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NEAREST NEIGHBOR REGRESSION
WITH HEAVY-TAILED ERRORS

By HArR1 MUKERJEE
Wichita State University

There has been an increasing interest in modelling regression with
heavy-tailed conditional error distributions, mostly in the parametric set-
ting. Nonparametric regression procedures have been studied almost exclu-
sively for the cases where the conditional variance of the regressed variable
is finite in the region of interest. We initiate a study of the infinite variance
case. Some results in strong uniform consistency of the nearest neighbor
estimator with rates are proven. The technique used provides new results
and insights when higher conditional moments exist. Some asymptotic
distribution theory has also been obtained when the conditional errors are
in the domain of attraction of a stable law.

1. Introduction. Since the work of Mandelbrot (1960, 1963, 1969), the
use of stable distributions to model data with heavy-tailed distributions has
become quite popular; the paper by DuMouchel (1983) contains a substantial
bibliography. In the regression context the usual procedure is to employ a
parametric model with (typically symmetric) stable error distributions. We
study the nearest neighbor nonparametric regression procedure when the
errors have heavy tails, prove strong uniform consistency of the estimator and
its a.s. convergence rates, and initiate a study of its asymptotic distribution
when the errors are in the domain of attraction of a stable law.

Suppose (X,,Y)),...,(X,,Y,) are iid. R? X R-valued random variables
with finite conditional means m(x) = E[Y;|X; = x]. Let || - |l and | - | denote
the norms in R? and R, respectively. For x € R* and n > 1 let
{D,(x),..., D, (x)} be the order statistics of {X,,..., X}, ordered by the
distances {/|x — X[}, with ties being broken by the chronological order. Let
{W,(x),...,W, (x)} denote the corresponding induced order statistics of
{Y},...,Y,}). The nearest neighbor (NN) regression estimator of m(x) is given
by

(1.1) mo(x) = ¥ e Win(x),
i=1

where {c;,: 1 <i <n, n > 1} is a fixed double sequence of real numbers. The
special case of k-nearest neighbor (k-NN) estimator is defined by the weight
vectors ‘

(1.2) cn=I(i<k)/k, n=>1,
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682 H. MUKERJEE

where k = k, is a positive integer with 2 — « and k2/n — 0. The NN estima-
tor and some variants have been studied extensively, mostly under the as-
sumption that the conditional variance o%(x) = Var[Y;|X, = x] <  for all x
in the region of interest [see, e.g., Fix and Hodges (1951), Royall (1966),
Devroye and Wagner (1977), Stone (1977), Devroye (1978), Mack (1981) and
Cheng (1984), and the references therein]. Recently Mukerjee (1989) has
shown that the k-NN estimator is strongly consistent with only a first
moment-type assumption when %, ~ n7, 0 <7 < 1. In Section 2 we show that
strong uniform consistency and a.s. rate of convergence results could be
derived with only a (1 + §)-order conditional moment and that the order of
moment assumed, the rate of convergence, and {k,} form an intimately
connected triplet. The proof is based on truncation and an exponential proba-
bility bound for weighted sums of independent random variables with a
triangular set of weights due to Hanson and Koopmans (1965) in conjunction
with a result (Lemma 2.6) based on a combinatorial inequality due to Schlafli
(1901). Our results greatly generalize those obtained by Cheng (1984) under
second order and higher moment assumptions (see Remark 2.11). In Section 3
we use Brunk’s (1970) independent observations regression model to extend
the results to the case where {X;} may be a (marginally) dependent sequence
and apply it to the case of a stationary {X,}. In Section 4 we initiate a study of
the asymptotic distribution of the 2-NN estimator assuming stable errors and
using the results of Logan, Mallows, Rice and Shepp (1973). In Section 5 we
make some concluding remarks.

2. Consistency. Let S be the support of X;. For any real-valued func-
tion T on R? we denote sup,  x|T(x)| by |ITllx, K € R?. Now consider the
following assumptions:

(1) m le;nl < 1/f(n) for some f(n) — o;

<i

(2.1) n
(ii)sup ) lc;,l < C < for some C > 1;

n =1

and

if H(t) = supP(|Yy| > ¢IX; =x), then
(22) xS

H(t) >0 ast—> o and fwtrldH(t)Izo-,<oo for some r > 1.
0

For a compact B c R? the a.s. convergence rate of |[m, — m|p for the
k-NN estimator has been considered in the literature only in the cases
corresponding to r > 2 + d /2 in (2.2). In this case the optimal convergence
rate does not depend on r, as shown in Remarks 2.11. However, it does for
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1<r<2+d/2. Let p=min{r,2} and let 6, be a positive sequence with
0, — o
THEOREM 2.1. Assume that (2.1) and (2.2) hold.

(@ Iff(n)/(n'/"logn) - =, then |m, — Em,,lls = 0 a.s.
M) llm, — Em,lls = 0(1/6,) + O(n=""Y/") a.s.,

where

() 6, = f(n)/(n*"log n) if f(n) = O(n*’/"log n) and
Gi) 0, = ‘/f(n)/(n(z"”/’ logn) ifn?/"logn = o(f(n).

Note that r must be more than 2 and p = 2 in Theorem 2.1b(ii) if
f(n) = O(n), as is the case with the k-NN estimator.

For n>1land1 <i <nlet Y* =Y, I(|Y] <n'/") and define W;(x) corre-
spondingly for x € R?. Define m* by

(2.3) mi(x) = ¥ ¢, Wii(x), x€R%
i=1
Our proof of Theorem 2.1 will be derived from the convergence properties of
the three expressions on the rhs of the inequality
(2.4) llm, — Em,ls <lm, — mils + lIm* — Em¥|s + |[Em% — Em ||s.

We first investigate these in the following lemmas.

LEmMA 2.2. Under assumptions (2.1)(i) and (2.2)
lm, —mils=0(1/f(n)) a.s.

ProoF. From (2.2) we have that E|Y;|” < . Thus P(|Y,| > n'/" i.0) = 0
and W, (x) = W*(x), x € S, for almost all sample sequences if n > n, for
some n, depending on the particular sequence. For such a sample sequence,
using (2.1)@),

lm, — m%lls

sup Zcm Won(2) I(IW, ()] > n'/7)

xS

IA

(— i G > /)

I/\

ZIYII(IY|>n1/r)_ ( 1 )

f(n) f(ny)

from which the lemma follows. O
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LemMA 2.3. Under assumptions (2.1)ii) and (2.2),
|Em* — Em |lls = O(n~"~D/T),

ProoF. Under the assumptions, the proof follows from
IE(m% —m,|X,,...,X,)ls

n

< sup Y leg | E[IW;, (I (W, ()| > n'/"IX,,..., X,]

xeSi=1
n
< Y lepn V" sup E[|Y, "X, = x]
i=1 xeS

<Con V7 =0(n"""D/7) as. m]
The following lemma is well known for p = 2.

LemMa 2.4. If X is a random variable with |X| <M < », EX =0, and
E|XPP = o, < for some 1 <p <2, then

|EetX — 1| <o, M2 7t2 forlt| < 1/M.
o

Proor. For [¢t| < 1/M we have
t*"EX" /!
k=2

< Y IPEIXI* /R < Y [t1*M* 00, /!
k=2 k=2

|EetX — 1| =

< (g, M*70t2/2) ¥ |t|**M* 2 /202
k=2
= (o,M?7*t2/2)(1 — [tIM/2) " < 0, M?~"¢2. O

The following lemma is a simplified version of Theorem 1 in Hanson and
Koopmans (1965).

LEMMA 2.5 (Hanson and Koopmans). Suppose X,,..., X, are independent
mean-zero random variables. Assume that for every B > 0 there exists Ty > 0
such that the moment generating function ¢,(t) = Ee'** exists for 1 <k <n
and |1 — ¢,(t)| < Blt| for |t| < T, uniformly in k. Let {c;,} be a double
sequence of real numbers obeying (2.1). Then for every e > 0 and n > 1

P{ Z ¢in X,
i=1

where p, = e~*T/* with T = min{1, T, ¢y, T, 2,/ C}-

> 8} < 2pf™,

Let yC_,=X% onC,,., where 5C, = 0 for m > N. Recalling the notation
~C,, for the number of m-element subsets of an N-element set, yC _; is the
number of subsets with at most d elements. The following lemma uses a
combinatorial inequality due to Schlifli (1901) quoted in Dudley (1978).
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LEMMA 2.6. For every positive integer n the number of distinct values of
{m (x): x € R% is less than or equal to 5C_, with probability 1, where
N =n02.

Proor. Fix a positive integer n. Let {x,,...,x,} be a realization of
{X,,...,X,}). For 1 <i <j <n let H;; be the hyperplane bisecting the line
segment formed by the pair (x;,x;). There are N =,C, such hyperplanes.
Schlafli (1901) showed that the maximum number of open regions formed by
N hyperplanes in R? is 5C _,, which is attainable if these hyperplanes are
“in general position”’; see Dudley (1978), page 921 and the references cited
therein. If x and x’ are in the same open region then, for every pair (i, j) with
i <Jj, we have that x and x' are on the same side of H;; so that [lx — x,/| <
(>)llx — x;llifand only if [lx" — x,l < (>)llx" — |, and thus D, (x) = D,,(x")
for 1 < a < n. Hence the number of values of m,(x), as x ranges over the
open reglons is bounded above by 5C _,.

For any i <j let O;; denote the open half-space {y: ly — x|l <lly — x; 1}
defined by H,;. If x € n H; I(1 <m < p) for some {(i,, <_]m)} and p, and

x & H,; for any other (i, ]) ﬁlen x is in the boundary of one of the open
regions contamed in NO; . I(1 <m < p), which is nonnull wp 1 since no two
hyperplanes are the same wp 1. For every y in this open region and for every
1<m<p,wehave||y—x N <lly —x; |l. Since i,, <j,,, if x; =D,,(y)=

sn(x) and x; =D, (y) = Dan(x) then & < v and ,B <8,1<m<p, by our

deﬁnition of {D(_)n( : )} and the tie-breaking rule. Both x and y lie on the same
side of H,; for all other (i, j), and thus m (x) = m (y). This along with the
result above completes the proof of the lemma.

The restriction “wp 1"’ could be omitted in the lemma above, but the proof
is messier, and we have no need for it.

Lemma 2.7.  Let 0, = sup, . 5 E[|Y,/°IX, = x], A=2°*3C?s,, N =,C,, and
M, = 2n'/". Under assumptzons (2.1) and (2.2), for every posztwe integer n
and for every £ > 0,

P{lm* — Em*|ls = ¢} < 2yC_, exp| —f(n)e min{e /(AM27),1/(4M,C)}].

Proor. Fix a positive integer n and &> 0. Let Z, (x) = Wk(x) -
E[WX(x)IX,,..., X,]. Note that |Z,,(x)| < 2nY", E[Z, (0)IX,,...,X,]1=0
a.s. and

E“Z”l(x)lrlxj[’ R Xn]
< 2 Y E[WE ()X, ., X, ] + (B[WEIX,, ., X,]))
< er[l‘/Vltlrle’ . Xn] < 2rsupE[|Y1|"|X1 = x] < 2"0’r <® a.s.,

xeS

by standard inequalities and (2.2). Also note that this series of inequalities
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hold with r replaced by p. Applying Lemma 2.4 to Z,,(x) we have
|E[exp(tZ;,(%)) Xy, ..., X,| — 1l < 2?0, M?7"t* as.,
¢l <1/M,,1<i<n,x€8S.

For any B > 0 let T, = min{8/(2°0,M?~"), 1/M,}. Then 2o, M?~*t* < Blt|
for |t| < T;. Since C > 1 and 1/M, < 1, we have that T =
min{1, T, ,ocy T, j2c)/C} = Te j2¢)/C. Applying Lemma 2.5 to {Z,(x)}, for
every x € S,

7

p. = exp[—eT/4] = exp[—aTS/ZC/(4C)]
— exp| — min{e/(2°*3C%, M2 ), 1/(4M,C)}].

n
Z cinZin(x)
i=1

>elX,,. .., Xn} < 2pf™ as.,

where

The proof of the lemma follows by noting that Lemma 2.6 implies
P{lm* — E[m%|X,,..., X, ]ls > elX,,..., X,}
< nC_gsup P{m¥(x) — E[m¥(x)IX,,..., X, ]l > elX;,..., X,)}
xeS

<nC_4sup P{

xeS

Z cinzin(x)
i=1

> 8|X1,..-,Xn} a.s. i

ProoF OF THEOREM 2.1. Let & > 0 be arbitrary in Lemma 2.7. Since
M, =2n'/" and p > 1 we have 1/M,, = o(M27"). Thus the rhs of the proba-
bility inequality in the lemma becomes

2yCoqaexp[—2f(n)/(4M,C)] = 25C_, exp[-B, log n]

for some B, — », and hence is summable if f(n)/(n'/"logn) > ». Thus
Im* — Em*%|ls = 0 a.s. under this assumption. The proof Theorem 2.1(a) is
completed by using (2.4), Lemma 2.2 and Lemma 2.3.

Using (2.4) and Lemmas 2.2 and 2.3, and the fact that 6, = o(f(n))
under both sets of conditions in Theorem 2.1(b), it is sufficient to show that
lm* — Em*|ls = O(1/6,) a.s. to prove Theorem 2.1(b). Let ¢ = K/6, in
Lemma 2.7 for some positive constant K, not depending on n, and let
e, =[f(n)/0,lmin{1,/(8,n®~7/7),1/n'/}. The rhs of the probability inequal-
ity in Lemma 2.7 is summable if e, =logn and K is sufficiently large.
When 6,n®7#/" = O(n'/"), that is, 8,n'/" = O(n*/"), and e, = logn, we
have logn =e, = f(n)/(6,n/7) so that 6, = f(n)/(n'/"logn) and f(n) =
6,n'/"log n = O(n*/" log n), proving Theorem 2.1(b)i). When n*/" =
0(0,n'/") and e, = log n, we have logn = e, = f(n)/(62n®~7/7) so that 6% =
f(n)/(n®=?/"log n) and n*/"log n = f(n)n?/7/(02n2/7) = o( f(n)), proving
Theorem 2.1(b)(ii). O
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Now assume that
n
(2.5) lin;inf Y le;,l > 0.
i=1

Then max, _;_,lc;,| > ¢/n for all n sufficiently large and some ¢ > 0, which
implies that f(n) = O(n). Since 8, = O(n*~V/7) = O(n"~V/7) for all r > 1
under the conditions (i) and 6, = o(y/f(n)) = o(Vn) = o(n"~1/7) under the
conditions (ii) where r > 2, the rate result may be stated as

(2.6) 0,lm, — Em,lls = O(1) a.s.

under the additional assumption (2.5).
We now consider the uniform convergence of m, to m on B, a compact
subset of S. Consider the following assumptions:

there exists a positive sequence {d(n)} such that d(n) — o,

(2.7) d(n)/n - 0, |X}_c;, — 1| - 0 and Z?=d(n)+1|cinl -0
and
(2.8) m is bounded on S and is uniformly continuous on the

intersection of S and an open neighborhood of B.

THEOREM 2.8. Under the assumptions (2.1), (2.2), (2.7) and (2.8),

Im, —mllg >0 a.s.iff(n)/(n""logn) — c.

Proor. Using Theorem 2.1 it is sufficient to show that ||[Em, — m| g — 0.
Now

d(n)
IEmn(x) - m(x)l =< E _glcinm(Din(x)) - m(x)
b Y lenlElm(Du(x)l + Im(2)].
i=d(n)+1

For x € R let R, (x) = |lx — Dy, (x)ll. Then IR, llz — 0 a.s. from a result
in Devroye (1978). Using this, (2.7) and (2.8),

d(n)

.gl cinm(Din(x)) —m(x)

‘

d(n)

.§1 cznm(x)(l + Ou(]‘)) - m(x)

d(n) d(n)
< ( Y cin — l)m(x) + Y lejullm(x)lo,(1) = 0,(1) as.,
i=1 i=1

where 0,(1) - 0 as n — « uniformly in x € B. Using (2.7) and the bounded-
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ness of m by (2.8),

n
Y lel[lm (D (%)) + Im(x)l] = 0 a.s. uniformly in x € B.
i=d(n)+1

Thus ||[Em, — mllg = 0 which completes the proof of the theorem. O
To obtain an a.s. convergence rate for |[m, — m|lg we consider only the

k-NN case and note that (1.2) implies (2.1) and (2.5) with f(n) = k and C = 1.
Now consider the following assumptions:

the marginal distribution of X, has a bounded density g

(2.9) w.r.t. the Lebesgue measure on R?
and
(2.10) m and g are continuously differentiable up to second order

in the intersection of S and an open neighborhood of B.

The following result follows from Theorem 1 in Mack (1981).

LemMa 2.9 (Mack). Suppose that (1.2), (2.9) and (2.10) hold and that
k =o0(n), logn = o(k), inf, . 5 g(x) > 0, P(llx — X,ll > s) = O(s™*) for some
t>0ass — x Then

IEm, — mlls = O((k/n)*?) + O(1/k).

THEOREM 2.10. Assume that the conditions of Theorem 2.1(b) and Lemma
2.10 hold for the k-NN estimator. Then

lm, —ml|lg =0(1/6,) + O((k/n)z/d) a.s.

with 6, as in Theorem 2.1.

ProoF. The conditions imply the rate result in Theorem 2.1(b) in the form
of (2.6). The proof is completed by using Lemma 2.9 and the fact that
6, =o0(k). O

ReEMARkS 2.11. (i) Theorem 2.1 clearly displays the interrelationships of
the doublet (r, f(n)) in part (a) and of the triplet (r, f(n), 8,) in part (b), and
they hold for all » > 1. In the £-NN case condition (b)(ii) cannot be satisfied if
r < 2, and for r > 2 the result can be stated as 6, = yk/log n if n*/"log n =
o(k). For r > 2 both conditions may be used depending on the choice of .

(i1) Under the conditions of Theorem 2.10 the best order of convergence of
lm, — mllg is obtained when 6, is of the same order of magnitude as
(n/k)*?. For r <2 + d/2, using (b)(i) of Theorem 2.1, this gives a conver-
gence rate of (log n/n'"~D/7)2/@*+d corresponding to k2% ~ n@ 9/ (log n)?;
note that r < 2 + d/2 if and only if 2r + d)/[r(2 + d)] < 2/r so that condi-
tion (b)(ii) cannot be satisfied for this k. If we want to use (b)(ii) we need Z,
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and hence (k/n)?/¢, of a larger order of magnitude, and thus the rate given
above is optimal. For r > 2 + d /2, using (b)(ii), the best rate is (log n/n)?/¢*®
corresponding to k**? ~ n*(log n)? [note that r > 2 + d/2 if and only if
4/(4 +d) > 2/r and thus (b)ii) applies] If we use a (smaller) % =
O(n*/" log n) = O(n* " log n) to apply (b)), then 6, = O(n'/") = o(n?/“¢+d)
when r > 2 + d/2, and thus the rate given above is optimal. It is interesting
to note that this optimal convergence rate, which is independent of r for
r> 2+ d/2, differs from that for r = 2 + d /2 by the factor (log n)@*@/¢+d),
Thus the “power of n’’ factor in the convergence rate is a continuous function
of r forall r > 1.

(iii) The best known results for the k-NN case are the two results of
Cheng’s (1984) that correspond to two isolated cases of our theorem:

(@ r=2and k/(Ynlog n) - « for uniform consistency without rates.
(b) r=d + 2 and k = [Dn?/@*D] for some D > 0 for a uniform conver-
gence rate of |lm, — mllp equal to B,logn/n'/®*% for some arbitrary

,Bn—>oo,

Part (a) follows from our Theorem 2.8. In part (b) Cheng gets 6, =
n*/@*9 /log n, the same that we get from our Theorem 2.1 using (b)(i); ‘the
extra term B, comes from higher bias (which dominates) because Cheng does
not assume differentiability of the density of X;. Using the conditions of
Lemma 2.9 the rate will be 1/6, with Cheng’s r and k, but, even with
r=2+d/2, the optimal rate would be (log n)?/@+dp=-2/4+d a5 shown
above.
(iv) For kernel regression with d = 1,r > 5/2,b, = n"* where 1/5 < a <
1 — 2/r, Mack and Silverman (1982) obtained the rate [log n /(nb,)]'/%, where
b, is the bandwidth. Since 1 — a < 2/r, we have n?/" log n = o(nb,), and the
rate agrees with the optimal rate given above if we identify nb, with &.

3. An independent observations regression model. We note that
Theorem 2.1 does not depend on d or the marginal distribution of X; they
come into the picture only in the convergence properties of Em, to m. The
results in Section 2 can be immensely generalized using the independent
observations regression model (IORM) due to Brunk (1970) and applying it to
regression models where {X;} may be fixed or a (marginally) dependent se-
quence. In this model F, is a d.f. for each x € R? with mean m(x), {X,}is an
R“-valued stochastic process, {Y,} is a real-valued stochastic process, and,
conditional on {X,} = {x,}, {Y,} is an independent sequence with Y, dis-
tributed as F, . We show an application to a case where {X [ O 1= (margl-
nally) a one- dlmensmnal strictly stationary sequence, while we observe only
{X}, X5,...}. Let S be the support of X;; G its d.f., and let G, denote the
e.d.f. generated by {X;, ..., X,}. Suppose

for each real £, E[I(X, <t)l -+ X_, X,] - G(¢)
uniformly in almost all sample sequences.

(3.1)
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Then Bhattacharya (1972) showed that for every ¢ > 0 there exists 0 < k(g) <
o such that

(3.2) P(lIG, — Glls > €) < exp(—n/k(¢)).

THEOREM 3.1.  Assume the IORM with the distribution of {X,} as described
above. Then under assumptions (2.1), (2.2), (2.7), (2.8) and (3.1)

lm, —mllg >0 a.s.if f(r)/n'/"logn — .

Proor. By Theorem 2.1 we have |[m, — Em,llg > 0 a.s. under the as-
sumptions. In proving [|[Em, — mllg = 0 in Theorem 2.9 the (marginal) inde-
pendence of {X,} was used only to prove that |6,z = sup, c gllx — Dy, (Nl
— 0 a.s.; Devroye (1978) proved this using the compactness of B and
Hoeffding’s inequality. The same proof goes through in our case using the
inequality (3.2) instead. O

4. Asymptotic distribution. Besides the point estimator m,(x) of m(x),
we need to know something about the distribution of (properly normalized)
m,(x) — m(x) in order to do statistical inference about m(x). We consider the
k-NN case only and assume that the conditional distribution of ¥, — m(X))
given X, = x is in the domain of attraction of a stable law with exponent «
with 1 < a < 2 and that it is the same for all x € S (i.e., the conditional errors
are ii.d.). Let {Z;} be an i.i.d. sequence with the same distribution, indepen-
dent of {X;}. Let h be the density of the stable distribution satisfying

(4.1) x**'h(x) > p and x**h(-x) > q.
Logan, Mallows, Rice and Shepp (1973) have shown that the Student statistic

(4.2) T,L=\/r7izi/\/ ! f(zi—Z)z—QT,

where T has a two-parameter density f, .p/q that they express in a com-
putable form. They also point out that the self-normalized sum

(4.3) S, = 1/a2 1/ 5 Zz—U/V -, T also,
i=1

and they derive the limiting distribution from the joint limiting distribution of
(U,,V,) after noting that it is the same whether the Z,’s are only in the
domain of attraction of the stable law in question or they actually have the
distribution of the stable law. Using this result we can prove the following:

THEOREM 4.1. Fix x € S. Consider the k-NN estimator under the distribu-

tional assumptions described above. If the conditions of Lemma 2.10 hold and
kl d/2a+d /2 — O(n) then

k
(4.4) T,(x) = k[m,(x) - m(x)] / \/ L [W(x) = my()]" =, T.
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Proor. The numerator of T, (x) may be written as

5 (W) = m(Don(x))] + [m(Don(x)) = ma(x)])

i=1

d Ek:l {Z; + [m(D; (%)) - m(x)]}.

From assumption (2.10) we have m(D,,(x)) — m(x) = m'(x)(D,,(x) — x)(1 +
0(1)). Under the assumptions of Lemma (2.10) Mack (1981) shows that, with
R,(x) = the distance of x from its kth NN among the X,’s and ¢ = the
volume of the unit ball in R",

R,(x) = O,((k/n)¥*) and %é-’c—z_;:"(—"g) >1 as,
so that
(4.5) ;V—af{m(an(x))—m(x)hop(l) if h1-1/2/d = o(n2/d),

i=

Let m,(x) = (1/k)Zf_ m(D;,(x)) and Z = (1/k)L?_,Z;. Then we could write

.é [Wen() = m()]" =, f« ((2: - Z) + [m(Din(%)) = T ()]}

Since R,(x) = 0,(1), assumption (2.10) implies that
(46) m(Dzn(x)) _mn(x) =Op(1)'

The proof of the theorem is completed using (4.3) and the estimates (4.5) and
(4.6) along with our assumption on %2. O

It may be noted that if £ = [r®], then for d = 1 and in the limit as a — 2,
the above condition on % implies that & < 4/5; the usual condition for
asymptotic mean-zero normality under the assumption of finite conditional
variance.

5. Concluding remarks. We have derived the strong convergence prop-
erties of the NN estimators with infinite conditional variances and have shown
that the rate of a.s. convergence, the choice of {k,}, and the order of moment
of the conditional errors form an interrelated triplet. This greatly generalizes
existing results even for the finite variance case. However, the asymptotic
distribution theory has been derived ,only under the assumption of i.i.d.
conditional errors. Generalization to nonidentically distributed errors (but still
in the domain of attraction of the same stable law) will be useful. Further
generalization involving errors attracted to stable laws with a range of values
of the exponent may be possible using Tucker’s (1968) results on convolutions
of such variables. :

Our asymptotic distribution depends on two parameters that are typically
unknown. One has to guess their values (or a range of values) to construct
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approximate confidence intervals. For some data in economics the variables of
interest are positive so that the ratio p /g may be taken to be infinity.

An alternative to the use of the distribution theory above is to use the
results of Benjamini’s (1983) that provide some justifications to the folklore
that confidence intervals based on the assumption that T, in (4.2) has a
t-distribution with n — 1 degrees of freedom are conservative when the Z’s
have heavy tails. In particular, he shows, analytically and by simulations, that
for scale mixtures of the standard normal, a family that includes the symmet-
ric stables, the confidence intervals are indeed conservative if the critical value
t, is more than 1.8 for all reasonable sample sizes. To use this in our problem
we must make the additional assumption of symmetry, but we can broaden the
family of distributions. It is not clear what to do with this procedure if the
distributions are asymmetric. Moreover, the problem of the nonidentically
distributed case needs to be worked on as in the procedure suggested above.

Acknowledgment. The author is grateful to a referee whose critical
comments vastly improved the presentation and interpretation of the main
results.
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