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BAYESIAN INFERENCE FOR A COVARIANCE MATRIX

By ToMm LEONARD AND JOHN S. J. Hsu

University of Wisconsin, Madison, and University of California,
Santa Barbara

A flexible class of prior distributions is proposed, for the covariance
matrix of a multivariate normal distribution, yielding much more general
hierarchical and empirical Bayes smoothing and inference, when compared
with a conjugate analysis involving an inverted Wishart distribution. A
likelihood approximation is obtained for the matrix logarithm of the covari-
ance matrix, via Bellman’s iterative solution to a Volterra integral equa-
tion. Exact and approximate Bayesian, empirical and hierarchical Bayesian
estimation and finite sample inference techniques are developed. Some risk
and asymptotic frequency properties are investigated. A subset of the
Project Talent American High School data is analyzed. Applications and
extensions to multivariate analysis, including a generalized linear model for
covariance matrices, are indicated.

1. Sampling and prior assumptions. Initially consider n observation
vectors y;,...,y,, which given their common covariance matrix C, are a
random sample from a p-dimensional multivariate normal distribution, with
zero mean vector and covariance matrix C. In Sections 3 and 4, the statistical
problem is addressed of obtaining estimators for C which sensibly smooth the
sample covariance matrix S = Yy,y//n. Assume that p <n and assume
occurrence of the almost sure event that S is observed to be positive definite.
In the current section, broad families of probability measures are developed
which may be associated with (Z,, &4,), where 7, is the class of all positive
definite (symmetric) p X p matrices, and 7, is the o field of subsets of 9,
defined below. These provide both flexible prior distributions for C, which
constrain C to lie in Z,, and alternative sampling distributions for S when it
is required to broaden the assumption of multivariate normality of the obser-
vation vectors. In the remainder of the paper it is demonstrated that these
probability measures yield a broad spectrum of new applications for situations,
where it is required to accurately investigate linear relationships between p
variables. In particular, if p > 3, scalar multiples of the sample covariance
matrix S should not always be regarded as the most reasonable estimators of
C, either in terms of their finite sample frequency properties [e.g., Efron and
Morris (1976) and Haff (1980)] or in terms of smoothing the random fluctua-
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1670 T. LEONARD AND J. S. J. HSU

tions of the data in a sensible manner; the corresponding correlation analysis
is similarly open to improvement.

Evans (1965), Chen (1979), Dickey, Lindley and Press (1985) and Press
(1992), consider prior distributions for R = C~! which, conditional on » and
R, take R to belong to a conjugate Wishart family with v degrees of freedom,
mean matrix R, € 2, and density of the form

(1.1) 7(R) « [RI*P" Y2 exp{— v tr(R;'R)}] R e 9,.

If v and R, are specified, this family may be much too restrictive, as there
are just ¢ + 1 distinct prior parameters, including ¢ = p(p + 1)/2 prior esti-
mates of the variances and covariances, just a single degree of belief v for each
of these estimates and no further parameters for modeling prior dependencies
between the elements of C. Mixtures of Wishart distributions are proposed by
Dickey, Lindley and Press, and these assign further distributions to » and
simple parametric forms for R, without substantially broadening the prior
covariance structure. Under the conjugate prior distribution (1.1), the poste-
rior distribution of R is Wishart with v + n degrees of freedom, and the
inverse of the posterior mean matrix of R assumes the simple weighted
average from

(1.2) C* = (nS + vRyY)/(n +v)

providing shrinkages depending upon a single scalar weight v/(v + n) with
only very simple smoothing of the elements of S. The posterior mean matrix of
C is similarly simple.

These restrictions motivate consideration of the matrix logarithm A = logC
of the covariance matrix C. Consider the spectral decompositions

(1.3) C = EDE”
and
(1.4) S = E,D,E?,

where D and D, are diagonal matrices of eigenvalues of C and S, and the
columns of the orthonormal matrices E and E, are corresponding normalized
eigenvectors. Then A = log C satisfies

(1.5) - C =exp{A} = i AT /rl,
r=0

where exp{A} denotes the matrix exponential of A, or equivalently
(1.6) A = E(logD)ET,

where log D denotes the diagonal matrix of log-eigenvalues of C. Note that the
upper triangular elements of the symmetric matrix A are unconstrained in
g-dimensional real space R”, and that C = exp(A) exponentiates the eigenval-
ues of A leaving the normalized eigenvectors unchanged.
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Let a = vec(A) denote the g X 1 vector consisting of the upper triangular
elements of A, ordered by diagonal and subsequent off-diagonal, and taking the
form

o= (au, a22, ey app;a12, (123, ey ap_l’p;
(1.7)

T
Q13,0145 5Qp g pre - ,al,p_1,a2,p,a1,p) .

Consider any probability distribution for a on (R?, B?), where B? is the Borel
field of subsets of R?. Then this creates a probability distribution for C on
(2,, «,), which constrains C to fall in the class 2, of positive definite
matrices, where the o-field &7/, may be conveniently defined as the collection
of subsets of Z,, which appropriately transform the elements of B? via the
matrix exponential transformation (1.5).

One possibility is to assume that a has a multivariate normal distribution,
say with mean vector ¢ and covariance matrix A. This generalizes a class of
priors proposed by Leonard (1975), when C is diagonal, which provided
alternatives to the mixtures of inverted chi-squared distributions for the
variances considered by Lindley (1971). For general C, this specification
provides a very flexible class of (nonconjugate) prior distributions, permitting
the choice of g(g + 1)/2 prior means, variances and covariances. It therefore
permits subjective Bayesians to provide prior estimates for each element of «,
a separate degree of belief corresponding to each estimate and a separate prior
correlation between every pair of distinct elements of a. The Bayesian implica-
tions of this transformation to prior multivariate normality are discussed more
fully in Section 3. In particular, a possible multivariate normal approximation
to the posterior distribution of a possesses mean vector £* and covariance
matrix A* satisfying (3.1) and (3.2).

Note that any rotations Gy, ..., Gy, of the observation vector will possess
a common covariance matrix with matrix logarithm GAG?, which is a linear
transformation of A. The above prior specification transforming to multivari-
ate normality is therefore closed under rotations of the observation vectors.
This specification does not involve multivariate normality of the log-eigenval-
ues, the log-variances (except in the diagonal case) or the eigenvectors.

The presentation and discussion of results in Sections 2-9 is intended to
demonstrate how a variety of statistical procedures can be developed, which
depend upon properties of the transformation A = logC, together with the
choices of the prior mean vector £ and covariance matrix A of the multivariate
normal prior. In Section 7, it is shown that all approximate Bayesian inference
procedures discussed in Sections 2-6 can be replaced by the corresponding
exact procedures. Asymptotics and frequency properties of the Bayesian proce-
dures are discussed in Appendices 1 and 2. Broad classes of exchangeable
distributions for positive definite matrices, which modify the exchangeable
distributions for arrays considered by Aldous (1981), are proposed in Appendix
3. The co-authors and several colleagues have developed numerous useful
extensions of the results obtained; these would appear to initiate a new
research area in multivariate analysis.
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2. Finite sample likelihood approximations. Since the log of the
generalized variance |C| is equal to the trace of A, the exact likelihood of
A =logCgiveny,,...,y, is

(2.1) I(Aly) = (27) "?*exp{—intrA — jntr[Sexp{-A}]} A€ I,

As the unique maximum likelihood estimate S of C is by assumption
positive definite, the likelihood (2.1) is uniquely maximized when A = A,
where
(2.2) A =1logS = E\(logD,)ET
with S defined in (1.4). A possible multivariate normal approximation to the
likelihood of a = vec(A), is summarized by (2.12), together with (2.13), (2.14)
and (2.11). This neglects the cubic and higher terms of a Taylor series
expansion, about A = vec(A), of the log-likelihood of «. The Taylor series
expansion is quite nontrivial, owing to the complicated nature of the second
term within the exponential of (2.1). For example, Bellman [(1970), page 170]
remarks that is it untrue that

(2.3)  tr(Sexp{—A}) = tr(exp{A — A}) = tr{ Y (A- A)r/r!} ,
r=0
unless A and A commute. However, Bellman [(1970), page 175] shows that
exp( At} = X(?),
where X(¢) satisfies the Volterra integral equation

(2.4) X(¢) =S~ - [Otss-t(A —A)X(s)ds 0<t<o.

A Taylor series expansion of X(¢), about A = A, is now available by succes-
sively substituting the right-hand side of (2.4) for the X function in the
integrand, yielding

C ! =exp{—-A} =X(1)
=871 - '8 (A - A)S~ds
(2.5) N
+f01f0 S°"Y(A - A)S“°(A — A)S™“duds

+ cubic and higher terms
and
tr(Sexp{—A}) =p —tr(A - A)

(2.6) + [ tr[(A - A)S*~*(A — A)S "] duds
070

+ cubic and higher terms.
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The integrations in (2.6) can be completed analytically, using the spectral
decomposition (1.4), since
(2.7)  tr[(A - A)S* (A - A)S~@ 9| = tr[BDE *BD;“ "],
with
(2.8) B = EI(A — A)E, = ETAE, - logD,.
If the cubic and higher terms in (2.6) are neglected, then substitution of the
remaining terms for trace [S exp{ —A}] in (2.1) yields the expression
(2.9) I*(Aly) = (2m) “np/Zy-np|Q| _"/2exp{ —inY b2 -inY) §ijb,~2j} ,
i i<j
which is open to justification as an approximation to 1‘;he likelihood (2.1), where
(2.10) b =el(A—-A)e;
is the (7, j)th element of the matrix B in (2.8), and
d;;/d;; +d;;/d; — 2
(log d,; — log d ;)*

(2.11) &=

i

with d;; denoting the ith eigenvalue, and e; denoting the ith normalized
eigenvector of the sample covariance matrix S in (1.4).

The expression in (2.9) is related to the scalar result (p = 1), that the
likelihood of a normal (zero mean) log-variance is approximately normal with
location equal to the log of the sample variance and dispersion 2n~!. The
scalar result relates to the normal approximation to the density of the log of a
chi-squared variate reported by Bartlett and Kendall (1946), which they show
to be surprisingly accurate even in the tails if n > 10. Note that (2.9) is exactly
equivalent to the possible approximation

I*(aly) = (2m) "% "?|8| /% exp{— }(a — A)"Q(a — 7))}

a € R

(2.12)

to the likelihood of a = vec(A), where

(2.13) Q=;n ZfiifiTi tn Z .§ijfijfiTj,
3 i L, jri<j

with

(2.14) f,,=e; xe;

and the product e, »e; denoting the g X 1 vector satisfying
(2.15) a’(e; +e;) = eAe;

for all possible realizations of A. The positive definite matrix Q is the likeli-
hood information matrix of a (see Appendix 1).

It is important to justify the expression in (2.12) as a likelihood approxima-
tion when n is finite. Note that, the integral over A € Z, of the right-hand
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side of (2.1) is finite. (See Appendix 1.) Therefore (2.1) also provides the exact
posterior density of @ = vec(A) when a possesses an improper prior distribu-
tion, which is uniform over R%. Under the possible approximation (2.12), this
posterior density is replaced by a multivariate normal density with mean
vector A and covariance matrix Q !. The possible likelihood approximation
(2.12) can therefore be validated by computing the exact posterior density of
any linear combination 7 = ha of «, and comparing this with a normal
density with mean h”A and variance h”Q~'h. Computational methods for
this exact density are described in Section 7. It is now assumed for presenta-
tion purposes that (2.12) provides an adequate likelihood approximation for
the particular data set under analysis. (See, e.g., the data example in Section
9.) The above methods also permit the computation of the exact posterior
density of any continuous function n = g(C) of C under a uniform prior for e,
for example, correlations, eigenvalues, tr(C) and the generalized variance
|C| = exp{tr(A)}, where tr(A) is the sum of the first p elements of a. The
exact posterior density for |C| yields alternative inferences to the classical
procedures relating to the normal approximation to the distribution of [S]
described by Anderson [(1984), page 173]. Under approximation (2.12), the
posterior density of |C| is log-normal.
As a finite sample refinement to (2.12), consider the expression

(2.16) [(aly) = l(i\ly)exp{—%(a— 2 Q(a - X)},

where the exact likelihood I(aly) may be obtained from (2.1), and where A and
Q! denote the exact unconditional posterior mean vector and covariance
matrix of a (assuming these exist) under a uniform prior, calculated via the
procedures described in Section 7. Then A and Q minimize, for fixed y,,...,y,,
the entropy distance

(2.17) ED(w,#) = /quog[a'r(aly) /7 (aly)]m(ely) de,

whenever this is finite, between the exact posterior density m(aly) under a
uniform prior for @ and a multivariate normal density 7(aly) with mean
vector A and covariance matrix @ !. Note that (2.17) yields a rigorous finite
sample justification of (2.16) as an approximation to the exact likelihood of a.
Asymptotic properties, as n — «, related to likelihood approximation (2.12)
are described in Appendix 1. In particular, a multivariate normal approxima-
tion is described to the distribution of A = vec(A) when A is the matrix
logarithm of a random Wishart matrix S.

3. The flexibility of the prior assumptions.

3.1. Duality with the posterior smoothing process. Suppose that a=
vec(A) possesses a multivariate normal prior distribution with mean vector §
and covariance matrix A. Under the likelihood approximation (2.12), the
posterior density of « is ¥ (&*, A*), a multivariate normal density with mean
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vector

(3.1) £ = (Q+AH) (Qr+AE)
and covariance matrix

(3.2) A =(Q+ATYH)

where A and Q are, respectively, the maximum likelihood vector and observed
information matrix of a. Some frequency risk properties of (3.1) and related
estimators are discussed in Appendix 2. As the posterior vector (3.1) assumes
the form of a matrix weighted average of A and §, it can provide much more
complex smoothing of A when compared with the simple scalar shrinkages of S
suggested by the estimator (1.2) for C under a conjugate inverted Wishart
prior distribution. As discussed by Chamberlain and Leamer (1976), the
complex posterior smoothing is very dependent upon the prior choices of § and 4
A. Note, for example, that the sum of the first p elements of (3.1) provides a
Bayesian estimate for |C| which is not a simple weighted average of log|S| and
the prior mean of log|C]|.

3.2. An exchangeable distribution for a positive definite matrix. Suppose
that C is a priori exchangeable, that is, its prior distribution is invariant under
any permutation of the rows of C together with the same permutation of the
columns. Then take « to possess, conditionally upon p = (u,, )7, a multi-
variate normal distribution with mean vector Xp and covariance matrix A,
where X denotes a g X 2 matrix with unit entries in the first p rows of the
first column, and the last ¢ — p rows of the second column and zeros else-
where. Furthermore, let A be diagonal with the first p diagonal elements
equal to o2, and the remaining diagonal elements equal to 3. This specifica-
tion assigns a common prior estimate p; to each diagonal element of A,
together with a common prior estimate u, for each nondiagonal element. It is
possible to express different degrees of belief o; ? and oy 2 in these two prior
estimates, therefore providing a more general prior specification for C than the
exchangeable prior proposed by Chen (1979) and Dickey, Lindley and Press
(1985), who take C~! to possess a Wishart distribution, conditional on a mean
matrix assuming intraclass form and the degrees of freedom v. Very general
formulations of an exchangeable distribution for a covariance matrix are
indicated in Appendix 3.

If p = (uy, o) is unknown, then the above assumptions may be extended
by taking w to be uniformly distributed over R2. Under the likelihood approxi-
mation (2.12), the posterior distribution of w given o and o3 is now bivariate
normal with mean vector

_11-1 _
(3.3) w = [X7(Q 1+ 4)TX| XT(Q L+ A) T,
and covariance matrix

(3.4) G=[x7@"+4)7X] o
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The corresponding distribution of « is multivariate normal with mean
vector

(3.5) of = (Q+ A1) QA+ A IXp¥)
and covariance matrix
(3.6) A = A* + A*ATIXGXTA A%,

where A* is defined in (3.2). The posterior smoothing of A provided by (3.5)
now depends upon the specification of two ““smoothing parameters” o2 and
oZ. However, these prior parameters may themselves be identified from the
current data (see Section 4). They measure the closeness of the corresponding
estimate for A to intraclass form. When of and o3 are specified, the exact
posterior distribution will always remain proper, because the posterior density
of a is proportional to the product of the likelihood and a nonnegative
function whose maximum value is finite and because the posterior distribution

under a uniform prior for « is proper.

3.3. Representing uncertainty in a hypothesis of diagonality. Instead of
assuming a uniform distribution for p = (u;, u,)7 in the assessment of the
preceding exchangeable prior distribution, it might sometimes be appropriate
to let 02 > » and set u, = 0, in which case w, need not be specified. This
represents prior information that the statistician thinks that A and C may be
diagonal, but that he is unsure regarding his hypothesis. The remaining prior
parameter o2 = 02 measures the uncertainty in the diagonal hypothesis.
Under likelihood approximation (2.12), the posterior distribution of « given o2
is now multivariate normal with mean vector

(3.7) o = (Q+ H) 'Qa,
and covariance matrix
(3.8) *=(Q+H),

where H is the ¢ X ¢ matrix with last ¢ — p diagonal elements equal to o2

and all other elements equal to zero.

3.4. Some useful features. The above prior formulations possess the possi-
ble disadvantage that A = logC does not contain elements which possess
obvious meaning; thus creating obstacles to the formulation of prior opinions
regarding A. They however provide Bayesians with the following three useful
features:

1. The exchangeable prior distribution, previously described, which should
frequently be completely meaningful [either for C or some rotation GCG”
- of C with log(GCGT) = GAGT] unless it is necessary to subjectively assess
the prior variances o2 and o3.

2. For a general multivariate normal prior for «, with mean vector £ and
covariance matrix A, availability of exact calculations via Monte Carlo
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simulations for the prior density and moments of any element of C, for the
bivariate prior density of any two elements or for the prior density of any
scalar or vector function n = g(C). A subjective Bayesian can therefore
construct and consider different choices of £ and A by comparing corre-
sponding densities and joint densities for elements of C, using modern
software for computer graphics. Alternatively, a specified prior distribution
for C can be converted, via Monte Carlo simulations, into a prior distribu-
tion for a.

3. A prior dependency structure, which may be more useful than the specifi-
cation of prior correlations between elements of C, since the latter cannot
always be regarded as linearly related. The normalizing transformation
A = log C permits the representation of relationships between the parame-
ters by prior correlations between elements of A The elements of A would
appear (consider for example the special case when C is diagonal) to be
quite amenable to linear prior relationships. This parallels ideas discussed
by Leonard (1973) who considered prior correlations between multivariate
logits, transforming the probabilities in a histogram.

3.5. Several parallel time series. Suppose that the elements of y,,...,y,
represent n parallel time series, each observed at p time points. Then the
prior mean vector £ = &£(n) might be specified by £ = vec(A ) with A, = logC,,
where C, represents a common hypothesized covariance structure for the y;
(e.g., the covariance matrix of a first order autoregressive process) and the
elements of p are unknown parameters appearing in this covariance structure,
for example, the correlation and variance parameters appearing in the first
order autoregressive covariance function. The prior covariance matrix A = A({)
of a can be specified by assigning sensible prior correlations (e.g., based upon
autocorrelations from a spatial process) to pairs of elements of a (i.e., the
upper triangular elements of A), depending upon parameters {. This example
illustrates the immense flexibility of the prior assumptions.

3.6. Prior structures with unknown prior parameters. As a generalization
of the preceding multivariate normal prior distribution for «, for situations
where it is difficult to fully specify the mean vector and covariance matrix of
this distribution, the user can consider the hierarchical prior distribution for «
described in the following two stages:

StaGE 1. Given p and &, a possesses a multivariate normal prior distribu-
tion with mean vector

£=&(n)
and covariance matrix
A-AD),
where p and { are unknown /; X 1 and [, X 1 vectors and &(-) and A(-) are

specified “prior structures.” The dimensions /; and [/, should be taken to be
small when respectively compared with p and q.
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STAGE 2. p and { possess density m(p, {) for p € R and { € R'2.

This hierarchical distribution provides a very broad paradigm. Some further
special cases of prior structures, which can be employed at the first stage of the
distribution, are:

1. The generalized linear model

(3.9) £=Xp
and
(3.10) ].OgA = glwl + - +§12W12,

where X is a specified g X [; matrix, and the W, are specified g X q
matrices. ’

2. With & = vec(A ), with A, = logC, and C,, several meaningful choices of
C, = C,(¢) are described by Chen (1979). In particular, special forms for C
occurring in factor analysis, or structural equation models or relating to an
assumption of equal eigenvalues, can be incorporated into C, as prior
structures or “prior hypotheses’ for C.

4. Hierarchical and empirical Bayes procedures. Consider, for sim-
plicity, the special case of the hierarchical prior assumptions of Section 3,
where £ satisfies (3.11), A = A(Y), p is uniformly distributed over R‘* and
independent of ¢, and { possesses prior density m({) for { € R'2. Under the
likelihood approximation (2.12), the posterior distribution of a, given A is now
multivariate normal with mean vector a* and covariance matrix A defined in
(8.7) and (3.8), respectively. Moreover, the posterior density of { is

(4.1) ™ (Lly) « m(§)I*(Lly) L€ R",
where the “integrated likelihood” contribution to (4.1) is

(4.2)  I*(tly) « Q7 + AITV?GIY? exp{— 3A"Q*A}  { € R%,
where G is defined in (3.6), A = A({) and
(4.3) Q= (Q'+A) 'XGXT(Ql+4) .

Hence, the posterior distribution and moments of «, unconditional upon &,
may be computed by appropriate numerical integrations of this distribution,
conditional on A = A({) with respect to the posterior density (4.1). Note that,
if 7 (Lly) and m,(ly) denote the posterior densities of { under two different
prior assessments for {, then the unconditional posterior densities 7,(7nly) and
mo(nly) of any parameter of interest n, which is a function of «, satisfy

(44)  [lmi(nly) = mo(nly)|dn < [|mi(Lly) - mo(Ly)|dL,

where the integrations should be taken over all possible realizations of n and
{. The inequality (4.4) indicates that the hierarchical Bayes procedures are
reasonably robust under modest changes in the prior assessment for {.
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If, however, an improper distribution is chosen for { in the prior assess-
ment, it should be carefully checked, for example, using the importance
sampling techniques of Section 7, that the integral, over { € R’ of the expres-
sion on the right-hand side of (4.2) is finite. For example, when A depends
upon two prior parameters o and o7, and follows the structure assumed for
the exchangeable prior distribution in Section 4, log-uniform distributions for
o2 and o2 would invariably lead to an improper posterior distribution.
However, in particular numerical examples with p > 4, uniform distributions
for 02 and o7 in the prior assessment, can lead to a proper posterior
distribution. Strawderman (1971) and Efron and Morris (1973) show that a
uniform distribution for a first stage variance of a prior distribution can lead
to estimators for normal means with excellent mean squared error properties.

If, following Dempster, Laird and Rubin (1977), Chen (1979), Haff (1980)
and Morris (1983), an empirical Bayes approach is required, avoiding some of
the complications of a full hierarchical Bayes approach, the integrated likeli-
hood (4.2) can be maximized numerically providing an (approximate) inte-
grated likelihood estimate ¢ for ¢. Then £ can be substituted for ¢ in the
approximate multivariate normal posterior distribution for «, given ¢, provid-
ing empirical Bayes estimates and empirical Bayes intervals for elements of .
For further discussion of this device involving marginal modes, but in a
Bayesian context, see O’Hagan (1976).

5. Investigating the intraclass hypothesis. It is possible to investi-
gate the hypothesis that A, and hence C, follows intraclass form by considering
the posterior distribution of the ‘“parametric residual’’ vector
(5.1) p=a—Xp,
where p = (g, u5)7, and X assumes the special structure introduced in the
fourth paragraph of Section 3. Note that Xp represents our hypothesized
model, and that the elements of p measure individual deviations from this
hypothesis. It is similarly possible to represent deviations from other hypothe-
sized structures for C, for example, the diagonal hypothesis introduced in
Section 3.

Given o7 and o2, the likelihood approximation (2.12) and the prior assump-
tions of Section 3, the posterior distribution of p is multivariate normal with
mean vector

(5.2) w, = (@ + A7) QA — Xp¥)
with p* defined in (3.5), and covariance matrix
(5.3) Ap = A* + A*QXGXTQA*

with G and A* described in (3.6) and (3.10). Therefore, the unconditional
posterior density, of any element of p, can be approximated by averaging its
univariate normal density, given o2 and o2, with respect to the density (4.1),
but with ¢ = (02, 02)T. This permits the statistician to infer whether any
individual residual is substantially different from zero. See Leonard and
Novick (1986) and Albert (1988) for fuller discussions of this type of procedure.
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Following Cohen (1974), Leonard and Ord (1976) and Leonard (1977), an
overall model check may be developed by considering a preliminary test
estimator for a of the form

A, for A € Cp,

(5.4) o= X, for A& Chp,
for some 2 X 1 vector . and critical region Cy. For A & Cj, & corresponds to
choices of A and C assuming intraclass form. If A € Cj, then & represents a
general unconstrained alternative hypothesis, corresponding to the choice of S
to estimate C. The Bayes choice of the critical region Cp under the subclass
(5.4) of estimators, and the quadratic loss function

(5.5) L(a,0)=(a—a) (&-a),

for estimators & of a is straightforward to evaluate. Let «* denote the
unconditional posterior mean vector of a, and assume that the posterior
covariance matrix of a exists. Then the optimal choices of p and Cj are

(5.6) i = (XTX) 'X7a*
and

(5.7) Cp = {A:T(A) = 1},
where

(5.8)  T(A) =e*"[I, - X(X"X) X7 |a*/(a* - 1) (e* 1),

In particular, a high value for the statistic in (5.8) discredits the null
hypothesis. Similar methods may be used to investigate the fit of the general-
ized linear model proposed in Section 9.

6. Incorporating prior information for the mean vector. Suppose
now that y,,...,y, constitute a random sample from a multivariate normal
distribution with unknown mean vector 0 and covariance matrix C, so that the
likelihood of 0 and C is

1(8,Cly) = (27) "/AC| "/ exp{—étr[{U +n(0 — §)(0 — y)T}C—l]}
0 € RP,C e 2%,

where U = Z(y; — ¥)(y; — YT and § is sample mean vector. Assume that U is
observed to be positive definite.

The usual conjugate prior distribution for 6 and C involves a rather
restrictive assumption that the conditional distribution of 6, given C, is
multivariate normal with covariance matrix equal to a scalar multiple of C. Let
po denote the prior mean vector of 6, and 77 !C denote the conditional
covariance matrix of 0, given C. If R = C~! has a Wishart distribution with »
degrees of freedom, in the prior assessment, with mean matrix R, then the
corresponding posterior distribution of R is Wishart with v + n degrees of

(6.1)
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freedom, and the inverse of the posterior mean matrix of R is

(6.2) C* = [vRg! + U*| /(v + n),
where
(6.3) nT'U* = n7MU + p(F — o) (F — 1),

with p = 7/(7 + n). The estimator in (6.2) again involves scalar, rather than
matrix, shrinkage factors v/(v + n), and p = 7/(r + n). It depends upon ¥
together with U, following recommendations by Stein (1975). The second term
on the right-hand side of (6.3) causes n~'U* to expand the maximum likeli-
hood estimate n~'U of C, owing to prior information about 0. Then (6.2)
shrinks the expanded maximum likelihood estimator n~'U* towards R, to
take account of the prior information about C. This apparently disconcerting
phenomenon of the expansion of the Bayes estimate of the covariance matrix
can be readily explained by noticing that

(6.4) E(6ly) = (1 - p)¥ + pro
and

(6.5) U* = (1-p)U +pU,,
where

(6.6) U, = Z(yi = we)(y; — lLo)T-

Therefore, n~'U* compromises between the maximum likelihood estimate
of C when 0 is unknown, and the maximum likelihood estimate of C when 0 is
known to be p,. The shrinkage proportion p = 7/(r + n) is the same as the
corresponding proportion in (6.4) for the posterior mean vector of 0.

Consider instead the following general prior formulation:

1. Given C, 0 possesses a multivariate normal prior distribution with mean
vector p, and covariance matrix 7~ 'FTCF, where F is a p X p orthonor-
mal matrix, and p,, 7 and F are specified.

2. With A = logC, a = vec(A) possesses a multivariate normal distribution,
with mean vector ¢ and covariance matrix A.

Then the joint distribution of y,,...,y,, conditional upon A yields an
“integrated likelihood” for A, which may be expressed in the form

L(Aly) = p(yIA) = (2m) "?/21P/2| p exp{ — A} + rFT exp(—A)F| ">

X exp{—3(n + 1)tr A — § tr(Uexp{ —A})}
(6.7) X exp{—%tl‘[()_’ - we)(¥ - lLo)T
X(n~!exp(A) + q-—lFTexp(A)F)_l]>

Using the general computational techniques described in Section 7, it is
possible to calculate the posterior distribution and moments of any function
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n = g(C) of C which is of interest. However, in the special case when F =1 s
(6.7) conveniently reduces to

(6.8) I(Aly) = (27) ""/?pP/%exp{ - in tr(A) — & tr(U* exp{ —A}),

where U* satisfies (6.3) and (6.5). The integrated likelihood (6.8) assumes a
form proportional to (2.1), but with nS replaced by U*. Hence the likelihood
approximations (2.12) and (2.16) are also applicable in this situation, where 0
is unknown. Therefore, the analyses of Sections 3 and 4, which incorporate
prior information about A = log C may be repeated as before. In particular,
under the exchangeable distribution for C introduced in Section 3.2, the
distribution for the elements of 6 will also be exchangeable in the prior
assessment. The Bayes estimates for A will smooth the matrix logarithm of
the expanded term (6.3). Under a uniform prior -for 8 on R?, which is
independent of the prior for A, the analysis of Sections 3 and 4 may again be
employed, but with S replaced by U/(n — 1) and n reduced to n — 1.

7. Bayesian computational methods. Suppose that, in general, a ¢ X 1
vector a has posterior density m(aly) with positive support on R?. Then the
method of importance sampling [e.g., Geweke (1989), Leonard, Hsu and Tsui
(1989) and Hsu, Leonard and Tsui (1991)] computes the exact posterior
expectation hp of any function A(a) of a (Whenever this exists) by simulating
realizations &, &y ag,..., from any other density 7*(aly) with positive
support on R, and calculating

M M
(7.1) hy = kZ h(ak)W(ak)/kZIW(ak) M=1,2,3,...,
=1 =

with
(7.2) W(a) = w(aly) /7*(aly) «a € RY.

Note that the weight function (7.2) need only be specified up to a multiplica-
tive constant, not depending upon a. The first theorem described by Geweke
proves, via the strong law of large numbers, that & ,,, satisfying (7.1), strongly
converges as M — ®, to hy, whenever hy exists. His second theorem proves
that M'/?[h,, — hz] converges in distribution as M — «, to a zero mean
normal variate, whenever the conditions

(7.3) | /RPWZ(a)'tT*(aIy) <
and
(7.4) fRth(a)Wz(a)'n'*(aly) <

are satisfied. If conditions (7.3) and (7.4) are not satisfied, then Geweke
remarks that h,, will still strongly converge to hj, but that the practical
convergence can (but need not) be both extremely slow and difficult to check,
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as the value of h, can occasionally change substantially as M increases.
Computations by Hsu, Leonard and Tsui (1991) in fact suggest that closeness
of hy to hy for finite M can still be good in practical terms, unless a very
unlucky realization of a occurs, if a reasonable preliminary transformation of
the parameters (in our case the logarithmic matrix transformation) has been
chosen to ensure that a convenient choice of the importance function 7*(aly)
is available which is reasonably close to 7w (aly). If there are differences in the
tails of these densities, it is of course better for the tails of 7*(aly) to be
thicker than the tails of m(aly), so that the weight function (7.2) is less likely
to occasionally assume extremely high values.

First consider the problem of computing the posterior distribution function
(c.d.f) A (n) of any parameter n = g(C) = g*(a) of interest, when a = vec(A)
has a prior distribution which is uniform over R?, and w(aly) is proportional
to the likelihood function in (2.1). In this case, set h(a) = I[g*(a) < 7], where
I(A) is the indicator function for the set A. The importance function,

(7.5) m*(aly) =t [w, N, 0Q/(® + q)] a € RY

is recommended, that is a multivariate ¢ density with « degrees of freedom,
mean vector A and precision matrix vQ/(w + q), where A and Q, respec-
tively, denote the maximum likelihood vector of a and the likelihood informa-
tion matrix (2.13). Reducing the value of w can, in practical terms, reduce the
fluctuations of the series (7.1). However, too small a value of w can slow down
the convergence. A sensible pragmatic choice of w, which ensures, if possible,
fast practical convergence of the series (7.1), is therefore recommended.

The importance function (7.5) may be developed from the exact posterior
density w(aly), by exponentiating w(aly) to the power —2/(w + q), expanding
in a Taylor Series about « = A, neglecting cubic and higher terms and expo-
nentiating to the power —(w + ¢)/2. This is a special case of a more general
method described by Leonard, Hsu and Ritter (1993). For the numerical
examples of Section 8, reasonably fast convergence is available with v = 30,
and very similar results were obtained with w = , though this choice is not in
general recommended. Among many other applications of this procedure, it
permits the computation of the exact posterior mean vector A and covariance
matrix Q !, under a uniform prior for «, leading to the finite sample refine-
ment (2.16) to the likelihood function (2.12). The computations in Section 8
are based upon M = 40,000 simulations, providing practical convergence for
the data in Section 8, within a degree of tolerance of about 0.005 for all
posterior c.d.f.’s, and convergence to about three significant figures for the
posterior means and variances (if they exist) of many continuous functions
h(a) of a«. The simulations were replicated several times with very similar
results; the results reported assume w = .

Next consider the prior informative analysis discussed in Section 4, where a
possesses a multivariate normal prior distribution with specified mean vector &
and covariance matrix A, so that 7(aly) multiplies the likelihood contribution
by a factor proportional to exp{—(a — £)"A~Ya — £)/2}. In this case, the
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importance function
(7.6) 7*(aly) = t,(0, & 0A /(0 +q)) acRC

is recommended, where £ and A replace A and Q in the expressions for £* and
A* in (3.1) and (3.2) by the previously computed quantities A and Q. The
density in (7.6) may be developed from the current w(aly), by noting that,
under the likelihood approximation (2.15) € and A~! are the posterior mode
vector and information matrix of «, and obtaining a second order Taylor series
approximation of the type considered in the previous paragraph of the present
section. Again, = 30 or w = ® can suffice when computing the exact poste-
rior distribution of any parameter of interest. Very similar procedures may be
employed when £* and A* are replaced by the vector and matrix in (3.7) and
(3.8) and for the exact version of the empirical Bayes procedures of Section 4,
once the vector { of prior parameters has been estimated.

Next, consider the problem of computing the exact version of the integrated
likelihood for ¢ in (4.2). The exact integrated likelihood may be represented in
the form

(7.7) I(Lly) x Em(alt) { € R,

where the expectation is with respect to the posterior distribution for , under
a uniform prior for a, and

(78)  m(alf) o |AI"2XTATIX|" "/ exp{—ja"Ra}  a€RY,
with A = A({) and
(7.9) R =RA 'R,

with R = I, — X(X"A~'X)~'X". In this case, the importance function in (7.5)
is again recommended. The general importance sampling procedure may now
be applied for any fixed {, but with A(a) o m(all), and W(a) = l(aly) /7*(aly).

Hierarchical Bayes solutions, which integrate the posterior density of «
given {, with respect to a posterior density of {, are typically overtedious to
compute exactly. However, if the likelihood approximation (2.16) can be shown
to be accurate, then all the procedures described in this paper based on (2.16)
should also be reasonably accurate. Importance sampling techniques can be
used to compare different components of these approximations with the exact
results. The integrations with respect to { can then be performed, under
approximation (2.16), either using numerical integrations or further impor-
tance sampling techniques. The procedures recommended here may be con-
trasted with the alternative methodologies recommended by Kass and Steffey
(1989), which appear to be difficult to apply in the present context.

8. Project Talent American High School data. Consider a subset of
the Project Talent data reported by Flanagan, Davis, Dailey, Shaycott, Orr,
Goldberg and Neyman (1964) and previously analyzed by Cooley and Loynes
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(1971). The data concern n = 78 eighteen year old female twelfth grade
students and their results on the following p = 8 tests: (a) information, part 1
(b) information, part 2 (c) English (d) reading comprehension (e) creativity
(f) mechanical reading (g) abstract reading and (h) mathematics. The scores
were calculated as proportions of the maximum scores possible. The 8 X 1
sample mean vector of scores was y = (0.514,0.496,0.784,0.677, 0.555,
0.446, 0.602, 0.410)7, with respective sample standard deviations (0.118,
0.136,0.085,0.181,0.183,0.168, 0.190, 0.165).

The eigenvalues of the sample covariance matrix S = U/(n — 1) are 0.0024,
0.0028, 0.0074, 0.0117, 0.0141, 0.179, 0.0225 and 0.1189, and the sample
correlation matrix is reported as matrix Al of Appendix 4, where matrix A2 is
A = log S. Note that A maximizes the integrated likelihood of A = log C when
the mean vector 0 is also unknown, but a priori uniformly distributed over
RP. Theorem 2 of Appendix 1 tells us that the square roots of the diagonal
terms of the inverse of the matrix Q in (2.13) provide approximate estimated
standard errors for the elements of A. These are summarized by matrix A3.

The calculations for A and Q lead to an approximation of the form (2.12) for
the integrated likelihood of & under a uniform prior for 6. Using the tech-
niques of Section 7, the exact posterior mean matrix A of A (see matrix A4),
and the exact posterior covariance matrix Q! of a = vec(A) were calculated
under a uniform prior for a. Matrix A5 reports the exact posterior standard
errors for the corresponding elements of A. The remarkable closeness between
matrices A2 and A4 and between A3 and A5 suggests reasonable adequacy of
the likelihood approximation (2.12). However, ‘there are slight differences
between the diagonal elements of A2 and the corresponding diagonal elements
of A4. The likelihood approximation (2.16) with A = vec A and Q defined
above, is therefore preferable.

Histogram (a) of Figure 1 represents the exact posterior density of the
(1, Dth element a,; of A, curve (b) represents the approximate normal curve
based on (2.16) and curve (c) represents a similar curve based on (2.12). The
result for likelihood approximation (2.16) is extremely accurate. Similar results
were obtained for all diagonal elements of A. For the off-diagonal elements,
both approximations (2.12) and (2.16) were similarly accurate, when compared
with the exact result to curve (b) of Figure 1. Curve (a) of Figure 2 describes
the exact posterior c.d.f. of the (1,2)th correlation p,,, and curve (b) was
computed via approximation (2.16). Results of similar accuracy were obtained
for many parameters of interest, including the generalized variance [C|. This
provides an empirical finite sample size validation for the likelihood approxi-
mation (2.16).

Next consider the exchangeable prior formulation of Section 3.2, but where
the prior parameters w;, u,, o and o7 are a priori independent and uni-
formly distributed over their ranges of possible values. The integrated likeli-
hood (5.2) was maximized with { = (k,k;), k; = logof and «k, = logoZ,
yielding the maximizing values &, = —0.265 and k, = —3.804. Less smooth-
ing of the diagonal terms of A is therefore recommended when compared with
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Fic. 1. Posterior density of a,; (a) histogram, exact, (b) using likelihood approximation (2.16),
and (c) using likelihood approximation (2.12).

the diagonal terms. The above maximization was completed by inspection of a
bivariate contour plot of the integrated likelihood of k; and k, (not reported
here) which also permits more detailed inference regarding «; and «,.

Curves (¢) and (d) of Figure 2 provide our exact and approximate [i.e., based
upon (2.16)] posterior c.d.f.’s for the correlation p;, under the above informa-
tive prior when «; = —0.265 and k, = —3.804, and these are again reassuring
close. Curve (c) provides the corresponding exact “‘empirical Bayes” posterior
density of p,,, and it is possible to calculate a similar density for any parame-
ter of interest. Under these choices of x; and k,, the exact posterior mean
matrix of A and the matrix of corresponding exact posterior deviations are
recorded as matrices A6 and A7. Comparison of A6 with A4 and A5 with A3,
demonstrates the effect of the exchangeable prior assumptions, when com-
pared with the vague prior situation. The diagonal elements of A6 tend to be
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Fic. 2. Posterior c.d.f. of correlation p,, (2) exact c.d.f. under uniform prior, (b) using uniform
prior and likelihood approximation (2.16), (c) exact c.d.f. using empirical exchangeable prior, and
(d) using exchangeable prior and likelihood approximation (2.16).

closer together than the diagonal elements of A4 and similarly the off-diagonal
elements. Most of the standard deviations in A7 are smaller than the corre-
sponding elements of A6.

The posterior means of the population standard deviation were, respec-
tively, 0.118, 0.137, 0.098, 0.180, 0.186, 0.171, 0.195 and 0.167, very close to
the sample standard deviation previously described. However, matrix A8,
which describes the exact posterior means of the population correlations,
substantially smooths the sample correlation matrix Al. Matrix A9 of Ap-
pendix 4 denotes the posterior mean matrix for A based upon the full hierar-
chical prior, described above, likelihood approximation (2.16) and numerical
integrations involving the corresponding posterior density for o? and 3.
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9. Applications and extensions in multivariate analysis. The poste-
rior smoothing of C and finite sample inference techniques yield numerous
potential applications and possible extensions in multivariate analysis, which
are currently being considered by the co-authors, for example, multiple linear
regression: (a) The prediction of one variable, via its conditional distribution,
given the other p — 1 variables [see Anderson (1984), page 28]. (b) Smoothing
a quadratic discrimination function, with all interactions present (Anderson,
page 142). (¢) Smoothing the eigenvalues in principal components analysis
(Anderson, page 272). (d) The development of a generalized linear model of the
form

(9.1) logC,; = a,U;; + -+ +a,U;, i=1,...,n,

for several unequal covariance matrices C,,...,C,, which may be incorpo-
rated with a linear model for the corresponding mean vectors 9,,...,0,, of
observation vectors y;, . ..,y,. The co-authors, Tom Chiu and Kam-Wah Tsui,
are currently developing this important model in detail.

APPENDIX 1

Asymptotic results. Owing to the uniqueness of the Taylor series expan-
sion leading to (2.12) and (2.13), the matrix Q satisfying (2.13) is also the exact
likelihood information matrix

(1) Q = —9*log I(aly) /3(aa”) s

of a. As the likelihood of « is twice differentiable with a unique maximum at
A = log S, the matrix Q is positive definite. The following theorem is a direct
consequence of the Taylor series expansion, and a general result for asymp-
totic posterior normality described by Johnson (1970). Note that both ETAE,
and ETAE, in the expression for B in (2.8) estimate the matrix logarithm of
the covariance matrix of the rotated vectors E”y;.

THEOREM 1. Suppose that a possesses a prior density with positive support
on RY. Then:

1. As n > o, Q/%(a — N\) converges in posterior distribution with sampling
probability one, to a q-dimensional standardized spherical normal random
vector.

2. Rotations to asymptotic posterior independence. As n — o, the q upper
triangular elements of the matrix n'/?B, where B satisfies (2.8), converge

- in posterior distribution with sampling probability 1, to q independent zero
mean normal variables. For i = 1,..., p, the ith diagonal element b;; has
limiting variance equal to 2. For i # j, b;; has limiting variance equal to
the limit of §[j1 satisfying (2.11), which exists with sampling probability 1.
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Note that Fisher’s expected information matrix for « is

(2) Q- any £ 5 +n ¥ gijfijfiTj’
i i, jii<j

where the £ ; and f; ; replace the d;; and e, in the expression for ¢, jandf;; in
(2.11) and (2.14) by the corresponding eigenvalues and normalized eigenvec-
tors of the true covariance matrix C. This result may be obtained by using
(2.5) to expand the log of the likelihood (2.1) in a Taylor series about an
arbitrary symmetric matrix A = A . This provides complex expressions for all
first and second derivatives of the log-likelihood. Then S should be replaced by
its expectation C leading to simplifications along the lines recommended in
(2.7-(2.14). [The first derivatives obtained by this procedure, can be used to
obtain the Jacobian of the transformation « = vec(log C). By transforming
back to C, and referring to the expectation of the Jacobian term with respect
to an inverted Wishart distribution, it is therefore straightforward to show
that the exact likelihood (2.1) integrates over 9, to a finite quantity, as
required in Sections 2 and 3.2.]

Note that, as n — = the elements of n~'Q are strongly consistent for the
corresponding elements of n~1Q. Therefore part (b) of the following theorem
is a consequence of Slutsky’s theorem, and part (a), which just comprises
standard maximum likelihood asymptotics (e.g., based on asymptotic normal-
ity of the first derivative with respect to a of the log-likelihood of a).

THEOREM 2. (a) As n — o, QV2(\ — &) converges in sampling distribu-
tion to a q-dimensional standardized spherical normal random vector.
(b) As n — =, Q2N — &) converges in the same manner.

COROLLARY 1. As n — o,
(3) n'’?(logS — logC) -, EWE7,
where E satisfied (1.3), and W is a symmetric matrix whose upper triangular
elements are independent zero mean normal variates. The diagonal elements of
W have variance equal to two, and the off-diagonal element w;; has variance

~

equal to &, ;, where éi ; is defined above.

Corollary 1 is just a restatement of part (a) of Theorem 2, but with the
elements of the vector A — « rearranged into matrix form. The theorem
provides a multivariate normal approximation for the vectorization o =
vec(log C) of the matrix logarithm of a random Wishart matrix S. It may also
be used to obtain a similar approximation to the posterior density of logC
when C~! possesses a conjugate Wishart prior density. This would facilitate
the comparison of several covariance matrices [see Press (1992)].

APPENDIX 2

Risk properties. Consider first the special case where 8§ = 0 and C =
diag(éy, ..., ¢,). Then, following Bartlett and Kendall (1946), the distribution
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of [;, the log of the jth diagonal element of S is for n > 10, closely approxi-
mated by a normal distribution with mean a; = log ¢; and variance 2n~ L
Consider the empirical Bayes shrinkage estimators

(1) af=al;+(1-a) j=1,...,p,
where
(2) 1—a')=min[2n‘1p/2(lj—l-)2,1].

Efron and Morris (1973) develop excellent mean squared error (mse) proper-
ties for the af (assuming that the above normal approximation for the
distribution of l is exact), which are valid for any p > 3. For large p, the mse
of the af multlphes the approximate mse = 2pn ! of the maximum likelihood
estimators &; = 1; by a factor equal to Z(a; — @)*/[Z(a; — @)® + 2pn~'] [see
also Leonard ( 1976)] Efron and Morris (1976) and Haff (1980) obtain similarly
convincing properties for shrinkage estimators of the form (1.2), under a
variety of choices of loss function for a general covariance matrix C.

The estimator A* for A corresponding to (3.7) and 6 = 0, takes the form of
a matrix weighted average of A = log(U/n) with U = L,y,y7, and a matrix of
intraclass form, whose elements are themselves estimated from the data. In
Tables 1, 2 and 3 we report the total mse’s for the diagonal terms of A* and
the nondiagonal terms of A*, for various choices of the parameters «; = log o2
and «, = log o7, three different choices C;, C, and C;, of the true covariance
matrix C, p = 6 and n = 50. The numbers in parentheses give the correspond-
ing total mse’s for the diagonal terms of C* = exp(A*) and the nondiagonal
terms. These results permit consideration of the risk properties of either A* or
C* under any loss function, which is a linear combination of the total of the
diagonal squared errors and the total of the nondiagonal squared errors for
estimators of A or C. All results are based upon 10,000 simulations with the
error of simulation measured by a coefficient of variation of less than 1%, and
refer to the exact distribution of U.

The results in Table 1 correspond to the choice for the true covariance
matrix C of an intraclass matrix C;, with all variances equal to two and unit
covariances. The maximum likelihood estimator A = log(U /50) of A possessed
diagonal component of total risk equal to 0.273, and nondiagonal component of
total risk equal to 0.307. However, the estimator A = log(f]/ 47) adjusted
these components to 0.242 and 0.307 respectively, and U /47 was the best
integer divisor of U in terms of both components of the mse for estimators of
A. However, the approximate Bayes estimators (3.7), substantially improve
both components of risk for a large range of values of «; and k, when
compared with any integer divisor of U. We anticipate that the exact posterior
mean matrix of A would possess even better risk properties, but these are
ovértedious to compute. The maximum likelihood estimator S = U/50 pos-
sessed diagonal and nondiagonal components of total risk equal to 0.960 and
1.501 respectively, and the best integer divisor of U, when considering compo-
nents of mse for estimators of C, was U/53; the latter reduced the compo-
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TABLE 1
Components of risk (covariance matrix C,)*

Ky
-1 0 1 2

Kg -2

-2

0.197
(0.764
0.198
(0.778
0.198
(0.785
0.198
(0.788
0.198
(0.789

0.240
1.339)
0.278
1.420)
0.295
1.455)
0.301
1.469)
0.304
1.474)

0.238
(0.856
0.238
(0.871
0.239
(0.878
0.239
(0.880
0.239
(0.881

0.241
1.353)
0.280
1.433)
0.296
1.468)
0.302
1.482)
0.305
1.487)

0.258
(0.903
0.259
(0.918
0.259
(0.924
0.259
(0.927
0.259
(0.928

0.241
1.360)
0.280
1.440)
0.296
1.475)
0.303
1.488)
0.305
1.494)

0.266
(0.923
0.267
(0.937
0.267
(0.944
0.267
(0.946
0.267
(0.947

0.242
1.363)
0.280
1.443)
0.296
1.478)
0.303
1.491)
0.305
1.496)

0.269
(0.930
0.270
(0.945
0.270
(0.951
0.271
(0.954
0.271
(0.955

0.242
1.364)
0.280
1.444)
0.296
1.479)
0.303
1.492)
0.305
1.497)

!For each value of k; and kg, the figure in the first column denotes the diagonal component of risk
for estimators of A, and the figure in the second column denotes the nondiagonal component of
risk. The figures in parentheses describe similar quantities for estimators of C.

nents of C to 0.930 and 1.384. The entries in parentheses in Table 1 illustrate
that our Bayesian estimator C* = exp(A*) performs much better for many
values of k; and «,. '

The results in Table 2 involve a choice C, of the true covariance matrix C
which is of autoregressive form, with unit variances, and (j, £)th correlation
equal to 0.7V %, However, the approximate Bayes estimator (3.7) still shrinks
A towards intraclass form, that is, toward an incorrect hypothesis. The
diagonal and nondiagonal components of total risk for A now equal 0.259 and
0.290, while A =log(U/47) adjusts these to 0.228 and 0.290. Note that

TABLE 2
Components of risk (covariance matrix C,)!

Ky )
-1 0 1 2

Ko -2

-2

0.196
(0.193
0.197
(0.199
0.198
(0.204
0.198
(0.206
0.198
(0.207

0.242
0.333)
0.264
0.349)
0.278
0.361)
0.284
0.361)
0.286
0.368)

0.227
(0.209
0.229
(0.216
0.230
(0.221
0.230
(0.223
0.230
(0.224

0.242
0.336)
0.265
0.353)
0.279
0.361)
0.285
0.369)
0.287
0.372)

0.244
(0.217
0.246
(0.225
0.247
(0.230
0.247
(0.232
0.247
(0.233

0.242
0.338)
0.265
0.355)
0.280
0.366)
0.286
0.371)
0.288
0.374)

0.250
(0.221
0.253
(0.228
0.254
(0.234
0.254
(0.236
0.255
(0.237

0.242
0.339)
0.265
0.355)
0.279
0.367)
0.286
0.372)
0.288
0.374)

0.253
(0.222
0.256
(0.230
0.257
(0.235
0.257
(0.238
0.257
(0.239

0.242
0.339)
0.265
0.356)
0.281
0.367)
0.286
0.373)
0.288
0.375)

'For each value of k, and kg, the figure in the first column denotes the diagonal component of risk
for estimators of A, and the figure in the second column denotes the nondiagonal component of
risk. The figures in parentheses describe similar quantities for estimators of C.
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TABLE 3
Components of risk (covariance matrix C3)!

Ky
Ko -2 -1 0 1 2

-2 0.662  0.181 0.304 0.186 0.261 0.190 0.265 0.192 0.269 0.192
(211.0 144.8) (1085 93.7) (872 83.0) (846 81.6) (845 81.5)

-1 0.669  0.205 0.307 0.210 0.263 0.214 0.266 0.216 0270 0.217
(192.9 129.3) (101.3 886) (865 839) (86.7 85.0) (87.8 86.0)

0 0.671  0.215 0.308 0221 0264 0225 0267 0227 0271 0.228
(186.1 123.9) (99.0 876) (869 853) (883 87.6) (89.9 889

1 0.672  0.219 0.309 0.225 0.264 0.229 0267 0232 0271 0.232
(183.5 122.00 (1982 87.3) (871 86.1) (89.0 88.7) (90.8 90.3)

2 0672  0.221 0.309 0.227 0.264 0.231 0.267 0233 0271 0.234
(182.6 121.3) (98.0 87.3) (872 864) (89.3 882 (911 90.8)

1For each value of «; and ko, the figure in the first column denotes the diagonal component of risk
for estimators of A, and the figure in the second column denotes the nondiagonal component of
risk. The figures in parentheses describe similar quantities for estimators of C.

k; = —1 and k= —2 or —1 still lead to choices of A* with superior risk
properties to both A and A. The corresponding components of risk for
S = U/50 were 0.240 and 0.376, and the estimator U /53 reduced these
components to 0.233 and 0.347. However, C* is superior when x; = —2or —1
and k, = —1.

The results in Table 3 are based upon a choice C; of true covariance matrix
C which possesses diagonal terms equal to 1, 4, 9, 16, 25 and 36, and all
correlations equal to 0.7. While we would not anticipate our shrinkages toward
intraclass form to perform well, they can in fact still fare quite reasonably, for
some choices of k, and «k,, indicating that our procedures are potentially
reasonably robust to the choice of hypothesized model. The diagonal and
nondiagonal components of risk for A were 0.274 and 0.236, and for A =
log(U /46) these reduced to 0.242 and 0.236. These values may be compared
with the components of risk for our approximate Bayes estimator when «; = 2
and k, = —2, that is, 0.269 and 0.192. In addition to the values in Table 3, the
choices k; = 2 and k, = —3 yield components of risk equal to 0.266 and 0.151,
respectively.

For covariance matrix Cj, the diagonal and nondiagonal components of risk
for S = U/50 were 92.8 and 92.2, and the multiple U /52 reduced these to
89.0 and 87.2, respectively. The choices k; = 2 and k, = — 2 yield components
of risk 84.5 and 81.5. Our results suggest that, as far as risk properties are
concerned, we can still do well even if we smooth A towards an incorrect null
hypothesis, but that it is always essentially important to carefully judge, via k;
and k,, how much to smooth toward any particular hypothesis. Hence the
hierarchical and empirical Bayes procedures of Section 4 deserve close atten-
tion.



BAYESIAN INFERENCE FOR A COVARIANCE MATRIX 1693
APPENDIX 3

Representations of exchangeable distributions. Suppose that the
upper triangular elements {a; }, of the symmetric matrix A = log C, satisfy

(1) aij=f(/’L’/\L’AJ’AzJB’§'6ij) I‘=1”J’J=1”p’

where 8, ; denotes the Kronecker delta function, f denotes some mapping from
R5 to R' and the p(p + 5)/2 + 1 variables pu;,Ay,...,A, &;,...,&, and
)\AB (i=1,...,j; j=1,...,p) are independent, and each unlformly dis-

trlbuted on (0 1). Then (1) provides a very general exchangeable distribution
for A, and hence for the positive definite matrix C = exp(A), which modifies a
suggestion made by Aldous (1981), by constraining A to be symmetric. The
coauthors and Grant Izmirlian are currently investigating the necessity, as
p — o, for a structure of the form (1).

It can alternatively be assumed that

(2) GeR AN EMELES,  i=1,...,0j=1,...,p,

where u possesses conditional c.d.f. G,, and {A;}, {¢;} and {)\AB} comprise three
independent random samples, condltlonal on thelr respectlve common c.d.f.’s
G,, G4p and G,. A further joint distribution may be assigned to the c.d.f’s G,
G,, G4 and G Again, the distribution of C is exchangeable.

APPENDIX 4

Numerical results. In Section 8, the analysis of the Project Talent data
refers to the following nine matrices.
Matrix A (sample correlation matrix):

0.100 0.760 0.681 0.734 0.608 0.559 0.434 0.647
0.760 0.100 0.598 0.679 0.463 0.489 0.518 0.482
0.681 0.598 0.100 0.663 0.407 0.367 0.401 0.681
0.734 0.679 0.663 0.100 0.591 0.494 0.506 0.631
0.608 0.463 0.407 0.591 0.100 0.517 0.402 0.469
0.559 0.489 0.367 0.494 0.517 0.100 0.548 0.531
0.434 0.518 0.401 0.506 0.402 0.548 0.100 0.493
0.647 0.482 0.681 0.631 0.469 0.531 0.493 0.100

Matrix A2 (maximum 1ikelihood matrix A):

—5.356 0.694 0.378 0.475 0.395 0.299 0.018 0.405
0.694 —4.692 0.304 0.504 0.139 0.219 0.355 0.056
0.378 0.304 —5.720 0.391 0.047 —0.034 0.092 0.527
0.475 0.504 0.391 -—4.115 0.453 0.189 0.306 0.441
0.395 0.139 0.047 0.453 —3.772 0.363 0.190 0.210
0.299 0.219 -0.034 0.189 0.363 —4.004 0.438 0.351
0.018 0.355 0.092 0.306 0.190 0.438 —3.656 0.316
0.405 0.056 0.527 0.441 0.210 0.351 0.316 —4.158
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Matrix A3 (estimated standard errors for A):

0.150 0.107 0.108 0.102 0.099 0.101 0.097 0.102
0.107 0.151 0.105 0.107 0.105 0.106 0.105 0.106
0.108 0.105 0.155 0.100 0.096 0.099 0.094 0.101
0.102 0.107 0.100 0.149 0.108 0.108 0.107 0.108
0.099 0.105 0.096 0.108 0.154 0.110 0.110 0.108
0.101 0.106 0.099 0.108 0.110 0.154 0.110 0.109
0.097 0.105 0.094 0.107 0.110 0.110 0.155 0.108
0.102 0.106 0.101 0.108 0.108 0.109 0.108 0.152

Matrix A4 (posterior expectation of A under uniform prior):

—5.292 0.695 0.379 0.473 0.395 0.294 0.014 0.408
0.695 —4.630 0.302 0.501 0.135 0.219 0.354 0.052
0.379 0.302 —5.657 0.392 0.061 —0:033 0.092 0.527
0.473 0.501 0.392 —4.057 0.453 0.189 0.307 0.440
0.395 0.136 0.051 0.453 —3.709 0.363 0.186 0.211
0.294 0.219 -0.033 0.189 0.363 —3.940 0.433 0.350
0.014 0.353 0.092 0.307 0.186 0.433 —3.588 0.320
0.408 0.052 0.527 0.440 0.211 0.350 0.320 —4.097

Matrix A5 (posterior standard errors for A under uniform prior):

0.152 0.108 0.112 0.104 0.101 0.105 0.100 0.104
0.108 0.154 0.110 0.110 0.108 0.108 0.109 0.108
0.112 0.110 0.160 0.104 0.101 0.101 0.097 0.104
0.104 0.110 0.104 0.147 0.111 0.110 0.108 0.110
0.101 0.108 0.101 0.111 0.162 0.114 0.114 0.109
0.105 0.108 0.101 0.110 0.114 0.170 0.114 0.113
0.100 0.109 0.097 0.108 0.114 0.114 0.167 0.112
0.104 0.108 0.104 0.110 0.109 0.113 0.112 0.156

Matrix A6 (posterior expectation of A under empirical exchangeable prior):

-5.210 0.528 0.342 0.421 0.363 0.300 0.133 0.365
0.528 —4.619 0.289 0.420 0.204 0.249 0.330 0.160
0.342 0.289 —5.599 0.340 0.125 0.077 0.153 0.422
0.421 0.420 0.340 —4.056 0.393 0.240 0.307 0.386
0.363 0.204 0.125 0.394 —3.767 0.332 0.232 0.248
0.300 0.249 0.077 0.240 0.332 -—3.981 0.380 0.332
0.133 0.330 0.153 0.307 0.232 0.380 —3.649 0.312
0.365 0.160 0.422 0.386 0.248 0.332 0.312 —-4.121
Matrix A7 (posterior standard errors for A under empirical exchangeable
prior): :
0.153 0.088 0.089 0.085 0.082 0.084 0.081 0.084
0.088 0.150 0.085 0.086 0.084 0.085 0.085 0.085
0.089 0.085 0.158 0.082 0.080 0.081 0.080 0.084
0.085 0.086 0.082 0.146 0.086 0.086 0.086 0.087
. 0.082 0.084 0.080 0.086 0.153 0.086 0.086 0.086
0.084 0.085 0.081 0.086 0.086 0.152 0.087 0.086
0.081 0.085 0.080 0.086 0.086 0.087 0.151 0.085
0.084 0.085 0.084 0.087 0.086 0.086 0.085 0.150
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Matrix A8 (posterior expectation of population correlation matrix under
empirical exchangeable prior):

0.100 0.701 0.653 0.680 0.597 0.573 0.487 0.627
0.701 0.100 0.589 0.630 0.489 0.512 0.528 0.506
0.653 0.589 0.100 0.624 0.462 0.445 0.463 0.636
0.680 0.630 0.624 0.100 0.565 0.510 0.514 0.595
0.597 0.489 0462 0.565 0.100 0.509 0.438 0.487
0.573 0.512 0445 0.510 0.509 0.100 0.526 0.532
0.487 0.528 0463 0.514 0.438 0.526 0.100 0.504
0.627 0.506 0.636 0.595 0.487 0.532 0.504 0.100

Matrix A9 (posterior expectation of A under hierarchical exchangeable
prior):

—5.243 0. 550 0.345 0.423 0.370 0.303 0.126 0.376
0.550 —4.640 0.284 0.429 0.196 0.246 0.338 0.147
0.345 0.284 -5.615 0.342 0.126 0.067 0.145 0.432
0.423 0.429 0.342 —4.042 0.398 0.240 0.309 0.393
0.370 0.196 0.126 0.398 —3.743 0.329 0.226 0.246
0.303 0.246 0.067 0.241 0.329 -3.939 0.373 0.332
0.126 0.338 0.145 0.309 0.226 0.373 —3.638 0.314
0.376 0.147 0.432 0.393 0.246 0.332 0.314 —4.118
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ing the exponential matrix transformation, and describing some of the basic
properties of this transformation to Ben Noble for advice concerning Volterra
integral equations and to Dennis Lindley for suggesting the problem to the
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Tsui, Richard Johnson, Christian Ritter, Irwin Guttman, Grant Izmirlian, Jim
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