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TESTING FOR ADDITIVITY OF A REGRESSION FUNCTION

By DANIEL BARRY

University College, Cork

Observations y,, are made at points (xy,, xz,) according to the model
Y., = F(xy,,%3,) + e,,, where the e,, are independent normals with con-
stant variance.
In order to test that F(x,, x,) is an additive function of x; and x,, a
likelihood ratio test is constructed comparing

F(xy, %) = + Zy(x1) + Zy(x5)
with
F(xy, %) = p + Zy(x1) + Zy(x3) + Z(%4, %3),

where Z,, Z, are Brownian motions and Z is a Brownian sheet. The ratio
of Brownian sheet variance to error variance « is chosen by maximum
likelihood and the likelihood ratio test statistic W of H,: @ = 0 used to test
for departures from additivity.

The asymptotic null distribution of W is derived, and its finite sample
size behaviour is compared with two standard tests in a simulation study.
The W test performs well on the five alternatives considered.

1. Introduction. Let (y,,x,),i=1,2,..., N satisfy
¥, =F(x;) + e,

where x; € R? for each i, F is a fixed but unknown regression function, and
the errors {e,;} are uncorrelated with mean zero and variance o2 The problem
of estimating the function F has a huge literature associated with it. Methods
such as kernel and nearest neighbour, found to be useful in one dimension,
have been extended to provide estimates of functions of many variables. [See
Prakasa Rao (1983) for a review.] Projection pursuit regression approximates
F by a sum of univariate functions, each function depending on a particular
linear combination of the elements of x. [See Friedman and Stuetzle (1981).]
The additive models of Buja, Hastie and Tibshirani (1989) approximate F by a
sum of d univariate functions, one for each dimension of x.

Interaction spline models were introduced in Barry (1983) and were further
developed by Barry (1986, 1988), Wahba (1986) and Chen (1987, 1991).
Borrowing ideas from the theory of analysis of variance, an interaction spline
model writes F as a constant term plus a sum of d functions of one variable
(the “main effects”) plus a sum of d(d — 1)/2 functions of two variables (the
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236 D. BARRY

“two factor interactions’) and so on. For d = 2 the decomposition is given by
F(xy,%5) = p + a(x;) +b(x5) + c(x, %5),

where

w = ij(u,u) du dv,

(11) a(x) = [F(a,v) dv - g,

b(%3) = [F(u,x,) du - ,

c(xy, x3) = F(xq, x5) — a(x;) — B(xz) — 1.

F is estimated by the function ¥ which minimizes the sum of squared
residuals plus a weighted sum of penalty terms quantifying the “roughness”
of each of the functions used in the ANOVA decomposition.

In d dimensions the ANOVA decomposition involves 2¢ different functions
and to estimate them all would require a large amount of data and would
result in a fitted function which would not be easy to interpret. Similar
problems arise in multifactor analysis of variance and stepwise model building
procedures are available there to enable parsimonious models to be fitted when
appropriate. This paper is part of an endeavour to provide a similar technology
in the case of interaction splines. Chen (1987) considers fitting periodic
interaction splines and proposes a stepwise model building procedure using the
generalized cross validation function of Craven and Wahba (1979). In this
paper we consider an alternative approach which exploits the connection
between splines and Bayes estimates described in Wahba (1978). We make a
detailed examination of the two-dimensional grid case. The methodology may
be applied to more complicated multi-dimensional problems using the numeri-
cal algorithms of Gu, Bates, Chen and Wahba (1988).

Suppose that our observations are made at points on the grid

{(x;j,2;): 1 <i <Ny, 1 <j <Ny}
and that
Yij = F(x;;, x9;) + e,

where the errors {e;;} are uncorrelated with mean zero and variance v. Barry
(1986) makes use of the ANOVA decomposition of (1.1) to propose a probabil-
ity model for {y,;} which includes the assumptions that the quantities

Fij = F(x1i+1’x2j+1) + F(xli’ij) - F(x1i+1’x2j) - F(xli’x2j+1)

are independent and normally distributed with mean zero and variance
Uo7 — %)%/, 1 — %5;) and that the errors {e;;} are iid N(0, v). Clearly
vy = 0 forces F to be additive. The test for additivity we propose is the
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likelihood ratio test of the hypothesis H,: v,, = 0 based on the observables
Wi =Yivrjr1 T Yy — Yivrj — Yij+1»

whose distribution depends only on v, and v.

A similar idea has been proposed by Barry and Hartigan (1990) to test the
hypothesis of constant regression function given a sample of {(y;, x;): 1 <i <
n}, and by Yaganimoto and Yaganimoto (1987) to test the adequacy of the fit of
a simple linear regression model. Cox and Koh (1989) and Cox, Koh, Wahba
and Yandell (1988) introduce the theory of locally most powerful tests in a
more general setting.

The paper is organized as follows. The test statistic W is derived in Section
2. In Section 3 we derive the asymptotic distribution of the test statistic under
the null hypothesis that F is additive for observations made on a uniform grid.
Section 4 contains a simulation study comparing the power of the proposed
test with that of two well-known tests for additivity, namely, Tukey’s one
degree-of-freedom test and a test proposed by Johnson and Graybill (1972). We
conclude that the W test is superior to that of Johnson and Graybill and is
more reliable than Tukey’s test. Proofs of theorems from Section 3 are given
in Section 5.

2. The test statistic. Consider the grid of N = N, N, points {(x,;, x;):
1<i<N,1<j<N,} with

0<xyy <xp< +r <y, <1,
0 <x5 <Xy < v <xgy, < 1.

Suppose we observe
Yij = F(xy;, x95) + €5,

where {e; j} are random errors and F: [0,1] X [0,1] > R is an unknown
regression function. We wish to test the hypothesis that F is an additive

function of x; and x,.
Motivated by a decomposition often used in two-way analysis of variance we

can write
F(xy,%5) = p + a(xy) +b(x3) + c(xq,x5),

where u, a, b and ¢ are defined in (1.1).
A prior for F is constructed by putting independent priors on u, a, b and ¢
as follows:

@ wn ~ N(O,v,).
(i) a(x,) ~ Z(x,) — [{Z(u)du, where Z, is a Brownian motion with
variance v;.
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(ii)) B(x,) ~ Zy(xy) — [¢Zo(u) du, where Z, is a Brownian motion with
variance v,,.

(V) c(xy, %) ~ Z(%,, %) —/:Z(xl,u)du —j:Z(u,xz) du

1,1
+ Z(u,v)dudv,
[ [ Z(u,0)
where Z is a Brownian sheet with variance v,,.
To complete the specification of the probability model for the data we assume

(v) given F, the data {y,;} are independent with
¥i; ~ N(F(xy;,%,5;),v) 1<i<N,1<j<N,.

This model was introduced by Barry (1986) in the context of estimating the
function F.
Let n, =N, —landn,=N,—1.Fori=1,2,...,n,and j=1,2,...,n,,
define
Wij =Yiv1j+1 T Yij — Yivry — Yij+1-
Then under the probability model specified in (i)—(v),
W= (Wi, Way,---» Wy 15 Wags -« s wnlnz)

has a multivariate normal distribution with mean zero and covariance matrix
v3, where
3 =aD, x D, + E, XE,,
where
a =Uy,/V,
D, = diag{x15 — %11, X153 = X1a5 -5 Xin, — x1n1},
E, is an n,; X n, tridiagonal matrix with all diagonal entries

equal to 2 and off diagonal entries equal to —1, D, and E,
are like D, and E,

and A X B denotes the Kronecker product of A and B [see Bellman (1970)].

Let L(a,v) be the log likelihood for @ and v based on w. Let d(a) be the
maximum likelihood estimate of v given a. Define

Q(a) = 2L(a,i(a))
and let & be the value for which @(a) is a maximum. Clearly
a=0 = v,=0
= F isadditive
and so to test the hypothesis that F' is additive we propose the test statistic
W=1@Q(a) - Q(0)

and reject additivity for large values of W.
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3. The uniform grid case. We now specialize to the case where

1
x1i+1_x1i=—‘N_, l=1,2,...,n1,
1
1 .
x2j+1_x2j=N—, J=1,2,...,n2.
2
In this case
a
= I+E XE
2 N]_ A 1 2

and hence
1
2L(a,v) = —nnyloguv — log 3] — ;w’E‘lw

. w3 lw
B
172

= @Q(a) = 2L(a,(a))
= nn,log(nny) — nin,log(w's~tw)
—log|3| — nyn,.
It can be checked that E; has eigenvalues
wr
/\1’=2(1_COS(E))’ r=12,...,n,
with corresponding unit eigenvectors
v, = (v),
where
L[ .
v,i=D,sm(—]W), 1=1,2,...,n4,

where D, is a normalizing constant. Similar results are true for E,.
Hence

a
1 = + Ay A
ogl3| ZZIOg[ NN, 1r 2s]
and
U2
WIE—IW - rs ,
2L (a/NyNp) + Ao
where

Urs = szrivsjwij’
When v,, = 0 it can be shown that the quantitites Z,, = U,,/(vA,A,,)"/? are
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iid N(0, 1). Hence we write

Z2
Qa) - Q(0) = —nym, 1og{ oAz Lo/ (}(:;/ZJZINZ) + Ams)}

/NNy + Ay Ay,

+ zzwg{

Aer2s }

For later convenience we write in terms of B = N;N,a to get

) =@ 35| - e

ZZN12N22/\1,-/\23Z33 (B + N].2N22/\1r/\28)
= —nqn,log WA

NZNZA A
+ZZlog{ 1 241r*2s }

B + N N 2’\lr/\2s
The test statistic W is given by W = M(B3), where B is the value for which
M(p) is a maximum. We now examine the large sample behaviour of M(J).
For ease of presentation we restrict attention to the case N; = N, = N. The
asymptotic results we prove as N — « can be shown to be true also as
N, » o, N, — o,

We have the following theorem.

THEOREM 1. Let {2, 1 <r <w, 1 <s <} be a collection of iid N(0,1)

random variables. Define
® ir2s?
STRECE

4,.2,2
r=1s=1 mrist + B

2

M) - T X

r—1s-1 B+ 774 %s*
Let B be the value for which My(B) is a maximum. Then

as N - «,

The proof is given in Section 5 and involves 3 steps. We show that:

(a) B is bounded with probability 1.
(b) B is bounded with probability 1.
(c) M(B) converges uniformly to My(B) over any finite interval [0, B,].

These steps are covered by the following theorems whose proofs are in Sec-
tion 5.
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THEOREM 2. Let j be the value which maximizes M(B). Then

lim supP{[? > [30} -0 asBy— >
N —>o0

THEOREM 3. Let My(B) be as in Theorem 1. Let § be the value for which
My(B) is a maximum. Then

P{BZBO}—)O as By — .

THEOREM 4. For any fixed B, < o,

sup |M(B) —My(B)|=p 0 asN - .
0<B<B,

Table 1 gives estimates of the 10, 5 and 1 percentiles of the null distribution
of W for various sample sizes. All the estimate are based on 10,000 repeti-
tions. For each repetition the value of B was obtained by global search over a

TABLE 1
The null distribution of W. Showing, for various sample sizes, estimates of the 10, 5 and 1
percentiles and the percentage of zero values based on 10,000 repetitions

ny
n, 5 10 20 40 100
(a) The 10 percentiles
5 143
10 1.17 1.22
20 1.16 1.12 1.08
40 1.09 1.08 1.07 1.13
100 1.09 1.11 1.04 1.18 1.11
(b) The 5 percentiles
5 2.52
10 2.22 2.13
20 2.07 2.08 2.01
40 1.95 2.02 1.99 1.99
100 2.03 1.98 2.08 2.08 2.06
(¢) The 1 percentiles
5 5.25
10 4.84 4.62
20 4.67 4.37 4.72
40 4.27 4.59 4.28 4.25
100 4.46 4.33 4.16 4.41 4.52
(d) The percentage of zero values
5 60.2
10 62.0 61.9
20 62.1 62.7 63.2
40 63.0 63.7 64.0 64.7

100 62.6 63.4 65.5 66.6 71.7
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wide grid of values followed by a more concentrated localized search once the
neighbourhood of the maximum had been located. The quantities seem to have
stabilized and the asymptotic null distribution been attained at about n, =
ny = 20. The null distribution of W has a point mass of about 0.65 at zero.
Thus any positive value of W produces a p value less than 0.35.

In general, the grid points will not be equally spaced; in this case the log
likelihood has the same form except that the eigenvalues {A,,} and {A,,} depend
on the grid spacings. Similar asymptotic calculations should be possible in this
case also, under suitable conditions on the grid spacings.

4. Simulation study. In this section we report the results of a simula-
tion study comparing the power of three tests for additivity.

4.1. The W test (W). This test is described in Section 2 and uses critical
values obtained in the simulation experiment of Section 3.

4.2. Tukey’s one degree-of-freedom test (T'). This test was introduced by
Tukey (1949) and is based on the test statistic

T= \/(NlNz —N;,-N,)R/(R, - R),

where
N, N, )
RO_ZZ(yiJ 3_’;*5’1"‘3’),
i=1j=1
o _ 12
R [Ef\glzflzl(yu yi—y.; +5’--)(yi-_y--)( j_y--)]
= — ,
t 1(:},1——:),)Z l(yj_y)
1 M 1M 1
_' _—Zyz‘p y-'——zyu, 5’=—N~ZZyU
2J 1 lz 1
T has a t, distribution with M = NN, — N, — N, if F is additive and

additivity is rejected for large values of T'.

4.3. Johnson and Graybill test (JG). Let B be the N; X N, matrix with
elements

Let C = B”B and let
Maximum eigenvalue of C

Trace(C)

Reject additivity for large values of JG. This test statistic was derived in
Johnson and Graybill (1972) where critical values are also given.

JG =
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The following seven test functions were used:

(a) F(xq,x5) = %12,
eBaitx) _ 1
(b) F(x, %) = a7 1
() F(xy,%5) = (1 + sin(2m(x; + x5)))/2.
(d) F(x, 23) = 64(x,%,) (1 — 2,05)",
(e) F(xq,x5) = G(x,)G(x,)/36,
where G(x) = 15x 0<x<0.2,

5 —-10x 02<x<04,
-9+25x 04<x<0.6,
18 -20x 06=<x<0.,
-2+ 5x 08<x<1.

1, ifx,>0.5and x, > 0.5,
(f) Fy, %) = { : 2

0, otherwise.

(g) F(x,,x3) = (x; + x3) /2 + 1 outlier.

In the simulation study the position of the outlier was chosen at random;
the value of F at the outlier position was (x; + x,)/2 + 3.

Six values for (N,, N,) were used: (N,, N,) = (5, 5), (5, 10), (5, 20), (10, 10),
(10, 20) and (20, 20). Three values for SD, the standard deviation of the error
distribution were used: 0.1, 0.5 and 1.0.

For each combination of F, (N,, N,) and SD, 1000 datasets were generated
by setting

2i — 1

Xy = N ’
1

2j -1

x2j= NZ )

Yij = F(xy;, %55) + €5,

for 1 <i < N;, 1 <j < N,, where the {e,;} are iid N(0,SD?). The proportion of
results significant at the 1, 5 and 10% levels was found for each of the three
test procedures. Table 2 gives a sample of the results. The complete set of
results are available upon request from the author.

The standard errors for differences between two percentages in the table
never exceed 2%. (Note that the test statistics were each computed on the
same data sample in order to reduce the variance of the difference between the
percentages exceeding critical values.)

The Johnson and Graybill test performed poorly relative to the W test. It
had uniformly lower power and was highly sensitive to the presence of outliers.
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TABLE 2
Showing, for various values of N;, Ny and SD and various choices of F, the percentage of 1000
iterations for which the 5% critical value was exceeded using the W test (W), Tukey’s test (T') and
the Johnson—Graybill test (JG)

(N, Np) = (5,5) (Ny, Np) = (5,20 (Ny, Np) = (20,20)
SD W T JG W T JG w T JG

(a) F(xl, x2) =X1Xg

0.1 98.4 99.0 30.5 100.0 100.0 99.8 100.0 100.0 100.0
0.5 11.3 7.1 2.0 36.2 14.6 5.4 89.8 64.3 8.2
1.0 7.3 3.6 2.6 10.5 5.7 6.0 34.0 8.8 6.4

() F(xq, x5) = exp(5(x; + x5)) /(1 + exp(5(x; + x5))) — 1

0.1 65.6 57.1 11.3 100.0 100.0 89.6 100.0 100.0 100.0
0.5 8.3 5.4 3.1 18.2 5.1 5.3 68.9 17.7 8.7
1.0 5.9 4.5 2.4 8.0 5.0 5.2 21.0 6.0 5.6

(©) F(xq,x5) = 0.5(1 + sin(2m(x; + x5)))

0.1 100.0 4.7 0.0 100.0 5.3 79.8 100.0 6.3 100.0
0.5 30.5 5.0 1.5 99.8 4.5 18.1 100.0 4.9 99.9
1.0 9.9 4.6 2.6 59.5 5.0 7.0 99.9 5.0 24.5

d) Flx, x5) = 64(x,x,)°(1 — x2,%,)3

0.1 18.4 63.7 6.2 66.6 100.0 51.5 100.0 100.0 100.0
0.5 6.9 4.8 2.0 7.4 7.9 5.3 11.5 23.2 5.9
1.0 5.7 5.9 3.3 6.3 4.0 5.4 5.4 6.2 6.4

(e) F(xy, x5) = product of sawtooths

0.1 18.1 65.7 6.1 72.0 100.0 50.7 100.0 100.0 100.0
0.5 5.4 6.9 2.7 6.9 8.7 5.2 12.3 24.3 6.0
1.0 4.3 4.0 1.7 5.8 4.9 4.4 8.0 6.0 6.4

) F(xq,x5) = 1if x; > 0.5and x, > 0.5; F(x, x5) = 0 otherwise

0.1 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0
0.5 47.0 29.6 12.2 98.8 86.2 47.1 100.0 100.0 99.8
1.0 22.1 11.2 7.3 56.7 18.9 14.0 99.5 85.8 30.6

(@ F(x,, x5) = (x; + x9)/2 + 1 outlier

0.1 16.7 99.4 100.0 12.7 69.1 100.0 12.7 22.6 100.0
0.5 13.8 46.0 429 10.3 25.5 56.4 10.8 114 444
1.0 9.9 13.8 9.5 12.2 12.9 14.5 11.1 9.8 13.5
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The comparison between the W test and Tukey’s test is less clearcut. The W
test is marginally better for functions (a), (b) and (f) with Tukey’s test better
for (d) and (e). The greatest discrepancy occurs for (c), where the T test
performs very badly. The poor performance of Tukey’s test here is no surprise
since [{F(x,y)dx = [}F(x,y)dy = 3+ and the power of Tukey’s test is known
to be low in the absence of row and column main effects [Hegemann and
Johnson (1976)]. The results for (g) indicate that T is more sensitive to
outliers than is W. We conclude that the W test, while not being uniformly
more powerful than Tukey’s test, is more reliable principally because it does
not exhibit the disastrously low power of Tukey’s test when row and column
main effects are absent.

5. Proofs for Section 3. We shall make use of the following notation:
n=N-1,

A =21 kil 1,2
r= ( cos N)’ r=12,...,n,
a,, = N*A, A,

b,(B) = (B+a,) "

When the range of summation is from 1 to » it will be suppressed for ease of
notation. We will use GR to denote Gradsteyn and Ryzhik (1980).

ProoF oF THEOREM 2. We show separately that

(a) limsupP{B > 6N*} = 0
N-ox
and
(b) lim sup P{B, <B =< 6N*} — 0 as B, - .
N-oow

Proor orF (a). Since M(0) = 0 it suffices to show that

limsupP{ sup M(B) > 0} =0.
N-oo B>6N*
Since

b,(B) <1/B

and

Bb.(B) = Bb,,(B) = 6N*b, (6N*)
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we have that

M
sup (ZB ) < —log{6N*b,,(6N*)}
B>6N* n
Ezarszr?s 1
- log{_fle?s_} t o3 Y3 log(a,,)
= —log{6N"b,,(6N*)}
ZZ‘AT/\SZI?S 1
- Og{—_E—Z—ZT} + 3 2.2 log(A,A,).
Since
(i) A, = 4,
i L 5 g L Mog(2 - 2 dx =0
— —) — — =
(ii) , L log(A,) ~ - ["log(2 ~ 2cos x) dx = 0,
cee ZzA’rASZY?S
(lll) Tzi _)P 4
because
U mr
rgl cos(—ﬁ) =0
we have that
M(B) 22
P{ sup 5 slog(-—) -1 asN-> o
B>6N* n 24

which proves (a). O
Proor oF (b). It suffices to show that
limsupP{ sup M’'(B) > 0} -0 as B, — >
Bo<B<6N*
Since
nzzzarsbrz‘s(ﬁ)zfs

YYa,b,(B)Z% LY b,.(B),

M'(B) =

we have that
M(B)>0 = Yde (B)ZZ>0,

where

1
crs(B) = arsbrz’s(B) - arsbrs(B)[? Zzbrs(B)]
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Hence

6N*
P s M(p)>0) < ¥ P(ELd,.(B)Z >0},

Bo<B<6N? B=PBo

where d,.(B) = supg_j, <41 C,5(h).
We will prove the following lemma later.

LEMMA 1. There exist positive constants B,, B, and N, such that

(a) szrs(ﬁ) < _BIB_I/z
and
(b) 2.2 d7(B) <B,p~2

for Ny < B < 6N*
By Chebyshev’s inequality we have that for any even integer m
E(Lxd, (B)(2% -1)"
(ZZd,(B)"

P(YY.d,(B)Z2% > 0} <
Whittle (1960) shows that
E(LLd,(B)(22% - 1))" <¢(ZL (E(d,.(B) (2% - 1))")")

for some constant ¢ depending on m. Hence

m/2

£d2,(8) r“

P(YY.d,(B)Z% >0} < Cl[m

for some constant ¢, depending on m.
Taking m = 8 and using Lemma 1 gives

P{ szrs(ﬁ)zfs > 0} = cZ/B2,

where c, is a constant. The required result now follows since

1
Y —5—0 aspB,—> . O
B=Bo

Proor or LEMMA 1.

Proor oF (a).

LXc,.(8) = ZLb,.(8) ~ BLLLL(H)
- (Z b (BN ZLb.())

“BELL(B) + o5(ELb.(8)"
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Now

- dydx
4/;) f 4N*(1 —cosx)(1 —cosy) + B

LY b,.(B)

IA

N?
w2

N2 L dx

/B j;) [8N4(1 —cosx) + 1] [by GR (page 365)]

1/2

2N? F(‘rr )
.
/B (B + 16N*)"* | 2

where r = (16 N*/(B + 16 N*))'/2 and F is the elliptic integral of the first
kind. Also

[by GR (page 154)],

- dydx
{‘/;) '[0 [4N*(1 - cos x)(1 — cos y) + ,B]

IV

LY b%(B)

) f"/Nf dy dx }
o Jo [4N*(1 — cosx)(1 — cosy) +3]2

N2

_ fw 4N*(1 —cosx) + B
7B%% |Jo [8N*(1 - cos x) + B]

3/2

dx

- 4N*(1 -
L[N AN csx) 48
o [8N (1—cosx)+[3]

[by GR (page 383)]
wB3/2(BJZ 16N*%)"* {u(w) - 2u(%)}

where u(x) = F[8(x), r] + E[8(x),r], E is the elliptic integral of the second

kind, and
. _,|{(18N*+ B)(1 — cos x) vz
5(x) = sin 2{8N*(1 — cos x) + B) '

This follows using GR (page 154) and GR (page 156).
Since u(7) > 0 and lim,, _, , u(x) = 0, we have that for N large enough

N2u(w)
LY b2(B) = 2B (8 + 16N
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Hence

~N%(F(m/2,r) + E(w/2,r)) B 4N*F(w/2,r)?

YY.c(B) < 2mB/2( + 16N*)? tNE m2B(B + 16N*)

- (),

where A = B/N* and

F(m/2,r) + E(mw/2,r) 4/AF(m/2,r)*
2m(A +16)/2  wX(A+ 16)

16 1/2
r= .
e

It can be easily shown that ¢(A) is bounded above zero for 0 < A < 6. For
0 <8 <1 we have

c,s(B) —c, (B +38)=208c (B +8%) forsomes* € [0,5]

é(A) =

with

and where

Qs
clrs(’Y) = —2arsb§s(7) + 7 Z 2(27 ta,+ ajk)bfs(y)b‘]zk(y)‘
J k

Hence
1
lers(B) = era(B + 8)| < 267,(B) + —5 LL.bju(B)
(*) 1
Since d,,(B) = ¢,(B + §,,) for some §,, € [0, 1] we have that
£3b,,(B)]*
|EEd(B) - EXcn(B)] < 3T b4(8) + Lt

1
= O WZ_ .
Hence for N, large enough (a) follows. O

Proor oF (b).

YYd%(B) 2L X cA(B) + 2XY (d,.(B) — ¢, (B))’
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By () |d,(B) — ¢,,(B)| < 4 and so
YY (d,o(B) = co(B))’ < 4L T |d,o(B) = c,(B)]
=0[1/8%?]. O

Proor orF THEOREM 3. Since My(0) = 0

P{f = B,) < P{ sup Mo(6) > 0}

M P{ sup My(h) > 0}
B=By ‘B=<h=<p+1

IA

< i P{ Z f‘, (B+ Dw,(B+1)Z],

> — Z i lOg[urswrs(B)]}’

r=1s=1

where

- 422
U, =mres,

w,y(B) = (s +B)"
Using Chebyshev and Whittle as in the proof of Theorem 2 gives that for any

even integer m

P{B 2 Bo}
© 3220:=1Z°:=1w33(ﬁ)
[_Zo:=l 0s°=1log[ursu}rs(ﬁ)] - Z:=120:=1Bwrs(ﬁ)]2

IA
o

where ¢ is a constant depending on m.
Using the fact that log((x + 1)/x) > 2/(2x + 1) we have that

0

log[urswrs(B)] - % Y puwnp) > o Z ¥ wi(8)-

r=1s=1 r=1s=1

(o]
-2 X
r=1s=

Hence
1

© m/2
P{B = Bo} = ;{ [ lwfs(B)} '
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Now
© = @ o dydx
2 > P ——
r§1 sglw,s(B) flfl [B + m*x2y?]?
log(B)
o[

Taking m = 8 gives the theorem. O

ProoF oF THEOREM 4. Define
u,, =mrs?
-1
w,(B) = (B +u,)

and

EZ:ursu)rs B Zfs
H(p) = —n* log{ were ) }+ LX log[u,,w,,(B)]-

We show separately that

(a) sup |[M(B) —H(B)|—»p 0 asn —owx,
0<B<By

(b) sup |H(B)_Mo(3)|_’PO as n — .
0<B<B,

Proor oF (a). Introduce positive constants R, and R, such that
|m2r2 — N2\, | < Rym*r*/N?

and
m2r2 < R,N?\,.
Now
M(B) —H(B) =B, + B,,
where
B, = n*{log| L X u,w,,(8)22] - log| LY a,,b,,(B) 23]}
and

B, = Y'Y [log[a,.b,,(B)] — log[u w,(B)]].
Using the fact that
|x1 - le
|log(x;) — log(x,)]| < min(x,, ;)

and the above inequalities, it is straightforward to show that B, -, 0 and
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Proor orF (b). We have that
My(B) — H(B) =c; +cy,

where
- - ZEu’rsu}rs(B)Zr?s
= L X Bun(B)ZE + n? log{ }
! r=1 sgl ( ) Zzzrzs
and
ca =2 X log(u,w,.(B)) - LY log(u,w,(B)).
r=1s=1
Now

2 Zzurswrs(ﬁ)zrzs 2 BEZwrS(B)ZY?S

n*log WL = n*log 1———~E—Z?-—~
1
7]

LXw,(B)Z}
1
= Bzzwrs(ﬁ)zr?s + Op(;)

— 2

rzz Op(

oo 00 1
-8 Lumzi+o,1)
r=1s=1

n
and so ¢; —p 0.
Since

- i i‘, log(u,,w,,(B)) = i i 103{1 + %2‘}

we have that ¢, > 0as n > « O

PROOF OF THEOREM 1. If My(8) > M(f), then
My(B) - M(B) = Mo(B) — M(B) + M(B) - M(B)
< Mo(B) - M(B).

Hence |[M(B) — M(B)| < IMy(B) — M(p).
Similarly if My(B) < M(B), then

| Mo(B) - M(B)| <[ Mo(B) - M(B)

Hence

| M(B) - Mo(B)| <| M(B) ~ Mo(B)| +| M(B) - Mo(B)].
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Given ¢ > 0 we have that for each B, > 0 that
P{|M(B) - My(B)| > ¢} < P{B > Bo} + P{B > Bo}
+P{ sup |M(B) - Mo(B)| > e/2).

0=<B<By

Taking limits first as n — « and then as B, —» « gives the theorem by
Theorems 2, 3 and 4. O

6. Conclusion. We have proposed a new test, the W test, for testing the
hypothesis that a bivariate regression function is additive. The asymptotic null
distribution of W has been derived for data gathered on an equally spaced grid
and we have demonstrated by simulation that the asymptotic distribution is
attained for quite small sample sizes. The W test has been shown to perform
well in a simulation study comparing its power with that of the two principal
existing tests for additivity.
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