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BREAKDOWN PROPERTIES OF LOCATION ESTIMATES
BASED ON HALFSPACE DEPTH AND
PROJECTED OUTLYINGNESS!

By Davip L. DoNoHO AND MIRIAM GASKO

University of California, Berkeley, and San Jose State University

We describe multivariate generalizations of the median, trimmed mean
and W estimates. The estimates are based on a geometric construction
related to ““projection pursuit.” They are both affine equivariant (coordi-
nate-free) and have high breakdown point. The generalization of the me-
dian has a breakdown point of at least 1/(d + 1) in dimension d and the
breakdown point can be as high as 1/3 under symmetry. In contrast,
various estimators based on rejecting apparent outliers and taking the
mean of the remaining observations have breakdown points not larger than
1/(d + 1) in dimension d.

1. Introduction. In 1974, Tukey (19744, b) introduced the notion of the
depth of a point in a multivariate dataset as follows. The depth of a value x in
a one-dimensional dataset X = {X,,..., X,} is the minimum of
the number of data points on the left and on the right of x:

depth,(x; X) = min(#{i: X; < «}, #{i: X; > x})

[see also Tukey (1977)]. The depth of a point x € R? in a d-dimensional
dataset is the least depth of x in any one-dimensional projection or view of the
dataset. In detail, if we let u denote a vector in R¢ of unit norm, then the
dataset {#7X,} is a one-dimensional projection of the dataset X and we define

depth ;(x; X) = min depth,(u"x; {u”X,})

lul=1
(1.1)
= min #{i: u"X; > u"x}.
lul=1

Tukey considered the use of contours of depth for indicating the shape of
two-dimensional datasets and suggested that depth might allow one to define a
reasonable multivariate analog of rank statistic. Of course, in dimension 1, the
sample minimum and maximum are the data points of depth 1, the upper and
lower quartiles of depth ~ n/4 and the median of depth ~ n /2.
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Tukey’s proposal raises a number of interesting possibilities. First, it gives a
possible definition of the median of a multivariate dataset. Since in d = 1, the
median is a “deepest’ x value, a deepest x value in higher dimensions can be
thought of as a multidimensional median. Second, the contour of depth = n /4
(say) is a convex region whose shape indicates the scale and correlation of the
data in a manner analogous to the way a standard probability content ellipse
for a Normal distribution indicates its scale and correlation. Third, one can
define trimmed means, averaging those points of depth > n /10, say.

The resulting notions of median, trimmed mean and covariance estimate
have two important properties. First, they are affine equivariant, that is, they
commute with translations and linear transformations of the data. Second,
they are robust in high dimensions. Indeed, the depth-trimmed mean and the
deepest point can have high breakdown points—as high as 1/3—in high
dimensions (Donoho, 1982).

This combination of properties (equivariance and robustness) is interesting
because many classical ways of defining location estimators lack one or both of
these properties. Maronna (1976) and Huber (1977) found that affine-equiv-
ariant M estimates of location /scatter have breakdown points bounded above
by 1/d in dimension d. This means that in high dimensions, such “robust”
estimators can be upset by a relatively small fraction of outliers strategically
placed.

The notion of depth leads to estimators which are affine equivariant and
have high breakdown point. By considering why depth is successful in this
regard, it becomes apparent that the idea of looking at all one-dimensional
views of a dataset—projection pursuit—can be used in other ways as well. In
dimension 1, a measure of the outlyingness of a value x with respect to a
dataset X is given by the robust measure

(1.2) ri(x; X) =|x — Med(X)|/MAD(X),

where Med denotes median and MAD denotes median absolute deviation from
the median. As an analog in dimension d, one could use
(1.3) rg(x; X) = maxrl(uTx;{uTXi}).

lul=1
This is a measure of how outlying x is in the worst one-dimensional projection
or view of the dataset. The measure r; can be used to develop a robust

estimator generalizing what Mosteller and Tukey (1977) call a W estimator.
Their definition is for dimension 1, and such an estimate takes the form

(14) T(X)=LwX,/Lw,

where the weights w;, = w(r(X;; X)) are generated by a weight function w(r)
which downweights outlying observations. The obvious generalization to d > 1,
simply replacing r; by r;, works and defines an affine equivariant estimator of
multivariate location. Under very mild conditions on the dataset X, T,, has a
breakdown point close to 1/2, even in high dimensions. This is the best one
can hope for in an equivariant estimator, and it means that quite heavy
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contamination is necessary in order to upset 7,, completely. This result is due
to Stahel (1981) and, independently, to Donoho (1982).

The particular combination of properties emphasized above—equivariance
and high breakdown point—has been of interest to a number of researchers
recently; see, for example, Rousseeuw (1984), Rousseeuw and Yohai (1985),
Lopuhai and Rousseeuw (1991), Davies (1987) and Lopuhaa (1988). Results
about estimators defined by depth and outlyingness which motivated this
recent work have appeared only in thesis/qualifying paper form. Because of
the very simple and geometric form of depth and outlyingness, we present here
a published discussion of their breakdown properties.

The paper is arranged as follows. Section 2 covers general properties of the
depth and of outlyingness r. Section 3 covers the breakdown properties of
location estimators built using them. Section 4 shows how some natural
methods of constructing robust estimators do not provide the same breakdown
properties. Section 5 discusses recent research on breakdown properties and
the need for a computational breakthrough in order to make high-breakdown
estimates practical.

All proofs are contained in Section 6. The so-called halfspace distance, from
the theory of empirical processes, plays a key role in our proofs of asymptotic
results. The paper of Donoho (1982) will be referred to as [D] and the technical
report of Donoho and Gasko (1987) will be referred to as [DGI.

2. Depth and outlyingness. To begin with, depth is independent of the
coordinate system chosen.

LeEmMA 2.1. depth is affine invariant:
(2.1) depth(Ax + b; {AX; + b}) = depth(x; X)
for every b and every nonsingular linear transformation A.

Let D, be the set of all x € R? with depth(x; X) > k. We call D, the
contour of depth k&, although a stricter usage might reserve this phrase for the
boundary of D,. By the second line of (1.1), we have, equivalently, that D, is
the intersection of all the d-dimensional halfspaces containing n + 1 — &
points of the dataset X.

LEMMA 2.2. The depth contours form a sequence of nested convex sets:
Each D, is convex and D, ., C D,,.

How many contours are there? That is, what is the maximum depth for a
given dataset X? In d = 1, of course, the median is about n/2 deep. In d > 1,
the maximum depth can be smaller than n /2; this depends on the shape of the
dataset. We introduce some notation. Let

E*(X) = maxdepth(x; X)

and
k*(X) = maxdepth( X;; X),
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which are the maximum depth at any x € R? and at any X, € X, respectively.
We say that a dataset is in general position if no more than d points lie in any
(d — 1)-dimensional affine subspace. In particular, a dataset in general posi-
tion has no ties, no more than two points on any line, no more than three in
any plane and so forth. Let [a] denote the nearest integer greater than or
equal to a and let | a | denote the nearest integer less than or equal to a.

ProposiTioN 2.3. If X is in general position, the maximum depth R*(X)
lies between [n/(d + 1)| and [n/2].

This lower bound is attained if the dataset is a strategically nested set of d
simplices. See the discussion and figure in Section 4.1.

About %27(X) one can say in general only that 1 < 2*(X) < £*(X), both
possibilities occurring. If the dataset is nearly symmetric, the maximum depth
will be much larger than n/(d + 1), in fact approximately n/2. We say that
a probability distribution P is centrosymmetric about x, if P(xy, + S) =
P(x, — S) for all measurable sets S.

PROPOSITION 2.4. Let X™ ={X,,..., X,} be a sample from an absolutely
continuous, centrosymmetric probability distribution. Then n~'"k*(X™) con-
verges in probability and almost surely to 1/2 with increasing n. If, in
addition, P has a positive density at x,, then n~'k*(X™) converges in
probability and almost surely to 1/2.

In short, if X is nearly symmetric, then the maximum depth is nearly 1/2.
Actually, this principle is general and does not depend on probabilistic or
asymptotic machinery. For example, using the language of Section 6.1, we can
say that if the data have an empirical distribution lying within ¢ distance of
some centrosymmetric distribution according to the ‘‘halfspace’” metric, then
the maximum depth £*(X) is at least n(1/2 — ¢). This shows that the
distance from symmetry explicitly controls 2*(X). It shows more. Using
known facts about asymptotic properties of halfspace distance, one can easily
show that

E*(X™) = n/2 — Op(n'/?)

when X™ is a random sample from an absolutely continuous, centrosymmet-
ric distribution.

So there can be as many as n/2 depth contours if the dataset is nearly
symmetric, but far fewer for highly asymmetric datasets.

What shape do depth contours have? This depends on the data. For exam-
ple, if the data arise as a random sample from an ellipsoidal distribution, the
contours are good estimates of the ellipsoid’s shape.

Lemma 2.5. Let X™ =({X,,..., X,} be a random sample from an ellipti-
cally symmetric distribution. The |na|-depth contour of X" converges, as
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n — o, almost surely and in probability, to an ellipsoid of the same shape as
that of the parent distribution, and a scale which depends on «.

(““Convergence of contours’ here refers to convergence of sets in Hausdorff
distance.) For example, if the sample comes from the standard Gaussian
distribution ®; on R, the limiting shape of the | na | contour will be a sphere
of radius R, = ® (1 — a), where ®~! denotes the inverse of the one-dimen-
sional Gaussian distribution function. Thus, the contours of depth can play
much the same role as the covariance ellipsoid in indicating the shape and
orientation of data arising from ellipsoidal distributions.

In short, the contours of depth are convex and nested, they are coordinate-
free, they track the shape of the dataset in a quite acceptable fashion for
datasets with ellipsoidal symmetry and the maximum ‘depth behaves as in the
one-dimensional case for datasets with centrosymmetry.

For a picture of depths, see Figure 2.1. This shows the pattern of depths for
a dataset consisting of 18 observations from a Normal distribution with one
covariance and two outlying observations from a Normal distribution with
another covariance. The figure shows a sequence of nested convex sets, giving
the contours of depth 1,2,... up to depth 8. There are no values of depth 10
(= n/2) because of the slight asymmetry in the sample.

The interest of depths from the point of view of robustness is clear from
Figure 2.2. That figure presents, for the same dataset, the standard covariance
estimate computed from the full dataset and the estimate computed from the
18 “good’ observations. Comparing Figures 2.1 and 2.2, it is clear that the
inner contours of depth reflect the covariance of the “good” data much better
than does the covariance of the full dataset. A fact underlying some results of
Section 3 is that, by adding & “bad” data points to a dataset, one can corrupt
at most the k-outermost depth contours; the ones inside must still reflect the

Fic. 2.1.
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solid line = 18 points, dotted line = all 20 points.

FiG. 2.2.

shape of the “good” data. Thus statistics based only on data of depth > % turn
out to be robust against contamination by % or fewer outliers.

Outlyingness. The results just stated for depths have analogs for the
outlyingness r;:

1. Outlyingness is affine invariant:
rg(Ax + b; {AX; + b}) = ry(x; X)

for every b and every nonsingular A.

2. The outlyingness “contours” O, = {x: ry(x; X) < r} are convex and nested:
0,.cO,,.;,, h>0.

3. Under random sampling from a centrosymmetric distribution, the mini-
mum outlyingness is close to zero, with high probability, for large .

4. Under random sampling from an ellipsoidal distribution P, the outlying-
ness contours converge to ellipsoids with the same shape as the ellipsoid
of P.

Figure 2.3 displays the outlyingness for the data used in the earlier figures.
The level sets are similar in shape to the covariance ellipse of the good data;
the two outliers both have large outlyingness.

3. Breakdown properties of T,, T, and T,. Using the notions of
depth and outlyingness, we may define d-dimensional analogs of one-dimen-
sional location estimates. The analog of the median is the deepest point T,
defined by

(3.1) T,(X) = arg max depth(x; X).

(When the depth does not have a unique maximum, any sensible rule for
selecting among the maximum-depth values may be used without affecting the -
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results given below; we propose ‘“averaging’
T.(X) = Ave{x: depth(x; X) = maxdepth(x; X)})
x

The analog of the a-trimmed mean is the a-depth-trimmed mean T,, the
average of all points which are at least na deep in the sample

(3.2) T.(X) = Ave{X; € X: depth( X;; X) > naj}.

The generalized W estimate was defined by (1.4).

These estimators have decent asymptotic properties. For example, they are
consistent estimators of the center of symmetry of any centrosymmetric
distribution, and they have n~'/2 rates of convergence to their limiting values
under weak regularity conditions.

It is easy to see that these estimators satisfy the affine equivariance
condition

T({AX; +b}) = AT(X) +b

for every b and every nonsingular linear transformation A. Put otherwise,
this means that they select the same point of space independent of the
coordinate system put on the space. These three estimates have good break-
down properties. The breakdown point is, intuitively, the smallest amount of
contamination necessary to upset an estimator entirely.

Our formal definition of finite-sample breakdown point is as in [D]. Let X
denote a given dataset of size n, at which the breakdown point is to be
evaluated. Let T be the estimator of interest. Consider adjoining to X
.another dataset Y™ of size m. If, by strategic choice of Y™, we can make
T(X™ U Y™)— T(X™) arbitrarily large, we say that the estimator breaks
down under contamination fraction m/(n + m). The breakdown point
e*(T, X) is the smallest contamination fraction under which the estimator
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breaks down:

m
s*=min{ : sup|T(XU Y('"))—T(X)|=°°}‘
n+m yom)

For example, the breakdown point of the mean Ave(X) is 1/(n + 1), while
that of the one-dimensional median Med(X) is 1/2. In colloquial terms, it
takes only one (sufficiently) bad observation to corrupt an average, whereas it
takes about 50% bad observations to corrupt the median. We note (Donoho,
1982) that for translation equivariant estimators, ¢* < 1/2, so the median has
the best achievable breakdown point among location estimates. A fuller discus-
sion of the breakdown concept is available in Donoho and Huber (1982),
Rousseeuw (1985) and Lopuhai and Rousseeuw (1991). In particular, these
references discuss the replacement breakdown, which is different from the
convention in this paper, and which has certain advantages; compare
Rousseeuw and Leroy [(1987), page 117].

In discussing breakdown points, we begin by studying the estimator

To(X) = Ave{X;: depth( X;; X) > k}.

For this estimator, the criterion for depth-trimming is fixed at %, indepen-
dently of sample size.

Lemma 3.1, Ifk*(X) > k, then T, is well defined, its breakdown point is
well defined and

8*(T(k), X) = n+ k .

The lemma shows that £* controls what robustness is possible using T,
Now, as T,(X™) = T, (X™), we can use this to get a result for T,. The
key idea is that, by Proposition 2.4, 2 "= n /2 under centrosymmetry.

ProposITION 3.2. Let X™ ={X,,..., X,} be a sample of size n from an
absolutely continuous, centrosymmetric distribution on R?, with d > 2. Let
a < 1/3. With probability 1, for all n large enough, T, is well defined and the
breakdown point of T.(X™) is well defined and

‘ e*(Ta, X(")) —>a, a.s.

The limitation a < 1/3 is real. In fact, even the maximal degree of depth
trimming offered by T, cannot give a breakdown point bigger than 1/3.

PropoSITION 3.3. Let X ={X,,..., X,} be a sample of size n from an
absolutely continuous centrosymmetric distribution on R?, where d > 2. The
breakdown point of T ,(X™) converges almost surely to 1/3 as n — .
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What happens if P is not centrosymmetric? Suppose that £*/n —» 8 < 1/2,
a.s. Then the argument for Proposition 3.2 will show that for each a« < 8/
(1 + B), T, is well defined and has a well-defined breakdown point for suffi-
ciently large n and that the breakdown point has a.s. limit a. As for T, the
following lower bound is always available, that is, without using probability or
asymptotics.

PROPOSITION 3.4. Let X be in a general position:

(T, X) 2 o

The outlyingness-weighted mean 7T, has better breakdown properties, which
do not depend on any near symmetry of X or on any probabilistic arguments.

ProposiTION 3.5. Let X =({X,,..., X,} be a collection of points in gen-
eral position. Suppose that r - w(r) is bounded and positive. Then the break-
down point of T,(X™) is (n — 2d + 1)/(2n — 2d + 1).

This is nearly the best possible result. It is relatively easy to show that no
affine equivariant estimator can exceed a breakdown point of (n —d + 1)/
(2n — d + 1). For discussion of the maximal finite-sample breakdown points of
affine equivariant estimators, see Lopuhai and Rousseeuw (1991).

4. Methods which do not attain high breakdown point. It is not
completely straightforward to construct estimators with a high breakdown
point in high dimensions. The Maronna-Huber results establish this fact for
M estimators. [D] gives several other examples of affine-equivariant estimators
that seem, at first glance, “robust” but which do not have high breakdown
points.

1. Iterative ellipsoidal trimming [Gnanadesikan and Kettenring (1972)] fol-
lowed by mean.

2. Sequential deletion of apparent outliers [Dempster and Gasko (1981)] fol-
lowed by mean.

3. Convex hull peeling [Bebbington (1978)] followed by mean.

4. Ellipsoidal peeling [Titterington (1978)] followed by mean.

It turns out in each case (but for different reasons) that these procedures
never have a breakdown point exceeding 1/(d + 1). In this section we discuss
why this happens in cases 2 and 3.

4.1. Convex hull peeling. Convex peeling is an intuitive and pretty idea.
One takes the points lying on the boundary of a sample’s convex hull, discards
them, takes the boundary points of the remaining sample, peels those away
and so on, until one decides that any outliers must have been removed, at
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Fic. 4.1.

which point the mean of the remaining observations is taken as one’s estimate
of location. .

Since the set of boundary points of X is affine invariant (affine transforma-
tions preserve membership in the boundary of the convex hull), so is the
peeling procedure itself. If the rule for terminating the peeling iteration is
affine invariant, the resulting peeled mean is affine equivariant. This proce-
dure has close links to depth trimming, and many people who hear depth
trimming described mistake it for convex peeling. Actually, the procedure has
very different breakdown properties.

ProrosiTiON 4.1. If X is in general position, the breakdown point of any
peeled mean is no better than

E3

et <
d+1 n+2

1 ( n+d+1 )

The proof in [D] is very simple and we sketch it here. Note that each stage of
peeling removes at least d + 1 points from the dataset, because a set of data
points in general position has at least d + 1 extreme points. On the other
hand, it is possible to arrange the contamination Y in such a fashion that the
points removed at each stage of peeling contain only one point from Y; see
Figure 4.1. In such a case, the peeling procedure removes at least d good data
for every bad data point it succeeds in removing. Therefore if the fraction of
bad points slightly exceeds 1/(d + 1), the set of observations remaining after
peeling must contain bad points. On the other hand, as the picture shows,
these bad points can be arbitrarily far from the X data without affecting the
property that d good points are removed for every bad point. This means that
the average of the points remaining after peeling can be arbitrarily far from
the average of the X’s, that is, breakdown.

Actually, this bound may be somewhat more favorable than what actually
occurs in practice. If X represents a sample of size n from the Gaussian, [D]
reports that the breakdown point appears to tend to zero as n increases.
Intuitively, this is because peeling removes many more than the minimum
d + 1 observations at each stage. Again, with strategically chosen contamina-
tion, only one of these need be a contaminating point, and so peeling has to
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remove many more than d good points for each bad point successfully
removed.

A result similar to Proposition 4.1 also holds for ellipsoidal peeling, for
similar reasons [D]. The minimum volume ellipsoid containing a set of points
has at least d + 1 points of the set on its surface. Only one of these need be
bad.

One connection between depth trimming and peeling seems worth pointing
out. Let peel(x; X) denote the last stage in the peeling of X at which x is in
the convex hull of the peeled sample. Thus if x is a boundary point of the
convex hull, peel(x; X) = 1; if x is a bounding point of the convex hull of what
remains after one peeling step, the peel(x; X) = 2; and so forth. In analogy
with the deepest point, we may define the ‘“maximally peeled mean”

(4.1) T,(X) = Ave{Xi:peel(Xi;X) = maxpeél(Xi;X)}.
13

Referring to Donoho (1982), one can see that we must have

(4.2) e*(T,, X) < e*(Ty, X),

so that the breakdown point of depth trimming is always larger than that of
peeling. At root, this derives from the inequality

(4.3) maxpeel(x; X) < maxdepth(x; X),

which itself derives from the (easy) inequality peel(x; X) < depth(x; X).
We also have

711 <e*(T,, X).
Except for remainder terms, the best breakdown point of peeling is no better
than the worst breakdown point of depth trimming.

For an example of an X giving approximate equality in (4.3), see Figure 4.2.
This figure portrays a dataset of points at the vertices of a collection of nested
simplices. In this case,

(4.4) &*(T,, X) — 0(%) <

maxpeel(x; X) = 4 = maxdepth(x; X).
X x

7A\

Fic. 4.2.
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4.2. Data cleaning. Another method for robustifying the mean in high
dimensions is based on sequential deletion of outliers. Using an affine-
invariant discrepancy such as the Mahalanobis distance

(45)  D¥X;;X) = (X, — Ave(X))" Cov }(X)(X, — Ave( X)),

one identifies the observation which is most discrepant relative to the dataset
X and removes it. Then one identifies the next most discrepant observation,
using an average and covariance estimated from the data remaining after the
first point was deleted and so on. At each stage, one identifies the most
discrepant data point relative to the remaining data. At some point, one
decides that all the outliers have been cleaned out of the data and takes the
average of the remaining points. .

Note that since D? is affine invariant, the resulting “cleaned mean” is
affine equivariant, provided the rule for terminating the cleaning is affine
invariant. However, the procedure again has low breakdown point.

ProposITION 4.2. If X is in general position, the breakdown point of any
cleaned mean is not larger than 1/(d + 1).

The proof actually shows that with this amount of contamination, one can
arrange the contaminating Y,’s so that every good point is cleaned out of the
sample before any bad point is, even though the Y, are arbitrarily outlying in
some absolute (coordinate dependent) sense. Thus breakdown occurs in the
worst possible way.

Our informal explanation for this goes as follows. In dimension d, ‘“most”
good data points will have D? =~ d. If a tight cluster of at least n/d outliers is
placed far away from the good data, the D? for points in the cluster, one can
check, is less than d because of the influence of this cluster on the Ave(X) and
Cov(X) used in (4.5). Thus, the good points appear more discrepant than the
bad ones.

We remark that the situation does not markedly improve if, instead of the
estimates Cov(X) and Ave(X) used in (4.5), we employ ‘‘leave-one-out” esti-
mates. That is, let Ave(X _;)) and Cov(X_;)) denote estimates of mean and
covariance formed without using the ith data point Then, if these are used in
place of Ave(X) and Cov(X) in (4.5), a breakdown bound similar to that of
Proposition 4.2 still applies.

5. Discussion.

5.1. Combining high breakdown with affine equivariance. If one is willing
to relax the affine equivariance condition (3.3) to, say, rigid-motion equivari-
ance or simply location equivariance, it is easy to find estimators with a high
breakdown point. For example, the simple coordinatewise median is location
equivariant and has breakdown point 1/2 in any dimension. The difficulty
comes in being both coordinate-free and robust. When one is willing to adopt a



BREAKDOWN PROPERTIES OF LOCATION ESTIMATES 1815

specific coordinate system, it is much easier to identify outliers than if one
does not commit to such a specific choice.

In another direction, Tyler (1986) has shown that if one constrains the
allowed contamination so that no two contaminating points can be at close
angular distance, then M estimates cannot be broken down easily. But this is
again a form of coordinate dependence, since the constraint on the contamina-
tion makes reference to a specific choice of coordinates.

5.2. Other methods of attaining high breakdown. Rousseeuw (1985)
showed that the center of the minimum volume ellipsoid containing at least
half the data provided a method with breakdown point of nearly 1/2 in high
dimensions. See the discussion in Lopuhai and Rousseeuw (1991).

Oja (1983) introduced a notion of multivariate median based on simplicial
volumes which is affine equivariant. It turns out to have interesting break-
down properties; see Lopuhad and Rousseeuw (1991) and Niinimaa, Oja and
Tableman (1989). [Liu (1990) introduced a different notion of multivariate
depth, called simplicial depth. Unfortunately, this interesting method appears
to have a rather low breakdown point.] See also Small (1987, 1990).

Simple geometric methods of obtaining high breakdown, such as the depth
and outlyingness-based methods discussed here, the Rousseeuw’s minimum
volume ellipsoid approach or the Oja median may have inefficient statistical
performance, in the sense of large sample asymptotics. Accordingly, attention
has turned toward more sophisticated and less geometric estimators.

[D] showed it was possible to combine affine equivariance and high break-
down via suitably chosen minimum-distance estimates based on the so-called
halfspace distance. Donoho and Liu (1988) have shown that this is a general
phenomenon: In situations of invariance, certain minimum distance estima-
tors have the best attainable breakdown point. Minimum distance estimates
“automatically” possess root-n consistency, but they are not generally fully
efficient, when the model is true.

Rousseeuw and Yohai (1984), Yohai (1987) and Davies (1987) have devel-
oped S-estimation techniques for combining high breakdown point with affine
equivariance and asymptotic efficiency; see also Lopuhas (1988). These tech-
niques have the advantage of extending naturally from location estimation to
other settings like regression fitting.

5.3. Computational difficulty. Some sort of computational breakthrough is
necessary to make the estimators, as defined here, really practical. Adele
Cutler has prepared, for d = 2, a program which computes the contour of
depth [na] in O(n?log n) time. The algorithm is based on the observation
that for calculating depths, it is sufficient to restrict the search over projec-
tions in (1.1) and (1.3) to a finite number of projections, namely, to those
projections which map d points of the dataset into the same value. In general,
unfortunately, the algorithm runs in O(n¢*!log n) time in dimension d, so
this approach is impractical for dimensions greater than 4 or 5. Souvaine and
Steele (1987) have developed a number of promising techniques for speeding
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up this sort of computation, based on properties of arrangements of hyper-
planes in computational geometry.

Most high-breakdown methods are currently based on a computational
approximation initiated by Rousseeuw (1984). One gives up the hope of exactly
computing the suprema indicated at various places in the definition of one’s
estimator and in practice replaces the suprema by maxima over a discrete set
of cases obtained by random search.

6. Proofs.

6.1. Notation and background. Sets and datasets. A dataset X is, for us,
a collection of elements in which multiplicity counts. Despite this distinction
from the traditional notion of set, we use the traditional set notation: For
datasets we write X = {X;} and for mergers we write X U Y. Although we are
abusing notation, we believe there is little risk of confusion. The only letters
we use for datasets are X, Y and W. As an illustration, the reader may wish to
prove the following fact about mergers:

(6.0) depth(x; X) < depth(x; XU Y).

It is used several times below.

Halfspaces, empirical distributions and depths. Below, H, , is the halfspace
{y: u”y <u”x), with interior int H, , = {y: u"y <u”x} and boundary
bdry H, , = {y: u"y = u"x}. Given data X;, i =1,...,n, P, is the empirical
distribution, defined by P,(S) = n™'#{i: X, € S} for every measurable set S.
The halfspace metric uj is used to compare empirical and theoretical distribu-
tions:

(6.1) pg(P,, P) = sup|P,(H, ) — P(H, )|

u,x
This is the largest discrepancy between P, and P on any halfspace. We
remark that uj has the Glivenko-Cantelli property: If {X,} are iid P, then
(6.2) uwg(P,,P) >0 as.asn — o«

See Steele (1978) or a book on empirical processes, such as Pollard (1984).
In order to discuss the limiting behavior of depth in large samples, we
introduce the projected probability

(6.3) M(x) = infP(H, ,).

This is the minimal probability attached to any halfspace containing x. We
note that for the empirical version of II,

(6.4) II,(x) = infP,(H, ,),

‘we have the connection to depth

(6.5) n~'depth(x; X™) =11 ,(x).
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It is therefore of interest that we have the inequality

(6.6) sup |I1,(x) — TI(x)| < uy(P,, P)

which implies, for example, that
(6.7 n~!depth(x, X™) - II(x) a.s.,

thus II represents the large-sample limit of »~! depth.
Three lemmas about the behaviour of II are useful. We state them here and
prove them in Section 6.2.

LemMA 6.1. II is an upper semicontinuous function of x. If P is absolutely
continuous, Il is a continuous function of x.

LemMA 6.2.  If P is centrosymmetric about x, Il(x,) > 1/2. If, in addition,
P is absolutely continuous, I1(x,) = 1/2.

LeEMMA 6.3. max, II(x) > 1/(d + D).

These lemmas, together with (6.5), imply that the maximum depth is about
n/2 under centrosymmetry and is always n/(d + 1) or larger.

6.2. Proofs of Lemmas 6.1-6.3.

Proor oF LEMMA 6.1. Note initially that for each closed halfspace H, the
linear functional P — P(H) is upper semicontinuous for weak convergence.
Also, as v — 0, the measure P(-— v) converges weakly to P. As H, , =
H, , + (x — w), we get that f,(x) = P(H, ,) is upper semicontinuous (u.s.c.)
in x. Now

(6.8) lI(x) = infP(H, ,) = inff,(x).

IT is thus the infimum of a collection of u.s.c. functions; it is upper semicontin-
uous.

We now show that if P is absolutely continuous, then II is also lower
semicontinuous, hence continuous. Let x, — x, and let », be a sequence of
directions satisfying P(H, ) <Il(x,) +1 /n. As the u, all lie on the unit
sphere in R?, they contain a cluster point. Extractmg a subsequence if
necessary, we may assume that », converges, to u, say. Now

(6.9) P(H,,) - P(H,,.)= [In,, ~Iu, . dP,

wherelg is the indicator function of the set S. The difference in indicator
functions is dominated in absolute value by the constant 1, and, as u, — u,
x, = X, the difference tends to zero almost everywhere [ P]. By the dominated
convergence theorem, it follows that P(H, ,)—-P(H, ,)—0as u, - u,



1818 D. L. DONOHO AND M. GASKO

x, = xo. We conclude that
(6.10) liminfTl(x,) = liminfP(H, .)=P(H, ) =I(x,).

Thus II is lower semicontinuous. O

Proor oF LEmMMA 6.2. As H, , =x4+ Hu 0> centrosymmetry of P about
xo gives P(H, ,)=P(xy+ H, ) = P(xy — 0) P(H_,,) As H, , U
H_,, =R% we have 2P(H,,) = P(H, xo) +P(H_, ,) =1, so that
P(Hu ) =1/2. If P is absolutely continuous, then P(bdry Hu ,) =0 for
every halfspace. Hence P(H,,)+PH_, ,)=1andso P(H, ,)=1/2. O

Proor oF LEMMaA 6.3. Let P, denote the convolution of P with a Gaussian
of width &. It is sufficient to establish the result for P,. Indeed, P, converges
weakly to P as h — 0; and, as in Lemma 6.1, for each closed halfspace H, the
mapping f,(x, P) = P(H, ,) is upper semicontinuous for the product topology
(Euclidean convergence, weak convergence). As II is the infimum of f,’s, it is
also upper semicontinuous and so

supII(x) > limsup supIl,(x),
x

h—0 x

where I1,(x) = inf, P,(H, ,). So if we show that

supll,(x) >
for each h, the result for P follows.

P, has two special properties. First, every projection has a strictly positive
continuous density and so for each R > 0,

d
(6.11) B = inf inf —P,(H, ,,) > 0.
u |¢|<R di
Second, P,(H, ,) is uniformly continuous in » and x. Thus, for example,
given ¢ > 0, we have 6 > 0 so that |[u — u,l <6 and |x| <R,

(6.12) |Py(H, ) — Pi(H,,.)| <e.

In the remainder of the proof we drop the & subscript, although we depend on
properties (6.11) and (6.12) for the proof we present.

The “contour” {x: I1(x) > 7} is the intersection of all halfspaces containing
at least 1 — 7 of the probability of P. Hence II has convex contours. As II is
continuous (Lemma 6.1) and has convex contours (which are easily seen to be
bounded), there is a maximizer of II. Let us suppose that 0 is a maximizer,
that is, that

I1(0) = 7* = supll(x). |

CramM. For every direction v, [v| = 1, which we can consider moving away
from 0, there exists a halfspace H, , so that

(P1) P(H,,) =1-w*
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and
(P2) P(H, ,)<P(H,,) forall a>0.

Proor. (P1) and (P2) are a consequence of the fact that 0 maximizes II.
They assert that for every v there is a u in the closed hemisphere with north
pole v which attains sup, P(H, o). If this is not true, then we will derive a
contradiction.

If the claim is not true, there exists a hemisphere S,with north pole v, say,
that contains no maximizers of P(H, ;). Consequently, by the reflection
symmetry P(H, ;) = 1 — P(H_, ,), all minimizers are contained in S. More-
over, by the reflection symmetry of the boundary of a hemisphere, no maximiz-
ers and no minimizers of P(H, 0) are contained in the boundary of S. Finally,
by continuity of P(H, ,) all minimizers are actually contained strictly in the
interior of the hemlsphere in a polar cap C C S, of opening less than 90°, with
north pole v. Continuity in u gives

inf P(H,,)> 1nf P(Hu 0) =7

{u: uTv<0}
and also
6A f P(H > fP H =
( ) uelg\c ( u, 0) ln ( u, O) 77

Continuity of P(H, ,)in u and x then gives that for small enough a > 0,
inf P(H,,,) > inf P(Hu,cw),

{u: uTv<0) {u: uTv>0}
so that
(6.13) M(av) = inf P(H, ).

{u: uTv>0}

On the other hand, it is easy to see that for u in the hemisphere with north

pole v, P(H, ,,) is a monotone increasing function of «. In fact, we have by
(6.11),
(6B) P(Hu,av) - P(Hu,O) = BauTv
and so in particular
(6.14) 1nf(;P(Hu aw) = T + Bacos(y),
where v is the opening of C (y < 7w /2).
On the other hand

6.15 f P(H > inf P(H > ¥,

(6.15) Jof P(Hyw)> inf P(H,o)>m

by monotonicity, (6A) and (6B). Combining (6.13)-(6.15), we conclude that
[I(av) > 7* = I1(0)

which contradicts the assumption that 0 is a deepest point. This contradiction
establishes the claim.
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We may recast the claim as follows. There exists a collection H, = {H,, ,} so
that

(P1) P(H, ;) =1-=* foralli

(P2) supulv > 0 forall v.

12

Here the index i runs through a possibly infinite, possibly uncountable set.
By judicious application of the Heine-Borel theorem, [DG] shows that there is
a subcollection H; of H, still satisfying (P1) and (P2) but containing only
finitely many halfspaces.

We now claim there is a subcollection H; of H; with no more than d + 1
halfspaces that satisfies (P1) and (P2). By Lemma 6.4, placing the condition
(P2) on H; is equivalent to saying that 0 is contained in the finite polyhedron
K; = Hull{u,, i € I}) and that 0 is not an extreme point of that polyhedron.

By Caratheodory’s theorem [Rockefellar (1970), page 155], if 0 has this
property, then 0 can be expressed as a strict convex combination of d + 1 or
fewer of the extreme points {u;: i € I}. Let J be the set of indices of the u;’s
used in this combination. Then we have 0 = ¥, ;0,u; with 6, > 0, L0, = 1.
Now put K; = Hull{u: j € J}). Then 0 € K; and 0 is not extreme in K ;. It
follows by another application of Lemma 6.4 that

(6.16) maxu’v > 0 forall v.
jEed

Hence if we define H; = {HuJ’O: J € J}, we get a collection of halfspaces
with properties (P1) and (P2), having cardinality

(6.17) 2<#J<d+1,

the upper bound being furnished by Caratheodory’s theorem, the lower bound
by nonextremality of 0 in K ;. We now note that property (P2) is equivalent to

_ mwd
(6.18) UH_, =R

JjEJ

Indeed, —x € H_,_, if and only if ulx > 0. Thus —x is in some H_, ,ifand
only if max ; u7x > 0.
Because H_, , is the complement of intH, ,,

P(H_, ,)=1-P(intH, ,).
Invoking absolute continuity, P(bdry Huj,o) = 0, and applying (P1), we con-
clude that P(H_, ,) = 7*. By this, (6.17) and (6.18) we have

. 1=P(R%) = P( U H_u,,o) < Y P(H_, ,)=#J 7% <(d+1)7m*.
jed ! jed !

Thus 7#* > 1/(d + 1) as claimed. O
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LeEmMA 6.4. Let {u;} be a finite collection of points in R* none of which are
zero. The following two properties are equivalent:

(A) mlaxulTv >0 forallv.

(B) Hull({u;}) contains 0, but 0 is not an extreme point.
Proor. See [DG]. O
6.3. Proofs for Section 2.

Proor oF LEMMA 2.1. Membership of a point in a halfspace is coordinate-
free: X; € H, , if and only if AX; +b € AH, , +.b for every b and every
nonsingular A. Consequently,

min #{i: X, € H, ,} = min #{i: AX, + b€ AH, , + b}.
lul=1 ’ lul=1 ’

By the second line of (1.1), this gives (2.1). O

Proor oF LEMMA 2.2. A depth contour is the intersection of halfspaces and
so is convex. Recall the definition of the depth contour D, as the intersection
of all halfspaces containing at least n + 1 — 2 points. Now D, , is the
intersection of all halfspaces containing at least n — %k points. Every halfspace
containing n + 1 — %k contains n — k, so D,, is the intersection of a subfamily
of the family defining D, ;. As points in D, satisfy a subset of the conditions
which points in D, ; must satisfy, D, ., € D,. O

Proor orF ProrosiTION 2.3. For X in general position, there exists a
projection direction v for which there are no ties in the projected dataset
{vTX;}. In this projection, the maximum depth is [n /2]. But

depth ;(x; X) = ln|11=n1 depth,(u"x; {u"x;}) < depth,(v"x; {v"X,}) < [n/2].

So £*(X) < [n/2]. The lower bound follows from Lemma 6.3 and the identity
(6.5). O

ProoF OF PROPOSITION 2.4. As P is centrosymmetric and absolutely con-
tinuous, Lemma 6.1 implies I1(x,) = 1/2. (6.5)—(6.7) give
n~tdepth(xy; X™) =I1,(x,) = (x,) =1/2 a.s.
Now P is absolutely continuous, so with probability 1, X is in general
position. Thus, by Lemma 2.3,
n
[El > k*(X™) > depth(xy; X™).

Cofnbining the last two displays we have n~%2*(X™) - 1/2 a.s.
Consider now k*(X ). Let X, be the closest among X,..., X,, to x,. By
the positive density of P at x, and the Borel-Cantelli lemma, {X; };_,;
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converges to x, almost surely. By (6.3) and (6.4),
n~ %t (X™) = n~ ' depth(X; ; X™) =11,(X; ) > (X, ) — ny(P, P,).

Because P is absolutely continuous, we may apply Lemma 6.2 to conclude that
I(X; ) - M(x,) a.s. The Glivenko-Cantelli property (6.2) and k"< k* yield
n~lkt—>1/2as. 0

Proor oF LEMMA 2.5. The proof for the Gaussian case amounts to the fact
that II, » II uniformly in x (6.6) and the formula Il(x) = ®(— VxT3x),
where 3 is the covariance of P and @ is the the standard normal distribution
function. The proof for other elliptically symmetric distributions is similar. O

6.4. Proofs for Section 3.

ProoF oF LEMMA 3.1.  As X contains points of depth &, T(;, is well defined.
Now the breakdown point of T, is well defined just in case T(;,(X UY) is
well defined for all Y. This will be the case if X U Y contains points of depth
k, for every choice Y, that is, if 2*(X U Y) > £*(X). This inequality follows
from (6.8).

Now we show &¢* > k/(n + k). For T|;, to break down at X, the contamina-
tion Y = {Y;} must be such that T, (X U Y) lies outside any fixed bounded set
—for example, outside the convex hull of X. In order to place T(;, outside the
convex hull of X, it must be possible to arrange the contamination Y so that
there will be a contaminating point, say Y;, with depth (Y;XUY) >k
outside the convex hull of X. By the separating hyperplane theorem there will
then be a direction u separating all the X,’s from Y;: max, u7X; < u”Y;. But
Y, is of depth £ in X U Y, so that there must be at least £ members in the
combined dataset X U Y whose projection on u lies to the right of Y;. As none
of these can be in X (by the last display), they must be in Y. Hence #Y > &,
and the contamination fraction must be at least & /(n + k).

Finally, we show &¢* < k/(n + k), that is, that %k is a sufficient amount
of contamination. Place Y; - Y, on the same site. For every u, u”Y, =
uTY,= -+ =u”Y,; therefore, depth(Y;; XUY)>%k, i=1,...,k Thus
* Ty(X UY) is an average over a set containing all of Y. However, as we could
choose Y; to have an arbitrarily large norm, T, (X U Y) can be made arbitrar-
ily large. O

Proor oF ProposITION 3.2. For a < 1/3, pick B8 € (3/2a,1/2). By Lemma
2.3 k" (X™)/n - 1/2 a.s. This implies that there is a positive random
variable 7 ,(B) which is almost surely finite with

EY(X™)/n>B for n>nyp).

Let Y consist of m contaminating points, m < n/2. Then for n > ny(B),
E(XUY)>k*(X)>pBn. Now T(XUY) is well defined if and only if
EH(XUY)>la(n + m)l. But Bn > la(n + m)] for m <n/2,so T(XUY)
is well defined for n > ny(B).
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For n,m fixed, T(XVUY)=T,(XUY), where k=|a(n +m)l. By
Proposition 3.1, Y can be chosen so that T,, breaks down if and only if the
contamination amount m > k, that is,

(6.19) m > |a(n +m)|.

For a <1/3, m = n/2 is always a solution of this inequality. Hence the
restriction that Y have cardinality less than or equal to n /2, imposed earlier,
does not prevent solving (6.19). The smallest value of m solving this inequality
is either m = [(a/(1 — a))n] or m = [(a/(1 — a))n]. It follows that for n >
no(B), the breakdown point is well defined and

T el
= —] as. a
n+m nj.

Proor oF ProrosiTioN 3.3. First, we show that the limiting breakdown
point is at least 1/3. Now, m contaminating points are sufficient to cause
breakdown only if they are sufficient to place T',(X U Y) outside the convex
hull of the points in X. But, by the separating hyperplane argument of Lemma
3.1, if T, (XUY) is outside the hull of X, the number of contaminating

points must be at least the depth of T,.(X U Y). Hence, for m to cause
breakdown we must have

m > depth(T,(XUY),XUY) = k*(XUY) > k*(X),

the last inequality following from (6.0). Thus ¢* = m/(n + m) = k¥*(X)/(n +
E*(X)). Now k*(X)=n/2(1+ o0,,(1) so k*(X)/(n + k*(X)) - 1/3 as.
Hence liminf, ¢* > 1/3 a.s.

Next, we show that the limiting breakdown point is at most 1/3. Let
N be the counting measure N(S) = #{i: X; € S}. Let x, be the point of cen-
trosymmetry of P and put k°= max, N(H, ) Observe that k°=
n/2(1 + o, (). Indeed, N(H, , ) = nP, (Hu ) and by absolute continuity
and centrosymmetry of P, P(H ) =1/2 for all u. Thus

k°/n —1/2| < sup| n(Hu,xo) - P(H, )| <pu(P,, P) >0
u

e*(T,, X)) =

by the Glivenko-Cantelli property (6.2) of uj.
Set m = k° + 2d + 1. We will prove in a moment that

m

6.20 * < .

( ) ¢ n+m

As m =n/2(1 + o, (1)), (6.20) implies lim sup,, _,.,, e*(T,, X™) < 1/3 as.
It remains to prove (6.20). Let y be an arbitrary point in R? and let Y™ be

a dataset consisting of m exact repetitions of y. Now depth(y, X UY) > m.

We claim that y is the deepest point for X U Y

(6.21) depth(x, XUY)<m x#y.

As y is arbitrary, this will prove that 7,(X U Y) = y has a solution for any
y € R%, and so T, breaks down under contamination of size m.
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Let M be the counting measure for Y: M(S) =m if y € S, = 0 else. Now
depth(x; X UY) = inf(N(H, ,) + M(H, ,)),
u

< inf(N(H, ,): M(H, ,) = 0}.

Now N(H, , ) < k° for all u by definition of °. Invoking Lemma 6.5, there
exists a partlcular u with N(nt H, ,) < k° and y ¢ int H, .. Then, by
Lemma 6.6, there exists a w with N(H J<k®+2d and y %Hw As
y¢H,, M(H,,) =0,and so

inf(N(H, .): M(H,,) =0} <N(H, ,) <k°+2d.

Combining the last two displays, together with m > £° + 2d, gives (6.21) and
completes the proof of Proposition 3.3. O

LEmMA 6.5. Let x be arbitrary and let x, be a point with N(H u,zy) < kO for
every u. There is a u so that N(int H, ,) < k° and int H, u,x does not contain y.

Proor. Pick v so that vTx = v7x,. Then H,,=-H,,,and
N(H,,) =N(H,,,) < sup N(H, , )<k’
w

By the same argument N(H_, ) <k°. As int(H, ) and int(H_, ) are dis-
joint, one of the two sets does not intersect y. Let u be one of v or —v, the
choice being made so that int H «,x does not intersect y. O

LemMA 6.6.  Let X be in general position, N(int H, ,) <k°, y & int H,
Then there exists w so

N(H, ,) <k°+2d, y€H, ,

Proor. Unless y € bdry H, ,, there is nothing to prove. Hence we assume
uT(y — x) = 0. We will show that there is a w close to u so that H, ., has
essentially the same properties as H «,x @nd does not contain y.

We say that w agrees with u if (uTX YwTX,) > 0 for all i. If w agrees with
u, every point in X which is not on the boundary of H, . or on the boundary
of H, , has the same membership or nonmembership in H, , as it does in
H, . Thus, N(H, AH, )< N(bdry H, )+ N(bdry H, ,), where A de-
notes symmetric dlfference As X is in general position, N (bdry H, ) <d,so
if w agrees with u,

N(H, ., <N(H,, +N(H, AH,,) < N(H,,) +2d <k°+2d.

The lemma is therefore proved if we can show there is a w agreeing with «
Afor which y € H, ,. Let § = min{lu"(X, — 2)I: uT(X;, —x)# 0} and M =
max|X; — x|. As X is a finite set, 8 > 0, M < ®. Pick a€(0,6/M). Set
wo=u+aly —x) and w = w,/|w,|. Now using u7(y — x) = 0, we have by
construction w'(y — x) > 0. Thus y & H, .. On the other hand, one calcu-
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lates that
|lwT(X; — x) — uT(X; — x)| < lwo — ulmax,|X; — x| <aM < 3.
As [uT(X; — x)| > 8 if X, & bdry H, ,, we have that
if |[uT(X, —x)| #0, sgnwT(X;,—x)=sgnu’(X, - x).
In short w agrees with « and y € H,, ,. O

Proor ofF ProrosiTioN 3.4. As in the last proposition, if m points are
enough to break down T, m > k*(X U Y). By Proposition 2.3, k*(X U Y) >
(n+m)/(d +1). Hence m/(n + m)>1/(d + 1). O

Proor oF ProprosiTION 3.5. The proof given in [D] has been published in
Huber (1985). O

6.5. Proofs for Section 4.
ProoOF oF ProPOSITION 4.1. We use two lemmas.

LemMA 6.7. Let V = {V} be a nonempty dataset
(6.22) MaxD?*(V;;V) > Ave D*(V;;V) = Dim(Span(V)),
12 12

where Dim(Span(V)) is the dimension of the smallest affine subspace contain-
ing all the points of V.

Proor. See the technical report [DG]. O

LEMMA 6.8. Let W be a nonempty dataset and let Y consist of a number of
points all at the same site, Y, say.

D%(Y;WUY #
. < —,
( 1» )— #Y

The inequality is strict if Range(Cov(W)) = R9.

Proor. The basic updating formulas for Ave(W U Y) and Cov(W U Y) are

Ave(WUY) = — Zm Ave(W) + ——,
Cov(W U ¥) = —— Cov(W) + (n—'j:'fm—)—z-(y1 — Ave(W))(Y, — Ave(W)).

Put e = Y, — Ave(W) and use the updating formulas to write D¥Y;WUY)

as
n / { m u' Cov(W)u
sup +

w n+tm/\in+m (u’e)2
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This is less than n/m, strictly so if v’ Cov(W)u > a > 0 for all u of norm 1,
that is, if Range(Cov(W)) = R%. O

PrOOF OF PrOPOSITION 4.2. Place the contamination Y,,...,Y,, all at the
same site, Y;, say. It will be shown that if m > n/d, Y; may be chosen to be
any point not in X and yet iterative deletion applied to X U Y will produce

(6.23) The first n deleted points come from X.
(6.24) The remaining points come from Y.

Then, whatever rule we use for terminating the iterative deletion, the
resulting estimate will be an average of terms including Y;’s. As Y; may be
chosen to have an arbitrarily large norm, the estimator breaks down. Proposi-
tion 4.2 then follows from m > n/d.

X® will denote the part of X remaining in X U Y after % deletions have
been made. (6.23) and (6.24) will follow if for 1 <k <n, DA(Y;; X® U Y) <
max; D*(X;; X® UY). In fact, an even stronger result is true for any
nonempty subset W of X:

(6.25) DX(Y;;WU Y) < maxD*(W; WU Y).
1

If #W = n — k, then from m > n/d, using Lemma 6.8, DXY;;WUY) <
d(n —k)/n).If n — k>d + 1, then Span(W U Y) = R? and the inequality
is strict. If n — k& < d, then Dim(Span(W U Y)) = n — k. In either case,

D*(Y;; WU Y) < Dim(Span(W U Y)).
Applying Lemma 6.7 with V= W U Y gives (6.25). O
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