b),m(a,b) denote the respective probabilities that the

equations
tTU(t) + 2% f"(x) = 0, t7U(¢t) + 3% f'(x) =0

have solutions in [a, b]. If solutions exist, let T,,T denote the respective
solutions that are nearest to unity. The covariance of U is given by

cov{U(s),U(t)} = f(x){fK(z/s)K(z/t) dz — st}.

It may be shown that 7,(a, b) = m(a, b) as n — «; and, noting the covariance
structure of U, that 7m(a,b) » 1 as a — 0 and b — «. Hence, given £ > 0 we
may choose a¢ small and b large such that, for all sufficiently large n,
m(a,b) > 1 — ¢. Thus, T, is well defined with probability at least 1 — &. Let
us agree to take T,, T equal to 1 if the variable is not otherwise defined. (Then
T,— T in distribution. )Put A =n"1/°T,.

Next we outline mean squared error properties when the bandwidth is
taken to be £. In view of (3.1),

(32) E(f(xlh) - f(x)) < n *3(ESH(1 - m,(a,b)}"* + o(n"¥),

where S, = U,(1) + (1/2)« f"(x) and has all moments bounded. Letting a =
a, — 0and b =b, — » at a sufficiently slow rate, we may deduce from (3.2)
that

(3.3) E{f(xIR) - f(x)} = o(n"%9).

Thus, the convergence rate has been reduced from n~*% to o(n~*°) by
employing the asymptotically random bandwidth £ rather than an asymptoti-
cally constant bandwidth.

Of course, the bandwidth selector A is not a practical choice, since it
requires the unknown density. We show next how to modify this approach to
make it feasible. Note that the centring term,

EK{(x — X~)n1/5t”1} =0(n"1%),

may be estimated with an error of only O,(n~'/°n=(1/2*%) = O (n~("/10+2)
for any & > 0, assuming enough smoothness of f in a neighbourhood of x.
Similarly, f"(x) may be estimated with error O, (n~1/?*?), Argumg in this
way we may derive computable, empirical approx1mat10ns L f" to U, f",
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respectively, such that the following analogue of (3.1) holds:
f(xln=15) = f(x) + n=2/5(t71U,(¢) + 3%k f'(x)} + R, (t),
where for each 0 < a < b < », any integer p > 1, and & > 0,

E{ sup IRn(t)IP} — O(nP/D=3)
a<t<b

The approx1mat10ns may be constructed so that U is continuous, the proba-
bility 7,(a, b) that the equation

(3.4) tIUL() + L2 f(x) = 0

admits a solution ¢ € [a, b] converges to m(a, b) as n — «, and

E{T,(1) + i f'(x)}’ = 0(1).

Defining T to be the solution of (3.4) within [a, b] that is nearest to 1, if a
solution exists, and to equal 1 otherwise; putting A = n~1/ 5T ; and lettlng
a, — 0, b, » « sufficiently slowly; we may deduce that this feas1ble band-
width selector has property (3.3).

3.3. An asymptotically random bandwidth selector: second approach. Our
second approach is more in keeping with the kernel-based plug-in rule consid-
ered in Section 2, although like our first approach, it produces a bandwidth
selector that does not vary among the summands that comprise the kernel
estimator. It does not generally allow the convergence rate of mean squared
error (MSE) to be reduced from n~*/® to o(n~%/%), although it can reduce the
constant C in the formula MSE ~ Cn~*/5. For the sake of brevity our
argument will be heuristic, although it can be made rigorous under certain
conditions on the function g, which contributes the stochastic component to
the asymptotically random bandwidth. Appropriate conditions are that g be
continuous, bounded away from zero, and equal to a nonzero constant outside
an interval [a, b], where 0 < a < b < ». In these circumstances, a rigorous
proof may be given via an Edgeworth expansion of the joint distribution of A
and Z,(z), defined below.

We begin by introducing functions and random variables on which our
bandwidth selector will be based. Let g > 0 and N be functions, with N
bounded, symmetric and compactly supported. Let & = cn~'/% for a constant
¢ > 0, and put

Zu= ()" X [N+ = X /h) = BN{(x - X) /h)],

Zy {nhg(zl)} Z [(x _Xi)/{hg(zl)}],

Zy(2) = {nhg(2)} " Z K[(x - X;)/{hg(2)}].

S
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Our bandwidth selector is h = hg(Z)), and our density estimator is
fxlh) = Z,.

Next we outline the mean and covariance properties of Z; and Z4(z), which
lead to mean squared error properties of f(x|h). Define

a(z) = [K(y)N{g(2)y} dy,
and observe that

EZy(2) = f(x) + 3h%g(2)°k f'(x) + O(R*),

of = var(Z,) = f(x) [N? + O(h?),

o3(2)" = var(Zy(2)} = {rhg(2)} " f(x) [K? + O(n" k),
cov{Z,, Zy(2)} = (nh) "2 f(x)a(2z) + O(n"'/2h1/?),

p(2) = corrln{Z,, Zy(2)} = g(z)l/za(z)(szsz)_1/2 + O(h).

If Z,, and Z, conditional on Z;, had joint normal distributions then the
following formulae would be valid:

E(Z,|Z, = 2) = f(x) + 3h%g(2)*k "(x) + p(2)0y(2)0i 'z + O(h*)
= f(x) + 3h*8(2)"x f'(2)
+(nh)_1/2a(z)z(fN2)_1 +0(n"V2),
var(Z,1Z, = 2) = {1 = p(2)}oy(2)”
= (nh)_lf(x){g(z)_lsz - a(z)z(sz)_l} +0(nY).

Therefore,

E[(Z, - f(2))12, = 2] = (E(Z,)2, = 2) — f(x))" + var(Z,]Z, = )

= {%hzg(z)zxf"(x) + (nh)_l/za(z)z(/Nz)_l}

+(nh)‘lf(ac){g(z)_lfK2 B “(z)ZA(sz)_l}

+0(n7Y.
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Thus,
E(f(xlh) - F(x))
- B(Z, - f(x)}"

2

~ B2 () + () a2z [87) ]

+(nk)” f(x)[(sz) 527} - () Elec2) }]

where Z is normal N{0, f(x)/N?2}.

Although this formula has been derived under the assumption that Z;, and
Z, given Z;, have normal distributions, it is available more generally, as noted
in the first paragraph of this section.

4. Proof of theorem. Let d,,d, be constants such that 0 < d; < f(x)
and either 0 < d, < f"(x) or f"(x) < d, < 0. Consider redefining A as

cx F(x)YP1 1 (x)17%®n~1/5, if f(x) > d, and either
h' = 0<d,<f'(x)or f"(x) <d, <0,

n-1/5, otherwise.

Then A = A’ unless the event &= {f(x) <d,, or f"(x) <d, and d, > 0, or
f"(x) > d, and d, < 0} obtains. Bernstein’s, or Bennett’s, or Hoeffding’s or
even Markov’s inequality may be used to prove that #(&) = O(n "~ ) for each
C > 0. Observe that A~! and A'~! are both dominated by n®, for some
C, = C(q) = 1/5 sufficiently large. It follows that for each C,, C; > 0,

E{f(xlh)*1(£)) = 0(n~%),

E{f(x1h)*1(&)} = 0(n~%).

If we choose C; sufficiently large, then the right-hand sides of these identities
are negligible relative to £¢2/2 Hence, there is no essential loss of generality in
proving the theorem for A’ instead of A. This we shall do, although we shall
drop the dash from our notation.

For the sake of clarity, the remainder of our proof will be given in a
sequence of seven steps.

STEP (1) Taylor expanszon of f(xlfz) Define A(h) = f(xlh) - fx), Ay =
Alho), A = ACR), 8 = (h = hy)/hy, Ki(y) = K(y) + yK'(y), Ky(y) = 2K(y)+
4yK'(y) + y?K'(y), S,(h) = h7(3/0h)%f(x|h) and T; = S;(hy). In this nota-
tion, S;(h) = (- 17(nh)" 'L, K{(x — X;)/h} for j = 1 2, and ES;(h) = O(h®)
for j >’ 1. Since K" is bounded and since P(C;n~1/5 < b < C, n‘1/5) =1 for
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some 0 < C; < Cy, then A = Ay + 8T + (1/2)8%T, + I81°R,, where
|R,| < Cy sup*|Sy(h)| < C3 sup*{|ES3(Rh)| + |S3(h) — ESy(h)l}

and sup* denotes the supremum over C;n~/% < h < C,n "'/, For each inte-
ger p > 1, and each & > 0, E{sup*|Sy(h) — ES3(h)I"} = O(n~P/5*%), Fur-
thermore,

(4.1) (ElAo))? + (EITP)"" + (EITyIP)"" = O(n~%/%).
Hence, for each ¢ > 0,

(4.2) E(R) = E{83 + 6%(T2 + A,T,) + 20,13} + O{n~@/5+<(El3%) "}

Step (i)). Taylor expansion of 8. By Taylor-expanding (f/f"?)'/® we may
show that

(4.3) 8=208;+d,+R,,

where
s=4{(f-r) -2/ =}
b= {12 F= 1) + TP~ F)
—20f) T (F- (=)},
IR, < C4(If = FI>+1f" = fF).
Step (iii). Simplified formula for E(A?). Since E|f — fI” = O{(nh,)~ /% +

RY)? and E|f" — f1” = O{(nh3)~Y? + h}}* for p > 2, then by (4.1), and
substituting (4.3) and (4.4) into (4.2), we obtain for any ¢ > 0,

E(8?) = E{A% + 63(T + A,Ty) + 2(8, + 82)AoTy)

(4.4)

(4.5) o

@O (nhy) T+ B+ (nh) T h'2”>3].

Step (iv). Expansion of E(8,A,T,). We first state a simple formula. Let
(U,, V., W,) be independent and identicaly distributed as (U,V, W), with zero
mean and finite third moment. Let u, v, w be constants. Then

(15 e+ TO)+ ZV)(w + TW)

= uwow + n{uE(VW) + vE(UW) + wE(UV)} + nE(UVW).

Let N denote either L or M". When N =1L, put (a,8) = (1,1), r = and
D =f~-f When N =M’ put (a, B)=(2,3), r=m and D = f" — f". Define
u=ED, v=Efy,—f, w=ET,, p,=ho/h, U =@hE)'Ni{(x - X;))/h,},
V) = (nho) 'K{(x = X)/ho}, W/ = —(nho)"'Ki{(x - X;)/ho} and
w,, V., W, = U, V;,W/,) — E(U;,V;,W,). Let (U,V, W) have the distribution

i Vi
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of (U,,V,,W,), and observe that [y?K (y)dy = —2«, [KK, = (1/2)(K? u =

|22 2]

OChr), v = th3k f" + O(hY), w = h3k f" + O(hd),
E(UV) = (n*h8) " f[K(9)N(poy) dy + o{(n*hE) " min(1, h,/ho)},
E(UW) = —(n2h8) "' f[K((9) N(poy) dy + of (n*h8) " min(1, h,/ho)},
E(VW) = —(n%ho) ™ 3f[K? + O(n"%h,),

E(UVW) = O{(n*hoh) ™" min(1, h,/ho)}.
Now, D =u + LU, Ay =v + LV,, T, = w + LW,. Hence, by (4.6),
E(DAT)) = u{vw + nE(VW)}
(4.7) + n{vE(UW) + wE(UV)} + nE(UVW)
= I, + I, + o{ h3(nh®) " min(1, h,/ho)},
where
I, = u{vw + nE(VW)} = O(h%h.),
I, = n{vE(UW) + wE(UV)}

= 3h3(nhB) 'k fF [{K (y) = yK'(9)}N(poy) dy

+ o{(n*h8) ™" min(1, ho/hy)).

Remembering that &, = (1/5)(f~'D, — 2f"~'D,), where D, = f—f and
D, = " — f", we may deduce from (4.7) that

B(3:80T) = H43[(nh) " [{K () = K (DIN (o)

(4.8) —2(nh3) ff K(y) —yK'(3)}M"(p2y) dy]x

+ O{R§(hY + RY)}
+ o h3{(nhy) " min(1, hy/ho) + (nh3) T min(1, hy/ho)} .
Note that

RE(RL + hE) = o| R4(R3 + BE™)
(4.9) -1 N
+h%{(nh1) min(1, h,/hy) + (nh?z’) >]’
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put ¢, = h4(h% + hZ" + (nh )~ Y + h%{(nkh,) "' min(1, h,/h,) + (nh3)™1}, and
observe from (4.8) and (4.9) that, since hy/hy — o,

E(5,8,T;) = l—zh%[(nho‘lf" J{E(5) = yE'(9)}L(pry) dy
(4.10)
—2(nh3)" F{K(y) = yK'(3)) M (p2y) dy |k + 0(£,).

SteP (v). Expansion of E(5,A,T,;). We first state a simple formula. Let
ZO, ..., Z, be jointly normally distributed with zero means and covariances
E(Z Z)). Let 2,,...,2, denote constants. Then

E{ Il (2; + Zi)}
i=1

(4.11) = (2125 + v12) (2324 + V34)
+(2123Y94 t 2124Y03 + Z223Y14 T 2224Y13)
+ (V1324 T Y14Y23)-

In the event that Z, = Z, = Z, and z; = z, = 2,, the right-hand side reduces
to

(4.12) (zg + Y00)(2324 + ¥34) + 220(23Y04 T 24Y03) + 2Y03Y04-

Consider applying (4.11) in the case where, for i = 1,2, (25, Z;) = ( Ef - - f,
f—Ef) or (Ef" —f", f" — Ef"), and where (z3,Z;) = (Ef, — f fo — Ef,
(24,2,) = (ET,,T; — ET,). Even though Z,,...,Z, are not normally dis-
tributed, the fact that they are asymptotically normal may be used to prove
that (4.11) continues to hold, provided that a correction term of size o(n,),
where 7, = {I1, E(z; + Z;)*}'/*, is added to the right-hand side. Now,

= 0{ ﬁ (22 + Ezf)l/z}
(4.13) i-1
= O[h4{h¥ + B3 + (nhy) 7' + (nh3) ™).

Therefore,

4
’ { 1_[ (2, + Z; )}} = O(lz125 + v12ll2g24 + vaul + 12125724l

falle]
+l2124Y 03l + 12225V 14l + 122240713 + 1V13Y24l + V147 25))
o[ {at g+ (mhy) ™+ (nf) )]

Observe that |z,2, + 5l = O{h% + h%™ + (nhy)~' + (nh})~'}; that in the no-
tation of Step (iv), lz324 + Y34l = |2324 + nE(VW)| = O(h ), using the esti-
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mates developed in Step (iv); and that |z;| + |z,| = O} + AT, |2, + |2,] =
O(h%), I')’13| + |')’14| + |723| + I')’24| = 0{(nh1)_1 min(1, hl/ho) + (nhg)'l}
Hence,

|E(3,80Ty)| = O h3(k} + hy){(nhy) " min(1, ky/hy) + (nh) ™"}
+(nhy) " min(1, h3/h3) + (nh3) |
+ o h{h3 + By + (nhy) ™t + (nh§) )]
From this result and the fact that (nh;)”?min(1, h2/h%) + (nh3)~2 +
hi(nh%)~' = o(¢,) we may deduce that
(4.14) |E(824,T1)l = o(£,)-
StEP (vi). Expansion of E(63T2) and E(8%A,T,). The argument employed
here is similar to that used in Step (v), but is based on the simpler formula

(4.12).
Let (zy, Zy) = (E8,, 5, — ES;). When calculating E(62T2), put

(4.15) (23, 23) = (24, 2,) = (ET,, T, — ET,),
and when computing E(62A,T)), let
(4.16) (z3,23) = (EAq, Ay — EA), (24, Z,) = (ET,, T, — ETy).

Then, lygsl + lyosl = OUnhy) ™ min(L, hy/hg) + (nh3)™Y, |24 = OCRL + A
and |z3] + |z,] = O(h?%). Therefore,

1220(25Y04 + 24Y03) + 2Y03Y 04l
(417) = O|(Rh + RE)R3{(nhy) " min(1, hy/ho) + (nh3) ")
+(nhy) * min(1, h3/h3) + (nh) 7| = o(&,).

(Note that nh% — =). As in Step (v), the error in assuming that E{[1(z, + Z,)}
equals the quantity in (4.12) equals o(7,), where a bound for 7, is given by
(4.13). Therefore, by (4.12), (4.17) and the fact that 7, = O(¢)),

4
(4.18) E{ l:[l(zi + Zi)} = (Zg + Y00)(2324 + v34) + 0(£,).

The left-hand side of (4.18) equals either E(§?T?) or E(5?A,T,), depending
on whether (z3, Z;) and (z,, Z,) are defined by (4.15) or (4.16), respectively.
Since [y?K, = —2«, [y?’K, =2k, [KZ = [y?K"?, (KK, = [(K? — y?K'?), then
the sum of the respective versions of z32, + 3, equals

{(ET)* + var(T,)} + {(EA¢)(ET,) + cov(Ay, Ty)} = Shir?f" + o(h4).
Therefore, :

(4.19) E(8iT?) + E(87A,Ty) = ShLE(83)k*f"™ + o(£,).
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Let p = hy/h,, and observe that
25E(587) = ( —hAFYO - —hm f"—lf(m+2))2
{(nhl) 2 [L2 + 4(nh3) " 1% (M
~4(nhd) ()7 LM (o9 dy | £

+ o{ K3 + hE™ + (nhy) '+ (nh3) ).

Combining this formula with (4.19), and remembering that nh5 — «, we
deduce that

E{83(T? + A,Ty)}
1 2
(420) = Tah4(l| hl)\f 1f:/f(l) _ _hm/*" f(m+2)) Kz
1
—h4 =1 1002 2 2
+ Tohb(nk) AR L2 4 0(£,).

StEP (vii). Completion. In view of (4.5),
E(A%) = E(82) + E{63(TZ + AoT,)} + 2E(8,A,Ty) + 2E(8,4,T;) + 0(£,).
Using (4.20), (4.10) and (4.14) to expand the second, third and fourth terms,
respectively, on the right-hand side, we see that

2
E(AZ) — E(AZO) + ih“( hl)\f 1f//f(l) ih’”,u f(m+2)) K2
+ ___h4(nh1)—1 2f_1f”2fL2
+ 28] (nh) 7 [ (KG) — 9K ) L) dy

—4(nh ) M”(O)f]x+o(§n),
as had to be shown.
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