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VARIABLE KERNEL DENSITY ESTIMATION

By GEORGE R. TERRELL AND DaviD W. ScotT?!

Virginia Polytechnic Institute and State University
and Rice University

We investigate some of the possibilities for improvement of univariate
and multivariate kernel density estimates by varying the window over the
domain of estimation, pointwise and globally. Two general approaches are
to vary the window width by the point of estimation and by point of the
sample observation. The first possibility is shown to be of little efficacy in
one variable. In particular, nearest-neighbor estimators in all versions
perform poorly in one and two dimensions, but begin to be useful in three
or more variables. The second possibility is more promising. We give some
general properties and then focus on the popular Abramson estimator. We
show that in many practical situations, such as normal data, a nonlocality
phenomenon limits the commonly applied version of the Abramson estima-
tor to bias of O([%/log h]) instead of the hoped for O(h%).

1. Introduction. Among the plethora of multivariate nonparametric den-

sity estimators is the fixed kernel estimator

2 1 & X, -y

f@) = e T K=
where {x,} is an ii.d. random sample of size n, x, € RY, K: R > R! is a
function centered at 0 that integrates to 1, and & is a smoothing parameter
that would usually tend to 0 as the sample size n goes to . The first
univariate estimator of this type with K = U(-1,1) was proposed by Fix
and Hodges (1951); the general class was investigated by Rosenblatt (1956)
and Parzen (1962) with multivariate extension by Cacoullos (1966) and
Epanechnikov (1969).

Though in most applied work % has been held constant, two important
proposals have been put forth to vary 2 in hopes of improving the result-
ing density estimates. The first proposal was the kth nearest neighbor of
Loftsgaarden and Quesenberry (1965) given by

1.1 F =
(1.1) f(y) anhk(y)d

where h,(y) is the Euclidean distance from y to the kth nearest sample point,
and V, is the volume of the unit sphere S, in R? The kth nearest-neighbor
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estimator can be written as a kernel estimator if K is chosen to be a uniform
density on the unit d-sphere S,;; then

A 1 " X~y
(12) F) = Wile( n(y) )

A second proposal was the adaptive kernel estimate of Breiman, Meisel and
Purcell (1977) given by

R 17 1 P
1.3 =—) —K ,
(1.3) r(y) nigh‘f.( 3 )
where h; is the Euclidean distance from x; to the k2th nearest other sample
point. This is asymptotically equivalent to choosing &, o f(x;)~/%; while
Abramson (1982) proposed using

(1.4) hy o f(x;)

for all dimensions. In practice, a pilot estimate is obtained for the unknown
density f at the sample points. Also, Breiman, Meisel and Purcell were
interested in estimating the entire density while Abramson limited his pro-
posal to pointwise estimation; however, given the attractiveness of Abramson’s
proposal, most workers have applied Abramson’s choice to estimation of the
entire density. Abramson also ‘“‘clipped” the pilot estimate away from 0, a
condition ignored in most subsequent theoretical and practical work. We shall
refer to the application of formula (1.4) without the clipping as the ‘“non-
clipped Abramson estimator,” and again wish to emphasize that this was not
his proposal. Hall and Marron (1988) considered the theoretical properties of a
practical global implementation of Abramson’s estimator when the unknown
density is bounded away from 0.

This paper will explore some of the implications of several classes of
schemes for letting the smoothing parameter vary over the real line. A primary
conclusion will be that it is surprisingly difficult to do significantly better than
the original fixed kernel scheme. For the simplest case of the univariate and
bivariate histogram, Scott (1982), Kogure (1987) and Hiiesemann and Terrell
(1991) have investigated the related problem of varying bin widths over the
domain of the data. /

Our criteria for good estimates will be the asymptotic mean squared error
(AMSE) at a single point of estimation y; and that function integrated over the
entire real line, the asymptotic mean integrated squared error (AMISE). Other
measures of quality have been studied; for example, L, error [see Devroye and
Gyorfi (1985)]. We chose ours for convenience; conclusions usually seem to be
similar under different choices [see Hall and Wand (1988) and Scott and Wand
(1991)]. Since our criteria are asymptotic, it will be assumed that we mean by a
density estimator a family of techniques, one for each sample size. Certain
finite sample issues will be addressed by simulation. There is also a large
literature dealing with the issue of calibration or cross-validation; that is, how
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to match the degree of smoothing to the unknown underlying density, using
sample information. We will not address that important issue here.

The paper will first extend the informal observations of Walter and Blum
(1979) by showing that every multivariate density estimator that is in any
reasonable sense nonparametric may be written in the form

2 1
(1.5) f) =5 Kixoy),

where. K, is asymptotically a Dirac evaluation functional at y. This almost,
but not quite, says that all nonparametric density estimators are kernel
estimators, since K, may be dependent to second order on the other sample
points. An estimator of this form which is independent of the observations will
be called a generalized kernel estimator. The form displays the possibility that
kernel shape may vary over the line in a large variety of ways.

For pointwise estimation of f(y), examination of (1.2) and (1.3) suggests the
study of two simple rules for variability of the kernel [see also Jones (1990);
yet another is discussed in Wand, Marron and Ruppert (1991)]. First, the scale
of the kernel may depend only on y, the point at which the estimate is taken;
or, second, only on x;, the sample point. The first says that

(16) hi) = h(y)d¥ (h(y)y)

We shall call this a balloon estimator, generalizing a suggestion due to Tukey
and Tukey (1981). We will show that the Loftsgaarden-Quesenberry-style
nearest-neighbor estimators are asymptotically of this type. This estimator,
£.(), has the advantage of having a straightforward asymptotic analysis, since
it uses standard pointwise results [Mack and Rosenblatt (1979)]; on the other
hand, when applied globally, the estimate typically does not integrate to 1 and
thus is usually not itself a density, even when K is. We investigate the degree
of improvement that this approach allows over fixed kernel estimates; in
common cases, the improvement is seen to be very modest. The asymptotic
behavior of the univariate k2th nearest-neighbor estimator turns out to be
particularly poor; simulations performed by the authors suggest that this
holds also for reasonable finite sample sizes. However, the multivariate exten-
sions of the balloon estimator exhibit some interesting new phenomena. For
example, above dimension 3, the nearest-neighbor method becomes competi-
tive with fixed kernels for normal data.
The second approach gives

1h( D¢ (:(;;’)

We shall call this a sample smoothing estimator; it is a mixture of identical but
individually scaled kernels centered at each observation. The Abramson esti-
mator is of this form; as is the Breiman-Meisel-Purcell nearest-neighbor
estimator, in an asymptotic sense. The main advantage of the sample smooth-

1 n
(1.7) fn) = 3 X
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ing estimator is that if K is a density, then so is f,(*). The primary disadvan-
tage is that the estimates generally exhibit nonlocality; that is, the estimate at
a point may be significantly influenced by observations very far away and not
just by points nearby. We give an asymptotic analysis of these estimators. The
Breiman-Meisel-Purcell estimator turns out to be even more unsatisfactory
in important cases than the Loftsgaarden-Quesenberry estimator; simulations
show that this is reflected even in moderate sample sizes. The nonlocal-
ity phenomenon is shown to prevent the nonclipped Abramson estimator
from achieving the O(n~8/%) convergence rate that has been claimed for it
[Silverman (1986)]. However, simulations still show good behavior for small-
to-moderate sample sizes, but deterioration in performance compared to fixed
estimates as the sample size grows.

Our often negative results should not be too discouraging; for one thing,
multivariate variable kernels show some promise. For another, we are far from
exhausting the possible variety of such estimates.

2. Generalized kernels. We may bring some order into the world of
nonparametric density estimation with the following result.

THEOREM 1. Any multivariate density estimator that is a continuous and
Gateaux differentiable functional on the empirical distribution function may be
written as

A 1z R
f(Y) = - Z K(xiyy, Fn);
ni
where K is the Gateaux derivative of f under variation of X;.

This theorem is proved in the Appendix where a general constructive
formula for finding K is given. The conditions seem to be essentially vacuous:
All proposals for nonparametric density estimators with which we are familiar
meet them. K is essentially the influence function of f(y) at x,; [Hampel
(1974)]. It is interesting to note that deMontricher, Tapia and Thompson
(1975) show that a certain maximum penalized likelihood estimator is a linear
combination of Laplace kernels, with weights that depend on all the other
observations. Walter and Blum (1979) have cataloged many ‘equivalent ker-
nels,” which generally coincide with the K’s of Theorem 1, and called the
general class delta methods. Since ¥, converges to F, we see that K is
asymptotically independent of those other observations. Thus any continuous
density estimator may be written asymptotically as

" 12
f®) =5 T K (x9).

We restrict attention to those that may be written exactly in this form for

finite n; these are the generalized kernel estimators of the last section.
Generalized kernels cover an enormous variety of methods; including, for

example, histograms and frequency polygons. Figure 1 displays the kernels
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Fic. 1. The equivalent kernel function for a frequency polygon.

K(x,y) for a fixed-bin-width univariate frequency polygon. This paper will
concentrate on estimators that generalize fixed kernels in straightforward
ways. Notice that even a fixed kernel method may be thought of in two
different ways: (1) as a system of weights centered at y that specifies the
degree of influence an observation at each x will have on the estimate at y;
and (2) as an equal mixture of densities centered at each observation. General-
izing these two points of view leads to balloon estimators and to sample
smoothing estimators.

3. Univariate balloon estimators. The asymptotic pointwise behavior
of the univariate balloon estimator

A o1 n X, =y
M) =) ElK( h () )
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at y is well known, because it is equivalent pointwise to a fixed kernel. We
shall not restrict ourselves to positive kernels. Thus we need the following
definition.

DEFINITION 1. A univariate order-p kernel is a function K such that

fKu)M=1, l?nhK@ﬂ=Q
(3.1) [|K(z)[dz <w, [K(2)'dz <,

/er(z)dz=0 forl<r<p-1, /sz(z)=J_r1.

In the most common case, in which K is a density of mean 0 and finite
variance, it is an order-2 kernel.

We use the usual variance/squared-bias decomposition of the mean squared
error (MSE). We focus attention on the asymptotic MSE (AMSE), which is the
leading nonzero term in the MSE. The AMSE is the asymptotic limit as & goes
to 0 as nh goes to « of the sum of the asymptotic pointwise variance and
squared bias. Integrating the pointwise AMSE(y) over the line, we get a global
criterion, the asymptotic mean integrated squared error (AMISE).

Then for a density f that meets the conditions: 7, its pth derivative, is
continuous and nonzero at y, and [|fP(y)ldy < «, we have

f(y)/K?
nh(y) ’

h(y)”
p!

asymptotic variance(y) =

(3.2) 2
[asymptotic bias(y)]” = [ f(P)(y)l ,

where nh(y) - « as h(y) — 0; see, for example, Parzen (1962).

ProposITION 1. The asymptotically best balloon estimator optimizes the
AMSE pointwise; it achieves a minimum where

(P)*f(y) /K>
2p(F®(»))°

1/2p+1)
J n—l/(2p+1)’

(3-3) h*(y) = [

F)FP(y)(JK?)
(2p)°p!

n—2p/@p+1)

p12/C@p+1)
(3.4) AMSE*(y) = (2p + 1)[ ]

This generalizes the result of Rosenblatt (1979) for nonnegative kernels.
Figure 2 shows the shape of this optimal A function for the standard Gaussian
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} 1
T T

2 X 0 2

Fic. 2. Optimal local bandwidths for a standard normal density.

density [see Dodge and Lejeune (1986)]. Integrating over the line, we get

(JK?)"

2/(2p+1)
(2p)pp!}

AMISE* = (2p + 1)[
(3.5)

) 2/@2p+1) —
x| /e po)) 7 dy |z,

This is asymptotically the best performance we can get from a balloon estima-
tor. A kernel of order 1 behaves somewhat like a histogram. The case where
p = 2 was investigated by Terrell and Scott (1983).

To put the possible improvement in perspective, let us compare it to the
asymptotic error in a fixed kernel. It may be readily checked that only the
integral changes in the expression above; the other terms, in particular,
the rate of convergence in n, are unchanged. For the asymptotic relative
efficiency of a fixed order-p kernel, we get

(3.6) AMISESy.y _ JF(2)*/ P 0 (f®(9))” " dy
[f( FO(y))° dy]l/(2p+1)

AMISE%, .4
An application of Jensen’s inequality shows that this is at most 1, as we would
expect.
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TaBLE 1
Asymptotic relative efficiencies of optimal fixed to optimal adaptive kernel
estimators for standard Gaussian and Cauchy densities

Kernel order Gaussian Cauchy
1 89.3% 84.0%
2 91.5% 76.7%
4 94.2% 72.0%
6 95.6% 70.0%
8 96.5% 68.9%

ExampLEs. Table 1 shows the value of this efficiency when f is univariate
Gaussian or Cauchy, for various values of p. The numerator was computed by
numerical integration using Mathematica [Wolfram (1988)]. The integral in
the denominator may be shown to equal (1/27)['(p + 1/2) for normal densi-
ties by an application of Parseval’s theorem.

We conclude that balloon estimators allow very little improvement for
normal data. However, the efficiency may be made arbitrarily close to 0 by
considering an infinitely separated equal mixture of two normal components
with differing scale parameters. Nevertheless, for densities of the usual shapes,
balloon estimators are mostly hot air.

The most popular univariate balloon estimator is the Loftsgaarden-
Quesenberry kth nearest-neighbor kernel of the form

A 1 n X =y
PO = &K (hkm )

cf. (1.2). Notice that k/(2nh ,(y)) is a nonparametric estimate of f(y) consis-
tent whenever £ — « while k/n — 0. We will therefore analyze the asymptoti-
cally equivalent balloon estimator for which h,(y) = k/(2nf(y)), thereby
avoiding the issue of data dependence. Pointwise, this method is equivalent to
the usual kernel estimator, because we have simply reparameterized k1 as k.
However, when we treat it as a global estimator, something new happens.
Make the same substitution for A above, so that we find a constant number of
neighbors % as we scale the kernel. When we write down the AMISE, the
integrated squared bias contains the factor

(f(p)(&;))2 .
f(y)™

This is infinite unless the tail exponents of the density are less than 1 +
1/2(p + 1); for example, for nonnegative kernels when p = 2 the only Stu-
dent’s ¢ densities that meet this requirement have less than 0.5 degrees of
freedom! We conclude that the asymptotic efficiency of the kth nearest-neigh-
bor density estimator is 0 in all cases usually encountered. This suggests that
it is of very little practical value. This problem is not just a phenomenon

(3.7)
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associated with huge samples or the far tails; Silverman (1986) has illustrated
the roughness of this estimator for small univariate samples.

We will return to balloon estimators in the multivariate setting in Section 5.
We will see that the situation is significantly different in several variables than
in one dimension.

4. Sample smoothing estimators.

4.1. Univariate asymptotic errors and Monte Carlo example. If we instead
let the the scale of a kernel vary with the location of the data points, we have
n

R 1 X~y
4.1 2 - K '
(4.1) ) = 5 X 5 (h(xi))

THEOREM 2. As the sample size grows, let h(x) — 0 and nh(x) — « for all
x, and let (x — y)/h(x) be a monotone increasing function of x onto the entire
real line. Then for f and h p-times differentiable, we have

(4.2) asymptotic variance(y) = _fi_}}%)(%/l)i—’
1 2
(4.3) [asymptotic bias(y)]* = E[h(y)pf(y)](p)

for an order-p kernel sample smoothing density estimate.

This is proved in the Appendix. Note that, compared to the fixed or balloon
estimates, the asymptotic variance is the same, but the power of i has been
moved under the differential operator. A close examination of the bias expres-
sion in (4.3) reveals the rationale for Abramson’s choice (1.4) for the band-
width:

(4.4) h(x;) = hf(x,) "%

If we use a second-order positive kernel (p = 2), the asymptotic bias (4.3)
becomes

e rn] =o.

Silverman (1986) has given an expression for the next higher order term in the
asymptotic bias and shown that it is of order O(h*), which leads to AMISE =
O(n~8/9), a rate usually reserved for kernels that are not nonnegative. Several
authors, including Abramson (1982), Silverman (1986) and Worton (1989),
have shown that the algorithm works well for small samples even using a pilot
estimator. In order to investigate its asymptotic behavior, we performed a
numerical integration to obtain the exact MISE of the nonclipped Abramson
estimator for Gaussian data and a biweight kernel, (15/16)X1 — x2?)?2. In
Figure 3 we plot the numerical estimates of the exact optimal MISE (using the
best bandwidth, which was also determined numerically) together with the
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Optimal Abramson/Fixed MISE’s
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Fig. 3. Computed optimal exact MISE for the nonclipped Abramson estimator (solid line) for
standard normal data and exact MISE for optimal fixed bandwidth estimator (dashed line) with
normal kernel. The two small parallel vertical lines represent factors of 1.5 and 1.2.

exact optimal MISE for a Gaussian kernel estimate [Wertz (1978)], the latter
being asymptotically O(n~*/5).

An examination of these curves reveals that the adaptive estimator enjoys a
significant advantage for small n, for example, 35% smaller MISE when
n = 100. However, no practical difference exists when n > 1000; and in fact
the fixed kernel estimator has smaller MISE when n > 30,000. Any O(n~8/9)
behavior seems lost. What is our explanation? The special case considered in
the next section clarifies matters.

4.2. Gaussian data and uniform kernel example. The theoretical analysis
of the nonclipped Abramson estimator (4.4) is quite interesting, as we shall
see. It is also surprisingly different from the usual Taylor series arguments
presented for estimating the MSE of kernel estimators.

Closed-form pointwise AMSE expressions have not been generally available,
but can be obtained in the special case where K ~ U(—1,1) and f ~ ¢(0, 1).
The relevant results can be obtained by examining the error of the pointwise
estimator f(0), which from (4.1) and (1.4) is given by

Vo(x;) K( (0 - xi)Vd’(xi) )
h h ’

R 12
(4.5) fo -1
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Fic. 4. Regions where data contribute to the nonclipped Abramson estimate at origin.

assuming the exact adaptive bandwidth is known [cf. Abramson (1982)]. Then

(4.6) Ef(0) - [ w’}(f) K( x‘/d’h(x)

)d)(x) dx,

since K(—x) = K(x). In the usual analysis, only a small neighborhood around
the point x = 0 need be considered in the integral (4.6); in fact, that neighbor-
hood is (=&, k) if the support of the kernel is (—1, 1). However, it is easy to
check that with the nonclipped Abramson estimator, this is not necessarily so.
The integrand in (4.6) vanishes whenever the argument of the kernel exceeds
1; hence, the integral is over those points x satisfying

xyo(x)

h

It is easy to check that the left-hand side is maximized when x = V2. If
h > 0.5418, then all values of x satisfy the inequality and the kernel never
vanishes on (—, ). When h < 0.5418 (which roughly corresponds to n > 445
in the fixed bandwidth case), then (4.7) has four (not two) solutions; call them
—b < —a < a < b (see Figure 4). In this situation the kernel is nonzero when
x falls in the intervals (-, —b), (—a, a) and (b, ). Previous analyses have
only considered the “local” interval (—a, a) and have neglected the influence
of the other two intervals, which represent the influence from very distant
points in the tails. We consider the contribution of these intervals to the bias
separately.

Consider the interval (—a,a) containing the point x = 0. From (4.7) it
follows that a is a solution to

(4.7) <1.

(4.8) xe ¥/t = (2m)*h =c.
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Taking a Taylor’s series on the left-hand side of (4.8), it can be shown that
a=c+c3/4+5c°/32 + O(c").
Hence, from (4.6) and by symmetry of ¢(x)3/2,

s e p(x)V7 1
Ef(0) = [ —5—35
(2m) 24
4] (1 - 3x2/4 + 9x*/32 — 9x6/128 + -+ ) dx
(4.9)
(277_)—3/4 . .
=—r(c+c /40 + )
9.)1/2
=(@2r) "+ %h“ + O(hS).
The first term is ¢(0); hence
X 9.\ 1/2
(4.10) Bias /(0) = %h‘* + O(R).

REMARK. The bias contribution from the interval (—a, a) is O(h?); in fact,
(4.10) exactly matches Silverman (1986), pages 104 and 105, equations (5.11)
and (5.12).

For the intervals (—o, —b) and (b,«), let us assume that n is large or,
equivalently, A is small. It is easy to see that & > © as A — 0. To find an
approximate solution for the root x = b in (4.8), we take logarithms, which
implies

logx —x2/4 =logc
or, equivalently,
x=(—4logc + 4logx)"?.

Since ¢ — 0, a first-order solution for the root is & = y/ — 4log ¢ ; however, the
next order terms are important. A sufficient approximation is afforded by

b= (—4logc + 4logy/ — 4logc)1/2

Again, by symmetry of the integral, the remaining contribution to the bias is

pd(x)”% 1
1/4g-1/2, —1/4
2/_@ 5 dx = 21/43° D(-b/3/2),
where ® is the cumulative distribution function of ¢. Using the approxima-
tion

1
P(x) = ——;qf)(x) forx < 0,
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it follows that the remainder of the bias contribution from the tails is
h2

(4.11) o
24[log((2m) "/ *h}|

which is o(h?), but just barely.

Thus we have shown that the contribution from the tail dominates the bias
asymptotically in the nonclipped Abramson estimate and that the squared bias
is just-a bit faster than O(A?). In fact, the squared bias is asymptotically

O([h/log(h)]*).

For small samples, the contribution from the tails appears to be negligible in
many cases, so that the squared bias initially looks like O(A®) as in (4.10). This
partially explains the good small-sample behavior observed by many authors
for this estimator [Abramson (1982), Silverman (1986) and Worton (1989)] as
well as our simulation result in Figure 3.

One fix that is obviously suggested by this argument is to eliminate the
influence of points outside the interval (—a, a). This is a workable solution;
however, closer examination reveals that the estimate no longer integrates to
1. Such an estimator would add to the existing list of higher-order nonnegative
estimators that do not integrate to 1 [Terrell and Scott (1980)]. The original
clipping idea of Abramson deserves closer examination.

The pointwise variance may be computed in a similar fashion over the three
intervals (—, —b), (—a, a) and (b, )

1 d(x) [x/d(x)
jEE(

(4.12) var £(0) = —

n h

0.1260 (hz)
+
n

2
ey

The tails do not contribute much to the variance [the o(h?/n) term]. The
MSE][ /(0)] is the sum of the variance in (4.12) and the square of the bias,
where the bias is the sum of (4.10) and (4.11). This can be minimized
numerically over h for each n and compared to the MSE(0) of a fixed uniform
kernel estimator of f(0), which can be shown to asymptotically equal

AMSE(0) = 0.1536n /%,

When n = 103, the optimal bandwidth is 2*(0) = 0.228 (determined numeri-
cally) and the corresponding optimal AMSE(0) of the nonclipped Abramson
estimator is about 1% less than that for the optimal fixed kernel estimator, but
by the time n = 10°, it is 49% less. The theoretical crossover occurs when
n = 887.

For n < 500, the asymptotic theoretical expressions are not useful, of
course. Several authors have commented on the very good performance of the
nonclipped Abramson estimator for small samples. When n > 0.5418 (i.e., for
small samples), the argument of the kernel in (4.6) and (4.12) never exceeds 1
in magnitude and the limits of integration extend over the entire real line. It is
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h=0.1 h =0.228
3 S
g | 3 |
s : : . S L—— .
-4 -2 0 2 . -4 -2 0 2
X X
h=0.646 h=2
1
3 3

0.0

-4 -2 0 2 -4 -2 0 2
X X

F16. 5. Four bandwidths for 1000 standard normal data in the nonclipped Abramson estimator
with a U(—1,1) kernel. The middle two are optimal in different senses; see text.

easy to check that

0.2579

(4.13) Ef(0) = and var f(0) =

1
8V nh?’

This is a very unusual bias/variance arrangement. The “optimal bandwidth”
h*(0) = 0.646 since the bias is 0 for this choice. In Figure 5 we have plotted
nonclipped Abramson estimates for several bandwidths with simulated normal
data (n = 1000) but using the true density in (4.5). Compare the two estimates
for our two different notions of an optimal bandwidth, ~ = 0.228 based on
asymptotic ideas and h = 0.646 based on small sample ideas: The latter seems
superior. For sufficiently large bandwidths, the estimator is constant over the
“middle” of the estimate. (This is easy to predict since all of the adaptive
bandwidths 4, are sufficiently large to cover a neighborhood surrounding 0.)
More work is required to understand the theoretical behavior of the MISE of
the Abramson estimator for small sample sizes.
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There is nothing about our results specific to the uniform kernel.
(Abramson excluded it for theoretical convenience.) The only significant dif-
ference is the graphical appearance of the estimate with small samples and
large values of the smoothing parameter A.

We could extend our pointwise analysis for points other than the origin, but
there is little additional knowledge to be gained. Clearly, a global AMISE
analysis of the Abramson estimator would be interesting. We chose to compute
the MISE error numerically rather than in asymptotic form. We made this
choice in part because of our interest in the small-sample behavior of the
estimator. Other numerical experiments have been reported recently; see
Bowman and Foster (1991).

The reason that the MISE of the nonchpped Abramson estimator is asymp-
totically greater than the fixed kernel estimator can be explained as follows.
While the bias = O(h2/log(h)) is smaller than the O(h?) bias of fixed kernels,
the use of the same fixed A in Af(x,)”1/? throughout the estimation line is
quite suboptimal; and when aggregated, the adaptive estimator’s MISE perfor-
mance is worse asymptotically. That it performs well for small samples is still
of practical importance. In fact, Abramson’s discussion [Abramson (1982), page
1217] on this observation led him to question the practical application of his
pointwise procedure globally. Abramson did show that his clipped pointwise
estimator will have squared bias of O(h®). It is left as an exercise for the
reader to show that if the Cauchy density is chosen in (4.6) that the pointwise
bias is exactly 0 for all y € R'. Thus the Abramson rule adapts perfectly in this
setting. Such results also follow from a version of Theorem 2 identifying
higher-order bias terms.

Theorem 2 suggests we may generalize Abramson’s procedure. A general-
ized Abramson estimator is a sample smoothing kernel estimator of order p
when

h(x) =f(x) " "Pq(x)"”,

where ¢(x) is a polynomial of degree less than p. The asymptotic bias
expression from the theorem is 0 for this class of estimators; we therefore
expect the AMSE to be of lower than usual order. Abramson’s proposal is for
order p = 2 kernels, where he lets ¢ be a constant. For order p = 4 kernels,
we have a richer choice of polynomials; use, for example, g(x) = a(1 + x2).

4.3. Other sample smoothing estimates. The monotonicity condition in
Theorem 2 is very strong, and is by no means met by all sample smoothing
estimators in which we will be interested (as we saw in the previous section). If
it does not hold, then two different x’s will generate the same argument for K.
This may lead, as we have seen, to observations that are far away having a
substantial influence on the density estimate at a point; this is a disturbing
property for a nonparametric method. We will call an estimate that meets the
monotonicity condition local. Unfortunately, we have the following proposi-
tion.



VARIABLE KERNEL DENSITY ESTIMATION 1251

PROPOSITION 2. There exist no nonconstant adaptivity functions h(x) that
are local for all y.

Proor. The condition says that, for x >y, (logh) < 1/(x — y) and the
reverse for x < y. This says that % is necessarily constant. O

The proof also shows that the condition is not very limiting if we are
concerned only with estimation at a point; it disallows only rapid growth of A
in each direction from the point of estimation.

The proposition raises doubts as to the usefulness of the error estimates of
Theorem 2. We have shown by example, however, that our error expressions,
which deal with the influence of nearby data points, seem often to be the
dominant terms in the asymptotic error even for nonlocal sample smoothing
estimators.

The nearest-neighbor estimators of Breiman, Meisel and Purcell (BMP) may
be thought of as data-driven sample smoothing estimators in which % is an
estimate of k/2nf(x). The bias term from our theorem is then

kP ( fl _ p)(p)
2Pp'n?
for order-p estimators with an 4 of this form. Then the integrated squared
bias is necessarily infinite for any density with a tail exponent less than
1+ 1/2(p — 1), as with the Loftsgaarden-Quesenberry case. This is cata-
strophic for a global density estimate; and the only claimed advantage of the
BMP estimator, integrating to 1, is relevant only in the global case. In fact, we
have the following proposition.

ProrosiTioN 3. For any strongly unimodal density (convex logarithm)
the BMP estimator of order 2 has uniformly greater AMSE than the
Loftsgaarden—Quesenberry estimator of the same order.

This may be checked by comparing the two AMSE expressions in light of
the convexity condition (log f)” < 0. The condition is met by a number of
important, though rather structureless, densities. However, it also applies in a
neighborhood of any mode. It is also straightforward to consider the univari-
ant BMP estimator as in Section 4.3. The bias turns out to be

O(h? + h/log h),

which is substantially worse than the rate of a fixed kernel estimator. We
conclude that the BMP estimator is of doubtful utility for univariate densities.

4.4. Other results. We have not attempted a full multivariate analysis of
the Abramson estimator. We have, however, checked the performance when
estimating ¢(0, 0), the bivariate independent Gaussian density, with a bivari-
ate uniform kernel supported on the unit circle. It is easy to see that the
kernel contribution is nonzero for sample (x,y) with x2 + y2 < r2 or with
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x2 + y? > r2 for large n. The contribution to the bias from the neighborhood
of (0,0) is

1
—7h* + O(hS),
12

but the contribution from the tails can be shown to be

(4.14) 0(h—22
: (log V2 h)

Thus, asymptotically, the tails contribute the most to the bias and the story is
much the same as in the univariate example. The general multivariate pattern
seems clear from (4.11) and (4.14).

5. Multivariate balloon estimators. Generalized kernel estimators
were described in (1.5). An appropriate generalization of a fixed kernel would
be

n

R 1
(5.1) f®) = S L KE (=),

where H is a nonsingular matrix that generalizes the smoothing parameter,
and K is a multivariate function centered at the origin which integrates to 1.
It will be convenient to write H = hA, where h is a positive scalar and
|A| = 1. With this parameterization, the shape of the multivariate kernel is
determined by A and the volume by A.

DEeFINITION 2. A multivariate order-p kernel meets the conditions for the
univariate case, except that the moment conditions are

d
/2111...2(’1‘dK(z)dz=0 f0r0<zni<p7

i=1

/z{’K(z)dz= +1 fori=1,...,d.

There are two obvious approaches to constructing multivariate order-p
kernels: The first just constructs a coordinatewise product. Let K, be a
univariate order-p kernel. Then

d
K(z) = i=l_[1Ki(2i)

is a multivariate order-p product kernel. The second allows for the full range
of linear scaling by making the kernel spherically symmetric; that is, the value
of the kernel depends only on the Euclidean distance from the origin. Of
course, Gaussian kernels satisfy both notions. Consider a univariate kernel K,
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symmetric about 0. Define its absolute moments about 0:
a, = flxlel(x) dx.

Then if a;_; > 0 we may let

d/2
K(z) = :d(T:—)IKl(IIzII),

d—

which is a multivariate kernel. To make it standard and order-p we need the
following proposition.

ProposiTION 4. The central moments of a spherically symmetric kernel K
are determined by the spherical moments

S, = /IIzIIkK(z) dz

by the relation
I(d/2) TI{_\I'(n; + 1/2)
ray2)? T(n+ds2)

d
fnz?”'K(z) dz =s
i=1
where n = ¥¢_in,.

Proor. A general position argument shows that the moments are all in
fixed proportion to the corresponding spherical moment. The constants of
proportionality are readily calculated from the Gaussian case. O

Moments with any factor with exponent odd are 0. Therefore we may
construct a spherically symmetric order-p kernel from a univariate kernel K;
with a4, ,_; = 0 for 0 < 2 < p/2 by rescaling so that

a _ ag_ym*I((p +d)/2)
Pra-1 = T(d/2)0((p + 1)/2)
by the construction method described above.

Now a balloon estimate simply lets the scaling matrix in (5.1) depend on the
point of estimation:

. 1 )
(5.2) f(y) = 2IH(y)] Y K(H(y) (x; - y))

i=1

For a balloon estimate at a point y where the density has order-p derivatives
continuous at y and absolutely integrable, we have

f(y)JK*

asymptotic variance(y) = ——,
(5.3) nh(y)

[asymptotic bias(y)]* = [ (y)"g(¥)]’,
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where g is a sum of terms depending on the pth partial derivatives of f, the
pth central moments of K and the scaling matrix A. This makes possible an
AMSE of O(n—2r/@P*d) (The general expression for g, obtained by a Taylor’s
series argument, is complicated and will be omitted since we will not need it in
the sequel.)

This looks like a simple generalization of the univariate case, but an
important new phenomenon appears. The bias has several terms, involving the
various moments of K and the partial derivatives of f in ways that depend on
our choice of scaling matrix. This raises the possibility that the matrix might
be chosén so that the terms cancel; and the asymptotic bias would then be of
lower order. Consider the case p = 2, where K may be itself a density. In the
univariate case, the asymptotic bias is 0 precisely when the second derivative
of f is 0; this occurs in general only at isolated points. In the multivariate
case, let K have mean 0 and identity covariance matrix. Let the scaling matrix
for the fixed point y be H = R A, and let the matrix of second partial deriva-
tives of f at that point be Sy.

PRrOPOSITION 5. The bias of (5.2) may be approximated by

2
(5.4) |asymptotic bias| = 5 tr(ATSyA),

where tr denotes trace of a matrix.

A proof is given in the Appendix. Our power to adjust the shape of the
kernel through A has different implications at points y depending on the
second derivative matrix S,. There are three cases.

Case I: S, is positive definite or negative definite. In Figure 6 we display
such a portlon of the bivariate normal density. Recall that |A| = 1 by construc-
tion. Then no choice of A makes the asymptotic bias 0, and the best possible
AMSE(y) is of order O(n~%(@*9). We need to minimize the absolute trace of a
symmetric definite matrix, ATSyA, whose determinant equals |Sy|. The trace
is the sum of the eigenvalues and the determinant is their product. Then by
the standard fact that the arithmetic mean exceeds the geometric mean except
when all values are equal, the minimum is obtained when all the eigenvalues
are equal, at any of the solutions of

_ 1/dq—
AT—ISyI Syl.

It is easy to check that with this choice, ATS Aacl, IATS Al = IS | and
tr(ATS A) =d|S, |'/?. For spherically symmetrlc kernels, all these solutlons
are 1dent1cal notlce that such a kernel is scaled completely by its covariance
matrix AAT. Following (5.3) and (5.4), we may now compute and them
minimize the AMSE(y) with respect to A to get the following proposition.
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0.6

Fic. 6. Negative definite (Case I) region of a bivariate normal density.

PropPOSITION 6.

) f(y) /K> 17
r*(y) = [W}

and

1 1 2(d+2)/(d+4)
AMSE*(y) = n—4/<d+4>(— + —)

x(fK2

)4/(d+4)

Case II: Sy has both positive and negative eigenvalues. We will call the
density saddle shaped at any such point; it is curved upward in some
directions and downward in others. A saddle-shaped portion of a bimodal
bivariate normal density is shown in Figure 7.

d
f(y)4/( +4) |Sy|2/(d+4)~

ProposITION 7. Where the density is saddle shaped, A may be chosen so
that the bias is o(h?).
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ﬁ- 0.008

-1.8

Fic. 7. Saddle-shaped (Case II) region of a bimodal bivariate normal density.

The idea of the proof is that the sign of the bias is determined by the
direction of curvature of the density. Where the curvature is upward in some
directions and downward in others, a clever choice of kernel scale allows the
two kinds of bias to cancel. The proof is given in the Appendix. The contribu-
tion of such a point to the AMISE may therefore be made negligible compared
to that of the points in Case I, by choosing & of order n~/@*+® Notice that
this cannot happen in one dimension; we need at least two different kinds of
curvature to achieve cancellation.

Case III: S, is positive or negative semidefinite, with some eigenvalues 0.
Thus the Hessian for the density is of lower rank than the dimension of the
space. The asymptotic bias, and therefore the AMSE, corresponds to that for a
problem with fewer variables. As a result, it is of lower order in n than in Case
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I. The contribution of these points to the AMISE may be made negligible by
choosing appropriate scales along null and nonnull eigenvectors.

ExamMpLE. Let f be a multinormal density with mean at the origin and
identity covariance matrix. Then s = f(y)(yy — D). Then for an arbitrary
vector z, compute zTS z=(z"yy z — z"z) f. We see by Cauchy’s inequality
that the expression is negatwe definite for ||yl less than 1 (Case I); it is saddle
shaped for ||y|l > 1 (compare the direction toward the origin and perpendicu-
lars to it) (Case II); and it is flat in the direction of the origin for ||y|| = 1 (Case
III). Thus the usual rate of convergence of kernel density estimates will only
apply to a central sphere corresponding. to chi-squared values less than 1
(whose probability decreases with dimension). The rest of the normal density
makes only a negligible contribution the AMISE. \

Let us compare these asymptotically best-possible balloon estimators to a
corresponding multivariate fixed kernel estimator. That is, we select scale A
and proportions A for the kernel freely, but use the same one over all values of
y. The optimal choices for &~ and A were characterized by Deheuvels (1977).
Integrating the variance and the square of the bias over space, we obtain

K? h
AMISE—fhdJr——ftr ATS A).

Minimize over h and characterize A implicitly to get

AMISE

1 4/(d+4)
opt )

PR A GAT ) i
2+

(5.5) d/(d+4)

N (fK2)4/(d+d)[ngnftrz(ATSyA)]

ExampLE. Table 2 shows the ratio of the best for the balloon estimator to
this fixed best for multivariate normal data, for some values of d. The integral
(5.5) was obtained as follows: We may always transform to an identity covari-
ance matrix. Then a standard calculation with normal moments expresses the
integral as a term involving the sum of the eigenvalues of AAT and a term

TABLE 2
Relative efficiencies of optimal fixed to optimal balloon estimators
for the multinormal density with identity covariance matrix
as a function of dimension

Dimension Efficiency of fixed to balloon
2 45.46%
3 30.21%
4 18.59%
5 10.64%
6 5.70%
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involving the sum of the squared eigenvalues. Since the product of these
eigenvalues is 1, the integral is minimized when all eigenvalues are equal, so
that A = I. Then the integral is simply 3d2?*?7~9/2 The integral in the
numerator was evaluated numerically using Mathematica. Clearly the balloon
estimator is potentially enormously better than the fixed kernel for multivari-
ate density estimates. The reason is equally clear: The two compete only over
the unit ball; elsewhere the bias of the balloon estimator is of lower order. This
advantage is offset to some extent by our interest in modes; these occur in
areas of negative definite curvature, where a fixed kernel has error of the same
order in n as an optimal balloon estimate. In the Case II and III regions, the
fixed kernel has the same-order error as in the Case I region, while the optimal
estimate has higher-order (better) error there. Nevertheless, multivariate
optimal balloon estimators are worth exploring. Perhaps they could be cali-
brated by a pilot density estimate. We will not address the issue here.

Loftsgaarden and Quesenberrry (1965) suggested a multivariate kth near-
est-neighbor estimate of the form

where h, is the radius of the smallest sphere containing % observations
centered at y. Our more general kernel density estimates suggest instead

1 n
-1 _
iy 2 KO )

(5.6) f(y) =
where (x, — y)"(H,H}) '(x; — y) < 1 is the smallest such ellipsoid that con-
tains & sample points. As before, we write H, = h,A, where |A| = 1; the
eccentricity of the ellipsoid thus remains fixed over space while we let the
volume adapt to the local density of sample points We call this a Mahalanobis
kth nearest-neighbor estimator. An even greater degree of local adaptivity
would be achieved by letting A vary freely as well. This raises computational
difficulties and will not be pursued here.
As k —» o and k/n — 0 in the Mahalanobis estimator,
k 1/d
h,> | ——— ,
k nf(y)V, }

where V, is the volume of the unit d-ball, at any point y where the density is
positive. As in the univariate case, we will study the balloon estimator in which
h is replaced by its asymptotic value. For a kernel of order 2,

f(y)’V, [K? kY4 tr?(ATS A)
k 4n4/dVd4/d f(y)4/d

AMSE(y) =
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and when we integrate over all values of y,
[f(y)dyV,[K? k44 tr2(ATS, A)

AMISE = p s | o

dy.

As before, we may now minimize this quantity with respect to £ and A to get
the following proposition.

ProrosiTION 8.

d 2 K2 d/(d+4)
k ot = n4/(d+4)Vd ff f
[0} . 2 T 4/d s
mlin[(tr (A SyA)/f )
1 1 4/(d+4)
_ ,—4/d
s - oo
4/(d+4) 4/(d+4) tr2 ATS A d/(d+4)
X(fKﬂ) (ffz) [nunf f®“ )

ExampLE. To see how well nearest-neighbor estimates can perform, it is
natural to compare them to fixed kernel estimates; since optimizing % and A is
comparable to optimizing 2 and A. We will look at the ratio of the AMISE’s
for the two estimators for multivariate normal data. Because of our freedom of
scaling, the result is invariate under changes in the covariance matrix; we will
therefore do all our calculations for the identity covariance matrix. By symme-
try, in both the numerator and the denominator A = I. We calculate

d(d + 2)

ftrz Sy = 9d+2_d/2’
1
2
ff(Y) = Ji s

tr? S, d 42 4% —6d + 16
/ f»** (d — 2 ) 247 @972

for d > 2. Therefore the asymptotic relative efficiency of nearest-neighbor
estimates compared to fixed kernel estimates for Gaussian variables is

d/(d+4)
% (d —9 )d(d+2)/2(d+4)[ d?— 4

= 92d/(d+4)
AMISEopt(k)

d?—6d + 16

Table 3 shows this efficiency for various numbers of variables. The maxi-
mum is achieved with 15 variables; the limit as the number of variables grows
is 4/e, or approximately 1.472. Our experience is qualitatively similar with
other smooth densities. We conclude that the nearest-neighbor balloon estima-
tor is of little interest in the usual, low-dimensional cases; but may well be
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TABLE 3
Relative efficiencies of optimal multivariate kth nearest-neighbor estimates
to fixed kernel for multinormal densities.
Both estimators take as the kernel the uniform density
on the unit sphere in R?

Number of variables Efficiency of kth nearest-neighbor to fixed

1 0
2 0

3 0.483

4 0.866

5 . 1.146

15 1.545

100 1.491

worth considering for many variables. This bolsters the conclusions of Boswell
(1983).

6. Discussion. We have examined three classes of multivariate adaptive
estimators. We have seen some dramatic differences between the univariate
and multivariate cases with adaptive estimation. We have shown that kth
nearest-neighbor estimators behave well only in higher dimensions. We have
seen that the nonclipped sample smoothing estimator of Abramson is not
necessarily a local procedure for densities supported on the real line, in which
case the pointwise bias of the procedure is only slightly faster than O(A?) but
not O(h*). This finding does not seem inconsistent with the results of Hall and
Marron (1988), who considered the extension of Abramson’s procedure to the
entire density. They also introduced the condition that the density is bounded
locally from below; this requires that the density have finite support, which
would asymptotically eliminate the tail problem.

Existing techniques all tend to adapt based on some function of the level of
the unknown density function. Optimal adaptive estimation requires attention
to be paid not only to the level of the unknown density but also to its local or
global curvature. Optimal adaptive estimation leads to local linear transforma-
tions of the data. For certain dimensions, we have seen that very significant
gains are possible using balloon-type estimators. Roughly speaking, this is
because the MISE is dominated by errors only from regions surrounding peaks
while contributions elsewhere are of lower order. This phenomenon does not
exist in the univariate setting. It is possible to use nearest-neighbor distances
to estimate not only the level of the unknown density function but also its
curvature. Hall (1983) has given a theoretical demonstration of such a proce-
dure.

For regression, more dramatic improvements are surely possible since no
integral or positivity constraints exist for the curve as in density estimation.
However, much of the machinery is the same and there are some important
similarities in our conclusions.
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We conclude with the following (perhaps not so obvious) observation about
adaptive estimators. Adaptive estimation in a nonoptimal fashion can be
inferior to nonadaptive methods for sufficiently large samples. Adapting on
level alone seems to work very well for small samples, but, asymptotically,
curvature cannot be ignored in general. Given the complexity of correctly
applying optimal multivariate adaptive algorithms, we suspect the use of fixed
but higher-order kernel algorithms will gain favor. The fact that nearest-
neighbor estimators are superior to fixed kernel estimators beyond four dimen-
sions should be reassuring to workers in classification using these estimators.
Further work understanding the new adaptive estimators proposed will be
required. Designing practical algorithms based upon these results will be quite
challenging. However, some univariate work suggests it is not an impossible
task even with modest sample sizes.

APPENDIX

Proor oF THEOREM 1. Given a real sample x,,X,,...,X,, then its empiri-
cal cumulative distribution function is

P (T

where X is the indicator function on the given orthant. Write the density
estimator as an operator f(y) = T o F ). Then define

K(X7Y7 Fn) = lim 1[Ty({l - S}F’n + SX{ I:_[l[xj,oo)}) - (1 - g)TY(Fn)

e—>0 €&

= lim —
e—0 €&

F‘n) + Ty(ﬁ‘n)

Jj=1

Ty(ﬁ’n 4 g{x( ﬁ [xf,oo)) - F}) - Ty(

+f(y),

e o]

where DT(z)w] is the Gateaux derivative of T at z in the direction w.
Proposition 2.7 of Tapia (1971) g1ves us that DT, is linear in the second
argument SO

W +Fy)=0+f(y). O

T
=
=
:&..
K

’11>
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Proor oF THEOREM 2. Without loss of generality, let y = 0. Then

E((0)) = [——K[— d
(F( ))—1/21;7 (;z;;)f(x) x.
Make the one-to-one change of variables z = x /h(x) to get

E(f(0)) = fK(z)l—_%dz.

We will expand the second term in the integrand in a variant of a Lagrange
expansion. For a fixed choice of z, let x* = x(z) be the solution of x = zh(x).
Consider the contour integral in the complex plane

1 f(x)
¢

2miJox — zh(x)

dx,

where the contour makes a single right-hand loop about x*. By the residue
theorem this integral becomes

f(x*)  f(x(2))
1—zh(x*) 1-2zKW(x(2))"

Now evaluate the contour integral again by expanding the integrand as a
power series in z; apply the generalized residue theorem term by term with
the pole at 0:

£(0) + 2( fRY(0) + -+ +%(fh")(")(0) +o(2").

Now substitute this series into the expectation and integrate term by term to
get

N 1
E(f(0)) =f(0) + j;(fhp)“”(()) +o(h?). O

PrROOF OF PROPOSITION 5.
A 1
Bias = B[ /()] - £(y) = [2K(h A [x - y]) F(x) dx - ().
Now make the change of variables z = A~ !A~[x — y]; then continuing

= [K(2) f(y + hAz) dz — f(y).

Expand f in a three-term Taylor’s series; then

2

= /K(z) f(y) + hVf(y)Az + %-ZTATSyAz +o(h?)|dz - f(y),
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where Vf is the gradient, a row vector

= [K@)[f(y)] dz — f(y) + hVf(y)A [2K(2) dz

2

h
+ ?/ZTATSyAzK(z) dz + o(h?).

The first two terms sum to 0 and the third is 0, by assumption on the kernel,
SO

h2
_ ?/ tr[z"ATS A z| K(z) dz + o(h?)
since the trace of a scalar is just the scalar,
h2
_ ?ftr[ATSyAfzzTK(z) dz] + o(h?)

since tr(BC) = tr(CB). But the integral is the identity matrix, by assumption
on the kernel. O
Proor ofF ProprosiTiION 7. Write the spectral decomposition
S, = OTdiag(Ay,..., Ay —Apyps-ovy —A44,)0,

where A; > 0 and O is the orthogonal matrix of normalized eigenvectors. Then
let

A = OTdiag(y/alr; L, .., \ala; Y akaiLy ..., aka; 1, )O,
where «a is chosen so that |A| = 1. Then
A'S A = diag(al,...,al, —ak,..., —ak)
and
tr(ATSyA) =alk —akl = 0.
Compare this with (5.4). O
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