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CONTROLLING CONDITIONAL COVERAGE PROBABILITY
IN PREDICTION!

.By RunoLF BERAN

University of California, Berkeley

Suppose the variable X to be predicted and the learning sample Y,
that was observed are independent, with a joint distribution that depends
on an unknown parameter 6. A prediction region D, for X is a random set,
depending on Y, that contains X with prescribed probability «. In suffi-
ciently regular models, D, can be constructed so that overall coverage
probability converges to a at rate n ™", where r is any positive integer. This
paper shows that the conditional coverage probability of D,, given Y,,
converges in probability to « at a rate which usually cannot exceed n~1/2

1. Introduction. A random variable X that is to be predicted and a
learning sample Y, that was observed have a joint distribution P, ,. The
parameter 6 is unknown. A prediction region for X is a random set D,,
depending on the learning sample Y, that contains X with prescribed proba-
bility a.

Let P,(-|Y,) denote the conditional distribution of X given Y,,. The condi-
tional coverage probability of D, given Y, is the random variable

A basic problem is to construct D, so that CP(D,|Y,, 6) converges to « in
probability. Controlling conditional coverage probability, at least asymptoti-
cally, is a natural goal in predicting time series [Box and Jenkins (1976),
Section 5.2.4] and in establishing tolerance regions [Guttman (1970), Butler
(1982)]. Other recent discussions of conditional coverage probability in predic-
tion appear in Butler and Rothman (1980), Stine (1985) and Beran (1990).

The expectation of the conditional coverage probability CP(D,|Y,,, 6) is the
overall coverage probability of D, :

(1.2) CP(D,|0) = E,CP(D,|Y,,6) = P, (X €D,).

This expectation is taken with respect to the distribution @, ,, of Y,. In view of
(1.2), the bias in CP(D,|Y,, 6) as an estimator of a is the same as the error in
the overall coverage probability of D,. Cox (1975) develops an algebraic
adjustment to D, which reduces this bias to asymptotic order n~2 in regular
models. Beran (1990) gives a bootstrap adjustment to D, which has the same
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CONTROLLING CONDITIONAL COVERAGE PROBABILITY 1111

effect. In sufficiently regular cases, iteration of such bias adjustments reduces
the error in CP(D,|6) to asymptotic order n~", where r is any positive integer.

The use of the word estimator in the previous paragraph is imprecise
because a is known and the conditional coverage probability (1.2) depends on
the unknown parameter . However, the normalized error in conditional
coverage probability

(1.3) T,(0) = n/*[CP(D,|Y,,6) - ]

often has a limiting distribution as n increases [Butler (1982) Beran (1990)]
Think of T,(0) as analogous to the normalized error T () = n'/%(8, — 0),
where 0 is some estimator of 0. If the analogy has substance, the Hajek
convolutlon representation for the limiting distribution of T (6) and the local
asymptotic minimax bound on the dispersion of T (0) should have counter-
parts for T,(6).

This turns out to be the case. Section 2 establishes a sharp asymptotic lower
bound on the dispersion of T,(6) and also gives a convolution representation
for the limiting distribution of 7,(6). Consequently, unlike overall coverage
probability, conditional coverage probability converges to « at a rate which
cannot exceed n~ /2 in classically regular models. This circumstance limits the
statistician’s ability to control conditional coverage probability when designing
a prediction region.

2. Dispersion of conditional coverage probability. The analysis in
this paper is directed at the simplest case, where the learning sample Y, and
the sample X to be predicted are independent. The distribution of Y, is @, ,
and the distribution of X is P,. The parameter space is an open subset of the
real line. The extension to Euclidean parameter spaces is straightforward and
will be sketched in the exposition.

Treatment of infinite-dimensional 6 is harder because Fréchet differentia-
bility conditions analogous to those in Proposition 1 below are now too strong
to be useful. On a case-by-case basis, some infinite-dimensional extensions of
Proposition 1 are possible, as shown by Example 4 below. For time series
models, Assumption B—local asymptotic normality—usually does not hold.
Thus, a substantial further development is needed to handle these models.

Suppose 6, = 6,(Y,,) is an estimate of 0.Let R, = R(X, 6,,) be a root for the
predlctlon region— a function of X and 0 wh1ch is referred to a critical value
in order to generate the desired predlctlon region for X. Consider in this
setting the following design question. Let {D,(c)} be a sequence of prediction
regions for X of the form

(2.1) D,(c) = {x: R(x,8,) <d,},

Where c=1{d,, n)} is a sequence of critical values and estimates. Both d,
and 0 are computed from the learning sample Y,. Examples of constructlon



1112 R. BERAN

(2.1) are given later in this section. Impose on the sequence ¢ the following
constraint:

AssuMPTION A. As n increases,

CP[D,(¢)|Y,,6] -, a,
(2.2)

in @, , probability.
How should the sequence ¢ be chosen so as to minimize the dispersion of
(2.3) T.(c,0) = nl/z{CP[Dn(c)|Yn, 0] — a)?

To answer this question, introduce the following local asymptotic normality
assumption on the distribution @, , of the learning sample. In classical
parametric models, the variance I(#) in (2.5) below is the Fisher information
or a related limit.

AssumpTION B. For 6, = 6 + n~'/?h, where h is real, let Q; , and Q; ,
denote, respectively, the absolutely continuous and the singular parts of @, ,
with respect to @, ,. Let L,(h, 6) denote the log-likelihood ratio of @; , with
respect to @, ,. There exist random variables ¢,(6) depending on Y, and on 6
and a positive constant 1(8) such that

(2.4) L,(h,0) — h¢,(0) + 27'R2I(6) -, 0
in @, , probability, for every real h, and
(2.5) Z[£.(0)l6] = N(0, 1(6)).
Without loss of generality, we may assume that ¢,(6) is constructed so that
(2.6) £,(0,) — £.(0) + hI(6) >, 0
in @, , probability for every real h [Le Cam (1969), page 68].

This section presents two Propositions that bound from below the disper-
sion of T,(c,6) when n is large. The first result is related to the Hajek-
Le Cam local asymptotic minimax theory; the other is linked to the Hajek
convolution representation for limiting distributions of regular estimates.
Proofs are deferred to Section 3.

2.1. The local asymptotic minimax approach. Let w be a monotone func-
tion on the nonnegative reals, with w(0) = 0. Measure the dispersion of
CP[D,(0)|Y,, 6] about a through the risk

(2'7) p"(C,O) = Eow“Tn(c’ 0)”
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The conditional cdf of the root R, given Y,, is
(2.8) A(x,6,6,) = P,[R(X,8,) <aly,],

where 6, is held fixed on the right side. The conditional coverage probability of
D,(c) is thus

(2.9) CP[D,(¢)|Y,,6] = A(d,,,9,8,).
For use in the sequel, define the function
(2.10) C(a,0,t) = A[A Y (a,t,t),0,¢],

where A™!(a, t,1) is the largest ath quantile of the conditional cdf Ax, t,t).
Notation like f ("{’k)(x, 0,t) will represent the partial derivative
Itk f(x,0,1)/0xt 967 ot*. .

PRrOPOSITION 1. Suppose Assumptions A and B hold; and the cdf A(x, 0, )
is strictly monotone in x and is continuous in all three arguments. Suppose
also that A&%%(x, 0,t), A®%V(x,0,t), C*%(x, 0,t) exist and are continuous
in (x,0), (x,0,1), (0,t), respectively, at points wheret = 0. Then, for 6, =0 +
n-12p,

(2.11) l}im lim inf inf sup p,(c,6,) = Ew[|7(8)Z]],

where Z is a standard normal random variable and

(2.12) 72(6) = [C©0D(a,0,60)]I7(6).
If w is bounded and c is such that
(2.13) T.(c,8,) — C®%V(a,0,0)I71(0)£,(6,) =, 0
in Q, , probability, for every real h, then
(2.14) lim sup p,(c,6,) = Ew[|7(8)Z]]
2% h|<b

for every positive b.
Two remarks concerning Proposition 1 are:

REMARK A. The following condition on the sequence ¢ = {(d,,, §,)} ensures
that the lower bound (2.13) is attained in the sense (2.14), under the assump-
tions of the proposition: -

ni/%(8, — 0) — I"1(6)£,(6) —, O,
n?[d, - A"Y(a,6,,8,)] -, 0

in.Q, , probability. Indeed, by (2.6) and the contiguity entailed by Assumption
B, (2.15) implies

(2.16) nl/%(9, - 8,) — I71(8)£,(6,) ~p 0

(2.15)
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in @, , probability. Moreover d, »>p A" 'a, 6,6) under @, , and
C(a, t,t) = a for every possible ¢. Hence by several first-order Taylor expan-
sions,

CP[Dn(c)I n» n] = (dn’on’an)
(2.17) = C(a,0n0n) +o0,(n"1?)
=a+C®%(a,0,0)(, - 0,) +0,(n"?)

in @, , probability. Property (2.13) follows from (2.17) and (2.16). Note that
the first line in (2.15) is the classical condition that 0 be an asymptotically
efficient estimate of 6.

REMARK B. In the vector parameter extension of Proposition 1,
C©®%D(x 9,¢) is a column vector and I(9) is a positive definite matrix. The
expression for 72(9) becomes

(2.18) 72(6) = [C©%V(a,0,60)] I7(6)[C®%V(a,0,0)].

ExampLE 1. The simplest good choice for ¢ = {(d,, 8,)} is 8, asymptotically
efficient in the sense of (2.15) and

(2.19) d,=A"Ya,6,,8,).

Remark A above applies. Moreover, the overall coverage probability of D,(c)
satisfies

(2.20) CP[D,(c)|0] =a + O(n™Y)
under the assumptions of Proposition 2B in Beran (1990).

A better choice of ¢ i§ often possible. Let H,(-,8) denote the cdf of the
transformed root A(R,,0,,Y,). Replace (2.19) with the refinement

(2.21) d, =AY H;Y(a,8,),6,.8,],
where 5,, is still asymptotically efficient. For sufficiently regular models,
(2.22) H;Ya,8,) =a+0,(n7")

under @, , [see equation (4.21) in Beran (1990)]. Consequently, Remark A
above still applies. However, for this refined choice of c,

(2.23)  CP[D,(c)|6] = a + O(n"2)

under the assumptions of Proposition 3B in Beran (1990).

The adjustment (2.21) to the critical value d, thus improves the rate of
convergence to a of overall coverage probability; it does not affect the first-order
‘asymptotics of the conditional coverage probability. For both choices (2.19) and
(2.21) of d,, the dispersion of the conditional coverage probability of D,(c)
achieves the local asymptotic minimax bound (2.11), provided 6, is asymptoti-
cally efficient.
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ExampLE 2. To illustrate the extension of Proposition 1 to vector parame-
ters, suppose X and Y, are independent, X has a N(Bc, o?) distribution and
the elements of Y, = (XI, , X,,) are iid N(Bc;, 0?) random variables. The
parameter 6 = (B, o?)is unknown the {c;} and ¢ are known constants. Let
0, = (B,,, s2) denote the least squares estimate of 6 based on Y,. As root for
the prediction regiou, take the function

(2.24) R(X,6,) = X.

The more elaborate roots X — ,¢ or (X — B8,¢)/s, yield the same prediction
intervals as (2.24) in the following discussion.

The choice (2.19) for critical value d, generates the one-sided prediction
interval (—w, B,¢ + s,2,], where z, is the ath quantile of the standard
normal distribution. Suppose nIL; »_c2 > a?% a finite limit. The overall
coverage probability of the interval then differs from a by O(n~!). The refined
choice (2.21) for d, generates the classical exact prediction interval (—o
B,c+ s {1+ (T 1cz) W2, 1 o), where ¢, , is the ath quantile of the ¢
distribution with r degrees of freedom. Let ¢ denote the standard normal
density. By the reasoning for remark (a) above, both of these prediction
intervals have the property that (2.14) holds, with

a?02 0
(2.25) I(0)=( o (204)_1)
o 'e(z,)
2.26 CL%9(qy 9,0) = -1
(2.28) ( ) ((202) zacp(za))
and
(2.27) 72(8) = (27122 + a~2)p%(2,)

in accordance with remark (b) above.

ExamPLE 3. As an interesting special case of Example 1, suppose that the
{X;: i > 1} are iid unit vectors from a Fisher (u, «) distribution, where u is a
unit vector and « is positive. The parameter 8 = (u, k) is unknown. Suppose
the learning sample is Y, = (X,,..., X,) and the variable to be predicted is
the unit vector X = X, , ;. Since the Flsher model can be rewritten in canoni-
cal exponential form [Beran (1979)], Assumption B holds and the maximum
likelihood estimate 6, = (4,,K,) of 0 satisfies the first line in (2.15). More-
over, fi, is the sa.mple mean vector rescaled to unit length.

To generate a prediction cone for X, consider the root

(2.28) R(X,8,) =27 X -4, =1-@,X.
By stralghtforward calculation,

A A)_l—exp( R,x)

: = 0<x<2.
(2.29) A(x,6,,8, T—em(-22)’ °0S%S
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Consequently, the efficient critical value (2.19) is

(2.30) d, = —k; log{l — a[1 — exp(—2%,)]}.

The prediction region (2.1) for X determined by root (2.28) and critical value
(2.30) is a cone with axis fi,. By Proposition 1, the conditional coverage
probability of this prediction cone is minimally dispersed about «, for large n,
because {d,} satisfies (2.15).

Comparing this example with Example 2, we see that the optimality prop-
erly isolated in Proposition 1 has nothing to do with one-sidedness or multisid-
edness of a prediction region.

The refined critical value (2.21) satisfies (2.23) and Proposition 1 in this
example. A bootstrap algorithm for computing (2.21) is given in Beran (1990).

ExamMPLE 4. Suppose that X and the elements of Y, = (X,,..., X,) are iid
random variables with unknown continuous cdf F. The parameter 0 = F is
estimated by the empirical cdf 6, = F,. From the root R, = X, definition (2.1)
and critical value (2.19) generate the one-sided prediction interval

(2.31) D, =(-=, B (a)],

where F%(a) is the largest ath sample quantile, say.

The conditions for Proposition 1 are not satisfied in this example. However,
under regularity conditions on F, an argument using ideas in Koshevnik and
Levit (1976) establishes an analog of the lower bound (2.11), with

(2.32) - 13(F) =a(1 - a).

Moreover, the prediction interval (2.31) attains this asymptotic lower bound in
the sense of (2.14). This example illustrates the possibility of case-by-case
extensions of Proposition 1 when 6 is infinite-dimensional.

2.2. The convolution representation. A sequence of prediction regions
{D,(c)} having the form (2.1) will be called Hdjek-regular if, for 6, = 6 +
n~12h and for T,(c, 6,) defined by (2.3),

(2.33) Z[Tu(c,6,)16,] = no(c),

the limit law u,(c) depending on ¢ but not on A.

PROPOSITION 2. Suppose the assumptions for Proposition 1 hold and the
prediction regions {D,(c)} are Hdjek-regular. Then

(2.34) wo(c) = N(0,7%(8)) * vy(e),

where 7%(0) is defined by (2.12) and (v,(c)) is a probability measure on the real
line. Moreover, {D,(c)} is Hdjek-regular and u,(c) = N(0,7%(8)) if and only if
(2.13) holds.

Remarks A and B that follow Proposition 1 also carry over to Proposition 2.
Examples 1, 2 and 3 illustrate how to choose the sequence ¢ so that v,(c) in
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(2.34) is the point mass at zero—the situation when the limit law of T,(c, 6) is
least dispersed. An analogous result for Example 4 can be proved using ideas
in Beran (1977).

3. Proofs. This section proves ‘the two propositions stated in Section 2.

ProOF oF ProPOSITION 1. Assumption A and the conditions on the cdf A
imply that
(3.1) d, -, A (a,0,0)
in @, , probability. Write p, for the right side of (2.11). Suppose the proposi-
tion is false. Then, there exists positive £ such that
(3.2) lim inf inf sup p,(¢c,0,) <po, —'¢

n—e o h<b

for every positive b. By extracting a suitable subsequence, assume without loss
of generality that there exists a sequence ¢ such that (3.1) holds and

(33) Pn(C,6,) <po —e/4

for every |h| < b and every n.
On the other hand, for every fixed 4,

(3.4) pa(c,0,) = E{u(T,)exp[ L,(k,0)]},
where
(3.5) T, = T,(c,6,) = n?[A(d,,6,.6,) — «

can be written as the sum of two terms T, ; and T, , as follows:
T, ,=n'?[A(d,,0,,0) — a]
(3.6) =n'?[C(a,8,,0) —a] + W,
= —hC®*V(a,0,,8, ;) + W,,

where 0, ; lies between 6, and 6 and
(3.7) W, = n*?[d, — A"Y(a,9,0)| A%*(d,,8,,0)
for d,, between d, and A~ (a, 6, 6). Moreover,
T, ,=n*[A(d,,6,,6,) — A(d,,6,,)]

= n'/%(§, - 0)A®*V(d,,0,,0, ),

where 0,, , lies between 8, and 6.
In view of (3.5) through (8.8) and the assumptions of the proposition,
assume without loss of generality, by going to a subsequence, that

(3.9) (T, £,(0)) = (V- hC®*(a,0,60),1'*(0)Z)

under @, ,. Here V is a random variable on the extended real line whose
distribution does not depend on % and Z has a standard normal distribution.

(3.8)
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Set ¢t = I'V%(9)h and b(9) = C®%N(a, 0, 0)I~/%(9). From (3.4), (3.9), As-
sumption B and Fatou’s lemma,
lim p,(c,6,) > E{u [IV b(0)t|]exp(tZ — 27'¢%)}

= V-5 = — d
(3.10) JE([IV - b(8)t[]2 = 2}(z - t) dz

= [ [ullv ~ b(@)el] M(dv, 2)8(z ~ 1) d

=J(M,t), say,

where M(dv, z) is the probability element of the conditional distribution of V
given Z = z. Combining (3.10) with (3.3) establishes _

(3.11) J(M,t) <p,—¢c/4

for every |¢| < I'/%(6)b. The argument works for every positive b.
Inequality (3.11) thus contradicts the classical minimax bound in the nor-
mal location model:

(3.12) lim inf supJ(M,t) = p,.

a=e M <q
Hence Proposition 1 is true. O
PRrOOF OF PROPOSITION 2. Because of Assumption B, @; (R') >0 as n
increases. Hence the characteristic function of -~1T,|Q, ,] satisfies
(3.13) E, exp(iuT,) = E,[iuT, + L,(k,0)] + o(1).

By going to a subsequence, assume without loss of generality that (3.9) holds.
In view of (2.33), specializing to A = 0 shows that V in (8.9) an ordinary
random variable with distribution u,(c). From (3.9) and a uniform integrabil-
ity argument, passing to the limit in (8.13) as n increases yields

Eexp(iuV) = E exp|iu{V — hC®*(a,6,6)}]
X exp[ hIV*(0)Z — 27 h%1(6)].

Since the right side of (3.14) is analytic in % and is constant for all real A,
the relation (3.14) must be valid for all complex %. In particular, setting
h = —il"(0)C®%D(q,0,0)u in (3.14) gives

Eexp(iuV) = exp[ —27'r%(6)u?
X E exp|iu{V — C*%V(a,0,0)1"/%(9)Z}].

(3.14)

(3.15)

This proves (2.34).
The if and only if part: Suppose (2.13) holds. By contiguity reasoning and
Assumption B,

(3.16) Z[£.(6)16,] = N(RI(6), I(6)).
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From this, (2.6) and (2.13),
(3.17) Z[T,16,] = N(0,7%(6))
for every real h, as asserted in Proposition 2.
Conversely, suppose that (3.17) holds for every real h while convergence

(2.13) does not occur under @y, »» and hence under @, , by contiguity. By
going to a subsequence, assume without loss of generality that

(3.18) Qo [|T, — COOD(,0,0)I71(6)£,(6,)| = €] > 5

for every n and some positive ¢ and 8. By going to a further subsequence, as
in the first part of the proof, assume without loss of generality that (3.9) holds
under Q, ,, with V having a N(0, 7%(6)) distribution in view of (3.17). From
this, (2.6) and (3.18),

(3.19) Pr[|[V - C©%D(a,0,0)I"%(0)Z]| > ¢] > 5.
At the same time, (3.15) also holds and here entails
(3.20) V=C%%Y(a,0,0)I"/%(0)Z w.p.1.

The contradiction between (3.19) and (3.20) establishes that (2.13) must hold.
This argument draws in part on Bickel’s unpublished proof of the Hajek
convolution representation for regular estimates. O
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