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INCREASING THE CONFIDENCE IN STUDENT’S
t INTERVAL

By CoNSTANTINOS GOUTIS AND GEORGE CASELLA!

University College London and Cornell University

The usual confidence interval, based on Student’s ¢ distribution, has
conditional confidence that is larger than the nominal confidence level.
Although this fact is known, along with the fact that increased conditional
confidence can be used to improve a confidence assertion, the confidence
assertion of Student’s ¢ interval has never been critically examined. We do
so here, and construct a confidence estimator that allows uniformly higher
confidence in the interval and is closer (than 1 — a) to the indicator of
coverage.

1. Introduction and summary. The usual confidence interval for a
normal mean, when the population variance is unknown, is based on Student’s
¢t distribution. More precisely, let x,, ..., x,, be the realized value of X, ..., X,,,
iid random variables from a normal distribution with unknown mean w and
unknown variance o 2. The set

X—p
(1.1) C(x,s) ={u: <k
s
is a 1 — a confidence interval for w, where
1 n n 9
37:—236“ SZZ_Z(xz_k-)7
ni-1 ni-1

and £ is a constant (based on the ¢ distribution with n — 1 degrees of freedom)
that gives C(Xx, s) coverage probability 1 — a.

The interval (1.1) has constant coverage probability that is equal to the
confidence coefficient (defined as the infimum of the coverage probabilities).
This makes the value 1 — « particularly meaningful as a report of confidence
that C(x, s) covers u. The value 1 — a, however, is independent of the data. If
we observe X =X and S2 = s2, might this new knowledge alter our assess-
ment of confidence in C(Xx, s)? This question originated with Fisher (1956),
who was concerned with the behavior of confidence intervals on recognizable
subsets (subsets of the sample space). A confidence report of 1 — @ may not be
appropriate if there are recognizable subsets on which confidence can be
altered. The confidence coefficient may also not be appropriate if the coverage
probability is not constant since the coverage probability is under-reported.
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[These points are also illustrated by Berger and Wolpert (1989) and Robert and
Casella (1990).]

Many researchers have been concerned with these problems, starting with
Fisher (1956, 1959). Work by Basu (1964, 1981), Buehler (1959), Robinson
(1976, 1977, 1979a, b) also addresses these points. [A review of the develop-
ment of conditional confidence ideas is given by Casella (1990).] A possible
solution to these conditional problems was given by Kiefer (1977), who advo-
cated using estimated (data-dependent) confidence statements.

We consider a confidence procedure to be a pair {(C(x), y(x)), where y(x) is
the reported confidence in the set C(x). We think of C(x) being constructed in
a predetermined way and our goal is to determine a reasonable y(x). We are
concerned whether, for a given X = x, the true parameter is covered by C(x).
We can treat the choice of a confidence report as an estimation problem. In
other words, y(x) is treated as an estimate of the indicator function of
coverage, that is, an estimate of

1, ifoeC(x),
0, if6e¢C(x).

This approach was discussed by Berger (1985a, b, 1988) and taken in Lu and
Berger (1989), George and Casella (1990) and Robert and Casella (1990). The
last three papers are concerned with the usual or recentered [Hwang and
Casella (1982)] confidence sets for a multivariate normal mean.

For a given C(x) the confidence statements will be compared according to
the squared error loss

(1.3) L(v,6,%) = [y(x) — Iw(0)]".

If we are concerned with the performance of y(x) from a frequentist view, we
must evaluate the performance of y(x) by considering the risk function
R(y,0) = EL(y,6,X). A reported confidence y,(x) will be inadmissible if there
is a y,(x) such that R(y,, 8) > R(y,,0) for all 6, with strict inequality for
some 6.

Our approach is closely related to the theory of conditional inference as
formalized by Robinson (1979a, b). Suppose that the set C(x) satisfies P,(6
CX)) =1 — «a for all §, and a set M and & > 0 exist for which

(1.4) P(6eC(X)XeM)>1-a+¢ forallo.

Define y(x) =1 — a + el},(x). Then it is immediate that the procedure
(C(x), y(x)) improves on {C(x),1 —a) in the sense that R(1 — «,0) >
R(y(x), 0) for all 6, with strict inequality for some 6. This is the construction
we use to obtain improved confidence in Student’s ¢, starting from a result by
Brown (1967).

Brown (1967), building on the work of Buehler and Feddersen (1963),
proved that there exists ¢ > 0 and a constant ¢ such that

(1.5) P, o[neC(X,S)X/S|<c]=1-a+e Vpu,oo

(1.2) IC(x)(B) =
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It is interesting to note that Robinson (1976) showed there do not exist
conditioning sets for which the inequality in (1.5) can be reversed. The
existence of a set satisfying the inequality in (1.5) immediately implies that the
confidence report 1 — a can be improved upon, using a data-dependent confi-
dence report y(x/s), where y(x/s) = 1 — a.

The applicability of Brown’s result is limited by the fact that e is only
shown to exist, and thus an improved confidence report cannot be constructed.
A main goal of this paper is to find a computable value ¢, (along with a
constant. ¢) that satisfies (1.5). Once that is done, an improved confidence
statement for the interval (1.1) can be constructed.

Section 2 contains the key result of the paper, the lemma giving an explicit
value of ¢ that satisfies (1.5). The proof of the lemma is extremely lengthy and
occupies the remainder of Section 2. (A detailed reading of the proof is not
necessary to follow the main ideas of the paper.) In Section 3 we show how to
construct improved confidence statements using the lemma of Section 2. We
also apply a Brewster—Zidek-type construction [Brewster and Zidek (1974)] to
exhibit smoother confidence estimators. The size of the gains is also investi-
gated numerically. Section 4 contains a concluding discussion.

2. The construction lemma. In this section we state and prove the
lemma needed to construct an improved estimator of confidence for the
interval (1.1), giving an explicit lower bound on the conditional confidence of
C(x, s).

LEmMA.  Suppose n > 2. Define the constant c* by

k
(2.1) c* = max{k, ——— co}

Vi+kZ -1’

with k given in (1.1) and ¢, satisfying

(64
kE+VE2+1, if3"‘21——<1,
63

CO = -
cot wy, otherwise,

where w is the solution to

n—1 sinw, "7
AT I W

cot? w, sin(3w,)

and F, ,_, is an F random variable with 1 and n — 1 degrees of freedom.
Then for all ¢ > c*,

| X — ul I X| | X|
(23) PM’az S <k S <c ZPO,(TZ — <k
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TaBLE 1
Values of c*
[the Student’s t cutoff point is given in parentheses]

Degrees of freedom 1-a=0.9 1-a=0.95
2 4.359 (2.920) 6.245 (4.303)

4 2.309 (2.132) 1.953 (2.776)

6 2.870 (1.943) 2.416 (2.447)

8 3.341 (1.860) 2.809 (2.306)

10 3.756 (1.812) 3.156 (2.228)

20 5.372 (1.725) 4.510 (2.086)

30 6.606 (1.697) 5.544 (2.042)

40 7.643 (1.684) 6.415 (2.021)

50 8.556 (1.676) 7.180 (2.009)

REMARK. For u = 0, the conditional probability on the right-hand side of
(2.3) does not depend on o2, so the bound is independent of all parameters.
For illustration we present Table 1, a short table of values of c*.

ProoF. Define the two sets
(2.4) K={(%,s):lx—ul/s<k}, C={(x,s):lxl/s<c}].

Following Brown (1967), we will constantly refer to Figure 1 (which is a
reproduction of his Figure 1). The area K is contained in A;A,A, and C is
contained in B;0B,. Since K and C depend only on the ratios X/s, u/s and
w/c, all the probabilities we consider are only functions of w/o. Thus,

A
Do

DY Dy B,

Oy

e’\ Oy G

© M Y

0

X1

Ao = (/A,o)

F1G. 1. Regions used for calculation of conditional coverage probabilities.
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without loss of generality, we can assume o = 1, and because of symmetry, we
can take u > 0.

Let ¢ = cot (k) and w = cot~(c). Since ¢ > k, the lines A,A, and OB,
intersect at @,, while OB, and A,A; do not intersect. Note that ¢ > % is

equivalent to ¢ > w. Also, we have taken A,P 1L OB, and ¢ > k/(V1 + k2 —
1). The latter inequality, by the monotonicity of the cotangent and the identity
cot(m/2 — 2w) = tan(2w) = 2tan w/(1 — (tan w)?), implies ¢ < 7/2 — 2w, or
A,C,P < A,C,P. (The “"” denotes angle.)

Consider the system of polar coordinates with A, as its center. Let r? =
(¥ — w)? + s? and 0 = arctan[s/(% — w)]. The values r and 6 can be consid-
ered values of random variables, R and ®,-with probability density

f(r,0) ar* e "*/2(sin6)" %  r>=0, 0<6<n.

It can be easily seen that R and ©® are independent. Define

() =P{KnCn {0:0 < %}’R =r},

0 0<%}‘R=r},

rlon
ps(r) = {KOCH 10 > g}’R=r},
{ 0:6

> }lR=r},
e ||X| ~ ) p(r) +ps(r)
”(”)‘PM{ s <F = }‘p2<r>+p4(r>

We will omit the dependence on r for notational convenience, whenever no
confusion arises. Obviously,

| X - ul I1X|
P, 5 <k 3 <c}| =E/(p).

If w=0, p(r) is independent of r, 1 —a < p(r) < 1. Define W(w) =
[7/%(sin 8)" 2 d#, then p(r) can be written as

W(e)
W(w)

pa(r) =

pu(r) = P{CN

forr > A,P.

(2.5) p(r) =

=1-—-a+e¢,
which defines ¢,. Observe that for every wu,
(2.6) lim p(r) =1 —a + ¢,.

To show that this limit is a lower bound, we must consider a number of cases.
We will consider two cases depending on the range of ¢ and for each of these
cases there will be four subcases, depending on the range of r.
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Case I: ¢ >k + V1 + k? or, equivalently, ¢ > 2w or A,@Q, < A,0.

Case Ia: r>A,0. Let y = D,A,0 and ¢ =D,A,x (x is the positive
x-axis on the graph). Note that D, lies on the line OB,. Let D{, and D} be the
reflections of D, and D, with respect to the x axis, respectively. Clearly
D; A,O = . By simple geometry we know that the sum of the radian measure
of the arcs D,D}, and D,D, equals twice the measure of OC,A,; hence
U+ §€=2w.

Taking the derivative of p, + p, with respect to ¢, we have

d(py + ps)

d
@7 av Ly W) T W2e - )]

= —(sin w)"_z + [sin(20 — w)]n_z,

which is positive since ¢ = 2w — ¢ > 4 and n > 2. Since  is increasing in r,
d(py + py)/dr > 0. On the other hand, for r > A)Q, > A,C,, p, and p, are
constant; hence p is decreasing in r. Using (2.6), we conclude that p > 1 —
a + gg.

Case Ib: Ay O > r > A,Q,. Similar to the previous case, p, and p, are
constant, whereas now both p, and p, are increasing in r. Therefore p
decreases to p(A,0), which is greater than 1 — «a + ¢,.

Case Ie: AyQ, >r > A,C,. Let ¢ = D, A,0 as above and observe that ¢ is
decreasing in r. If ¢ > w, then p > 1 —a + ¢4 and r = A;Q, corresponds to
¥ = ¢ — 2w. Hence we are interested in ¢ such that ¢ — 20w < ¢ < w. (If
¢ > 3w, then p > 1 — a + ¢, trivially.) Since p, is decreasing in ,

_ W(2w) + W(e)
W 2w + ¢) + W(¢)
. W(2w + ¢) + W(e) . W(3w) + W(op)
T W20 + ) + W(e - 20) T W(Bw) + W(e - 20)

p
(2.8)

Comparing the lower bound in (2.8) to (2.5), to show p > 1 — a + ¢, it suffices
to show

(29) [W(30) + W(0)]W(w) — [W(3w) + W(¢ — 20)]W(¢) = 0

for 20 < ¢ < 3w and 0 < w < 7/8. This last restriction is a consequence of
the fact that 2w < ¢ < 7/2 — 2w.

Differentiating the Lh.s. of (2.9) with respect to ¢, we find that this
derivative is positive if W(¢ — 2w) > W(w), which is true. Thus (2.9) holds,
for 0 < w < /8, if the inequality holds for ¢ = 2w, the smallest value of ¢.
Substituting this value in (2.9) and rearranging terms gives the condition

W(3w) _ W(2w)
W(3w) + W(0) - W(w) -~ W(o)

(2.10)

Inverting numerators and denominators in (2.10), after some algebra, we
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obtain the equivalent expression
[2e(sin 0)""2d0  [2°(sin6)" >do
< - .
[5/2(sin 0)""2d0 ~ [¢(sin6)" *d6

(2.11)

The Lh.s. of (2.11) is less than 2 since the interval of integration of the
denominator is wider and lies on the right of the interval of integration of the
numerator, since w < 7/8 and (sin #)" 2 is increasing. Hence a sufficient
condition for (2.11) to hold is

(2.12) [*(sin6)"*d6 -3 [ (sin0)" *do > 0
0 0

for w > 0. Since (2.12) is true for w = 0, it suffices to show that the Lh.s. of
(2.12) is nondecreasing in . Differentiating with respect to w, we need to
establish 2(sin 20)" 2 — 3(sin @)" "2 > 0 or, equivalently, (2 cos w)"~2 > 3/2.
This last inequality is true for 0 < w < 7/8, n > 2 since cos w > cos /8 =
0.9239, thus establishing (2.10).

Case Id: A,C,>r > A P.Clearly p = 1> 1 — a + ¢, for this range of r.

Case II: ¢ <k + Vk%Z+ 1 or, equivalently, ¢ < 2w or A0 <A,Q, We
partition the space of possible values of r in a similar way.

Case Ila: r > AyQ,. Here p decreases to 1 — a + ¢,, as before.

Case IIb: AyQ, > r > A,0. The functions p; and p, are equal and in-
creasing in r, whereas p, is decreasing and p, is constant. Hence

dp, dp, S d(py + ps)

2.13 —_— =
( ) dr dr dr
The derivative of p has the same sign as
dp, d(py + py)
(2.14) W(pQ N T(M + D3),

which is positive because of (2.13) and p, + p, > p, + p;. Hence p is increas-
ing in r and it is greater than 1 — « + ¢, if and only if p(A,0) > 1 — a + ¢,.

Case Ilc: A,O >r > A,C,. Define ¢y = D,A,0.If ¢ > w we have p > 1 —
a+ ey 80 p>1—a+eg,if and only if

(2.15) W2w + @) [W(p) — (1 —a+ey)W(¥)] =0
for all ¢ such that 0 < ¢ < w.

Since (2.15) is true for ¢ = w, it is sufficient (but not necessary) that the
Lh.s. be nonincreasing in . Differentiating with respect to i, the derivative is
nonpositive if and only if

1 sin
1—a+eg sin(2w + ¢)

n—2

(2.16)

Since the r.h.s. of (2.16) is increasing in ¢, using the definition of 1 — a + ¢,
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[from (2.5)], an equivalent condition is

(2.17)

W) ( sin )"-2

W(e) sin 3w

for 0 < w < ¢. Now observe that the Lh.s., as a function of w, decreases to 0,
whereas the r.h.s. is increasing. Hence if

wio 5]

(2.18) 3

inequality (2.17) holds for w < w,, where w, is the value of w that makes
(2.17) an equality.

Note that integrals of the form [(sin 6)""2d@ can be expressed as beta
integrals, using the transformation u = sin? 6. Then using the relationship
between the beta and F distribution, equality in (2.17) is exactly condition
(2.2). Moreover, condition (2.18) reduces to the requirement 3" %a/(1 — @) >
1. Therefore, for ¢ > ¢y = cot wg, p > 1 — a + &

Case Ild: A,C,>r > A,P. For the range of r it is clear that p = 1; hence
p>1—a+e,.

Since p(r) > 1 — a + ¢, for every u, with equality for u = 0, the lemma is
proved by taking expectations over r. O

The assumptions of the lemma are clearly sufficient but not necessary.
Numerical evidence shows that the result holds for ¢ smaller than the bounds
given in the statement of the lemma. However, if ¢ < £ the r.h.s. of (2.3)
equals 1 and, as Brown (1967) points out, if ¢ < 1/k the conditional probabil-
ity tends to 0 as u tends to o.

3. Increased confidence for the ¢ interval. The lemma of Section 2
gives an easily computable bound on the conditional coverage probability. We
now use this bound to construct a post-data confidence estimate y(x/s) which
improves on 1 — a.

THEOREM 3.1. Let ¢ > ¢* and k be fixed constants, where c* and k satisfy
the assumptions of the lemma of Section 2. Define y,(x/s) as follows:

l-a« |x|

(3.1) Ye(X/8) =
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where t,_, denotes a t random variable with n — 1 degrees of freedom. Then
— 2 2
(32) B, 2| (n(X/8) ~ Locx, o ()] < Bt (1 - @ = Loz ()]
for all p and o?, where C(X,s) is the 1 — a Student’s t interval of (1.1).

Proor. Since y(x/s) =1 — a for |X|/s = ¢, it suffices to show

_ 2| 1 X |
E, ,o|(v.(X/S) - Iox, s)(1)) 5 <¢
(3.3) . %]
J|IX
<E,u,a-2 (]. -—a — IC()_(,S)(/J’)) —S— <c

for all . The last inequality can be seen to be true by observing that, for
1X1/S <e,

- Xl |IX]
(3.4) v.(X/S) = Poygz(—— <kl <c

1._
S S >l-a

and using inequality (2.3) [as in Robinson (1979a)]. O

Since a confidence report based on a partition of possible values of [x|/s
improves upon 1 — «, it seems plausible that, by taking a finer partition, we
could construct a report that is even better. The technique of further partition-
ing has been introduced by Brewster and Zidek (1974) and has been applied in
similar problems in Goutis and Casella (1991), Shorrock (1990) and Kubokawa
(1991). We have the following theorem.

THEOREM 3.2. Let ¢, = (cq, ¢y), ¢; > ¢y > ¢*, and k be constants, where c*
and k satisfy the assumptions of the lemma of Section 2. Define vy,(x/s) as
follows:

l1—-«a ” ||
, U — <y,
P(lt, 4 <cyVn — 1) ?
(%) l1-a - x|
Ye §) = : , Ilfecy, < — <ey,
: P(lt,_i| <c;yn — 1) 2 !
. x|
1-a, ife; < —.
s

Then

E,L,az[(ycz(i/s) - IC()?,S)(M))2] < E#,Uz[(Ycl(X/S) - IC()_(,S)(#))2]

for all w and o2, where Y, 1S glven in (3.1).
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Proor. The result follows immediately after observing that

X | X|
P0,172 T<kT<C

is decreasing in ¢. O

An immediate consequence of the above theorem is that Yc{X/s) improves
upon 1 — a. We can easily generalize and take more cutoff pomts We create an

array ¢, = (c,, 1,Cp 0,.-.,C mm)suchthatc <Cp1<Cpo< "t <Cpom<
+o, lim,, ¢, , = tx, lim, . Cpm,1 =¥ and hmm_,mmax (cpi— cm i—1)
= 0. As m — + the reported confidence w111 tend to y(x/s) deﬁned by
l-«a if 71,/ N
, if[x|/s > c¢*,
P(¢,_, < (xl/s)Vn — 1)

(3:5) v(%/s) =

l-«a
P(|t,_1| <c*Vyn-1)"

Note that P(l¢,_;| < (Ix]/s)Vn — 1) =1 — p(x), where p(x) is the p value
associated with the hypothesis u = 0. By the dominated convergence theorem,
v(x/s) dominates 1 — « in terms of risk.

For an observed value of X/s, the confidence report attached to the ¢
interval will be y(x/s) of (3.5). To give some idea of the shape of this function,
Figure 2 shows values of y(x/s) for n =5 and n = 9. It can be seen that a
confidence report of almost 94% confidence is possible when using a nominal

if |X] /s < c¢*.

0.924 0.932 0.940

0.916

0.908

| S 1 L L

OO 04 08 1.2 16 20 24 28 32 36 40

0.900

F1c. 2. Values of y(Z/s) of (3.5) for n = 5 (solid line), n = 9 (dotted line) and 1 — a = 0.90.
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0.0002

—_— — — — —_- = = - - = = — — A

-0.0014 —0.0006

-0.0022

0030

1 1 1 ! 1 ! 1 i

0.0 05 10 1.5 20 25 30 35 4.0 45 5.0

-0

F1c. 3. Difference in risks E#,gz[{yc(X/S) - IC(X)S)(,U,)}2] -E, {1 -a- IC(XS)(;L)}Z] forn =
5 (solid line), n = 9 (dotted line) and 1 — o = 0.90.

90% interval. Figure 3 shows the difference in the risks plotted against w /o.
Although the improvement is not large, y(x/s) does dominate 1 — «. Note that
the size of the risk improvement is really only of secondary concern, as the
experimenter may be able to assert a sizeable increase in confidence. Indeed,
the experimenter does not really care about the magnitude of the risk improve-
ment as long as the confidence is maximally increased. As the degrees of
freedom become large, for the usual confidence coefficients, the constant % is
rather small. Since

k 1
2 —— > —
Vi+k2 -1 &

the bound c¢* is large, so y(x/s) is quite close to 1 — « and we cannot expect a
large improvement.

4. Discussion. For the ¢ interval, the existence of a subset for which the
conditional confidence level can be bounded above the nominal 1 — « for all
parameter values shows that an increased confidence assertion is appropriate.
Such sets can be used in the construction of a confidence estimator that allows
a confidence assertion uniformly higher than 1 — «, and is closer to the true
indicator of coverage.

Many of the arguments used here took advantage of properties of the
normal and ¢ distribution, so the extent of generalizability is not clear. It is
probably the case, however, that our results can be extended to the F
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distribution in the analysis of variance, allowing for increased confidence in
Scheffé’s simultaneous intervals [as Olshen (1973) was able to extend some of
Brown’s (1967) arguments to the analysis of variance]. Also, the improvements
realized are a function of prior information about the location of the mean.
The inequality (1.5) and the results in this paper will hold for any conditioning
set of the form {(X, s): |X — uyl/s < ¢}, where u, is a specified constant. The
value of u, should represent the experimenter’s best prior estimate of the
mean pu, as the greatest improvement will occur when p, is close to u.

For the case of known variance, the usual interval does not allow the
existence of sets satisfying (1.4) and, moreover, the usual confidence report
cannot be improved upon. Indeed, Hwang and Brown (1991) have shown that
1 — a is an admissible confidence report in four or fewer dimensions. For five
or more dimensions, however, the confidence in the usual set can be improved
[Robert and Casella (1990)]. Thus a condition such as (1.4) is sufficient, but not
necessary, for the existence of an improved confidence statement.

Perhaps the key idea is Fisher’s, that an interval’s confidence should be
evaluated on recognizable subsets. Then if the confidence, conditional on such
a subset, is different from the nominal value that information should be used
to improve the confidence assertion. Fisher concentrated on sets defined by
ancillary statistics, while here the conditioning set is the acceptance region of a
hypothesis test, and is not based on an ancillary statistic. The moral may be to
examine recognizable sets of interest, dictated by the problem at hand, and see
if conditional confidence assertions are affected. If so, the nominal confidence
coefficient, 1 — a, may not be an adequate confidence report.

Acknowledgment. We thank the referees for suggestions that have im-
proved the presentation.
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